Skip to main content

Columns under a Rocket-Based Subtangential Follower Force

  • Chapter
  • First Online:
Dynamic Stability of Columns under Nonconservative Forces

Part of the book series: Solid Mechanics and Its Applications ((SMIA,volume 255))

  • 476 Accesses

Abstract

The stability of columns under conservative forces has been the basis of structural stability theory, while the stability of columns under nonconservative forces has been only of recent interest in regard to structural stability. The stability of columns under the combined action of conservative and nonconservative forces has been an interesting topic in the field of structural stability problems, as it bridges the gap between the stability with conservative forces and the stability with nonconservative forces [1,2,3,4,5,6,7,8].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Leipholz, H. (1962). Die Knicklast des eiseitig eigespannten Stabes mit gleichmäßig verteiler, tangentialer Längsbelastung. Zeitschrift für Angewandte Mathematik und Physik, 6, 581–589.

    Article  Google Scholar 

  2. Sugiyama, Y., Katayama, T., & Sekiya, T. (1969). Studies on nonconservative problems of instability of columns by difference method. In Proceedings of the 19th Japan National Congress for Applied Mechanics, 1969 (pp. 23–31). Tokyo: The University of Tokyo Press.

    Google Scholar 

  3. McGill, D. J. (1971). Column instability under weight and follower loads. Journal of the Engineering Mechanics Division, American Society of Civil Engineers, 97, 629–635.

    Google Scholar 

  4. Sugiyama, Y., Kawagoe, H., & Tanimoto, Y. (1974). Stability of elastic columns subjected to distributed sub-tangential follower forces. Reports of the Faculty of Engineering (vol. 5-1, pp. 1–10). Tottori University.

    Google Scholar 

  5. Sugiyama, Y., & Kawagoe, H. (1975). Vibration and stability of elastic columns under the combined action of uniformly distributed vertical and tangential forces. Journal of Sound and Vibration, 38(3), 341–355.

    Article  Google Scholar 

  6. Celep, Z. (1977). On the vibration and stability of Beck’s column subjected to vertical and follower forces. Zeitschrift für Angewandte Mathematik und Mechanik, 57, 555–557.

    Article  MathSciNet  Google Scholar 

  7. Leipholz, H. (1980). Stability of Elastic Systems. Alphen aan den Rijn: Sijthoff & Noordhoff.

    MATH  Google Scholar 

  8. Sugiyama, Y., & Mladenov, K. A. (1983). Vibration and stability of elastic columns subjected to triangularly distributed sub-tangential forces. Journal of Sound and Vibration, 88(4), 447–457.

    Article  Google Scholar 

  9. Katayama, K. (1997). Experimental verification of the effect of rocket thrust on the dynamic stability of cantilevered columns. Doctoral Thesis, Department of Aerospace Engineering, Osaka Prefecture University.

    Google Scholar 

  10. Sugiyama, Y., Katayama, K., Kiriyama, K., & Ryu, B.-J. (2000). Experimental verification of dynamic stability of vertical cantilevered columns subjected to a sub-tangential force. Journal of Sound and Vibration, 236(2), 193–207.

    Article  Google Scholar 

  11. Mutyalarao, M., Bharathi, D., Narayana, K. L., & Nageswara Rao, B. (2017). How valid are Sugiyama’s experiments on follower forces? Letter to the Editor, International Journal of Non-Linear Mechanics, 93, 122–125.

    Article  Google Scholar 

  12. Plaut, R. H. (1975). Optimal design for stability under dissipative, gyroscopic, or circulatory loads. In A. Sawczuk, Z. Mroz (Eds.), Optimization in structural design. Berlin: Springer.

    Chapter  Google Scholar 

  13. Odeh, F., & Tadjbakhsh, I. (1975). The shape of the strongest column with a follower load. Journal of Optimization Theory and Applications, 15, 103–118.

    Article  MathSciNet  Google Scholar 

  14. Claudon, J. L. (1975). Characteristic curves and optimum design of two structures subjected to circulatory loads. Journal de Mécanique, 14, 531–543.

    MATH  Google Scholar 

  15. Hanaoka, M., & Washizu, K. (1980). Optimum design of Beck’s column. Computers & Structures, 11, 473–480.

    Article  MathSciNet  Google Scholar 

  16. Tada, Y., Seguchi, Y., & Kema, K. (1985). Shape determination of nonconservative structural systems by the inverse variational principle. Memoirs of the Faculty of Engineering (vol. 32, pp. 45–61). Kobe University.

    Google Scholar 

  17. Gutkowski, W., Mahrenholz, O., Pyrz, O. (1983). Minimum weight design of structures under nonconservative forces. In G. I. N. Rozvany (Ed.), Optimization of large structural systems (pp. 1087–1100). Dortrecht: Kluwer.

    Chapter  Google Scholar 

  18. Ringertz, U. T. (1994). On the design of Beck’s column. Structural Optimization, 8, 120–124.

    Article  Google Scholar 

  19. Langthjem, M. A., & Sugiyama, Y. (1999). Optimum design of Beck’s column with a constraint on the static buckling load. Structural Optimization, 18, 228–235.

    Article  Google Scholar 

  20. Langthjem, M. A., & Sugiyama, Y. (2000). Optimum design of cantilevered columns under the combined action of conservative and nonconservative loads. Part I: The undamped case, Computers & Structures, 74, 385–398.

    Google Scholar 

  21. Langthjem, M. A., & Sugiyama, Y. (2000). Optimum design of cantilevered columns under the combined action of conservative and nonconservative loads. Part II: The damped case, Computers & Structures, 74, 399–408.

    Google Scholar 

  22. Sugiyama, Y., Langthjem, M. A., Iwama, T., Kobayashi, M., Katayama, K., & Yutani, H. (2012). Shape optimization of cantilevered columns subjected to a rocket-based follower force and its experimental verification. Structural and Multidisciplinary Optimization, 46, 829–838.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yoshihiko Sugiyama .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sugiyama, Y., Langthjem, M.A., Katayama, K. (2019). Columns under a Rocket-Based Subtangential Follower Force. In: Dynamic Stability of Columns under Nonconservative Forces. Solid Mechanics and Its Applications, vol 255. Springer, Cham. https://doi.org/10.1007/978-3-030-00572-6_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-00572-6_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-00571-9

  • Online ISBN: 978-3-030-00572-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics