Skip to main content

High-Resolution Image Classification Using the Dynamic Differential Evolutionary Algorithm Optimized Multi-scale Kernel Support Vector Machine Method

  • Conference paper
  • First Online:
  • 2441 Accesses

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 10989))

Abstract

With the fast development of remote sensing techniques, the spatial resolution of remote sensed image are improved significantly. However, the excessive spatial resolution leads to a sharp increase in data volume and spectral information confusion of objects. The multi-scale kernel learning (MSKL) method has shown an excellent advantage in classification of high-resolution satellite image. Nevertheless, the performance of the MSKL is dramatically influenced by the widths and weights of the Radial Basis Function (RBF) kernel, since its multi-scale kernel function is constructed by several RBF kernels. In order to achieve efficient multi-scale classifier, a new dynamic differential evolution (DE) algorithm is introduced in this paper. In addition, the spectral features and spatial fractal texture features of images are synthetically employed to construct the multi-scale kernel. The experimental results show that the multi-scale kernel based on the dynamic DE algorithm is superior to the traditional multi-scale kernel in obtaining a better multi-scale kernel classifier and with higher classification accuracy.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Yuan, J., Wang, D., Li, R.: Remote sensing image segmentation by combining spectral and texture features. IEEE Trans. Geosci. Remote Sens. 52(1), 16–24 (2014)

    Article  Google Scholar 

  2. Yan, Y., Ren, J., Sun, G., et al.: Unsupervised image saliency detection with Gestalt-laws guided optimization and visual attention based refinement. Pattern Recogn. 79, 65–78 (2018)

    Article  Google Scholar 

  3. Han, J., Zhang, D., Hu, X., et al.: Background prior-based salient object detection via deep reconstruction residual. IEEE Trans. Circuits Syst. Video Technol. 25(8), 1309–1321 (2015)

    Article  Google Scholar 

  4. Vapnik, V.: The Nature of Statistical Learning Theory. Springer, New York (1995)

    Book  Google Scholar 

  5. Vapnik, V.: Statistical Learning Theory. Wiley, New York (1998)

    MATH  Google Scholar 

  6. LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521(7553), 436–444 (2015)

    Article  Google Scholar 

  7. Jawad, H., Olivier, P., Ren, J., et al.: Performance of hidden Markov model and dynamic Bayesian network classifiers on handwritten Arabic word recognition. Knowl. Based Syst. 24(5), 680–688 (2011)

    Article  Google Scholar 

  8. Wang, Z., Ren, J., Zhang, D., et al.: A deep-learning based feature hybrid framework for spatiotemporal saliency detection inside videos. Neurocomputing 287, 68–83 (2018)

    Article  Google Scholar 

  9. Ren, J.: ANN vs SVM: which one performs better in classification of MCCs in mammogram imaging. Knowl. Based Syst. 26, 144–153 (2012)

    Article  Google Scholar 

  10. Zheng, D., Wang, J., Zhao, Y.: Non-flat function estimation with a multi-scale support vector regession. Neurocomputing 70(1–3), 420–429 (2006)

    Article  Google Scholar 

  11. Schölkopf, B., Smola, A.: Learning with Kernels: Support Vector Machines, Regularization, Optimization, and Beyond. MIT Press, Cambridge (2001)

    Google Scholar 

  12. Yang, Z., Guo, J., Xu, W., Nie, X., Wang, J., Lei, J.: Multi-scale Support Vector Machine for Regression Estimation. In: Wang, J., Yi, Z., Zurada, J.M., Lu, B.-L., Yin, H. (eds.) ISNN 2006. LNCS, vol. 3971, pp. 1030–1037. Springer, Heidelberg (2006). https://doi.org/10.1007/11759966_151

    Chapter  Google Scholar 

  13. Sun, G., Ma, P., Ren, J., et al.: A stability constrained adaptive alpha for gravitational search algorithm. Knowl. Based Syst. 139, 200–213 (2018)

    Article  Google Scholar 

  14. Zhang, A., Sun, G., Ren, J., et al.: A dynamic neighborhood learning-based gravitational search algorithm. IEEE Trans. Cybern. 48(1), 436–447 (2018)

    Article  Google Scholar 

  15. Zheng, D., Wang, J., Zhao, Y.: Training sparse MS-SVR with an expectation–maximization algorithm. Neurocomputing 69(13–15), 1659–1664 (2006)

    Article  Google Scholar 

  16. Phienthrakul, T., Kijsirikul, B.: Evolutionary strategies for multi-scale radial basis function kernels in support vector machines. In: Conference on Genetics and Evaluation Computer, pp. 905–911. ACM, Washington, DC (2005)

    Google Scholar 

  17. Han, J., Zhang, D., Cheng, G., et al.: Object detection in optical remote sensing images based on weakly supervised learning and high-level feature learning. IEEE Trans. Geosci. Remote 53(6), 3325–3337 (2015)

    Article  Google Scholar 

  18. Xu, S., Long, W.: Differential evolution algorithm with dynamically adjusting number of subpopulation individuals. J. Comput. Appl. 31(11), 3101–3103 (2011)

    Google Scholar 

  19. Storn, R., Price, K.: Differential evolution-a simple and efficient heuristic for global optimization over continuous spaces. J. Glob. Optim. 11(4), 341–359 (1997)

    Article  MathSciNet  Google Scholar 

  20. Peleg, S., Naor, J., Hartley, R.: Multiple resolution texture analysis and classification. IEEE Trans. Pattern. Anal. PAMI 6(4), 518–523 (2009)

    Google Scholar 

  21. Zhang, J., Pan, Y., He, C.: The high spatial resolution remote sensing image classification based on SVM with the multi-source data. In: Symposium on 2005 IEEE International Geoscience and Remote Sensing, pp. 3818–3821 (2005)

    Google Scholar 

  22. Cheng, G., Han, J., Guo, L., et al.: Effective and efficient midlevel visual elements-oriented land-use classification using VHR remote sensing images. IEEE Trans. Geosci. Remote Sens. 53(8), 4238–4249 (2015)

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (41471353), the Natural Science Foundation of Shandong Province (ZR201709180096, ZR201702100118), the Fundamental Research Funds for the Central Universities (18CX05030A, 18CX02179A), and the Postdoctoral Application and Research Projects of Qingdao (BY20170204).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aizhu Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Rong, X., Zhang, A., Sun, G., Huang, H., Ma, P. (2018). High-Resolution Image Classification Using the Dynamic Differential Evolutionary Algorithm Optimized Multi-scale Kernel Support Vector Machine Method. In: Ren, J., et al. Advances in Brain Inspired Cognitive Systems. BICS 2018. Lecture Notes in Computer Science(), vol 10989. Springer, Cham. https://doi.org/10.1007/978-3-030-00563-4_32

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-00563-4_32

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-00562-7

  • Online ISBN: 978-3-030-00563-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics