Skip to main content

Novel Group Variable Selection for Salient Skull Region Selection and Sex Determination

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 10989))

Abstract

Sex determination in forensic analysis involves individual examination of different sites of the skull and combination of these sites to understand their impact on the estimation results. Conventionally, forensic experts perform a stepwise combination of several skull region assessment parameters to determine the most important regions with regard to the sex estimation results. This paper introduces a novel group variable selection algorithm: Graph Laplacian Based Group Lasso with split augmented Lagrangian shrinkage algorithm (SALSA) to automatically learn from data by structuring the data into a set of disjointed groups and imposing a number of group sparsity to discover the salient groups which influence the sex determination results. In order to attain this, the skull is partitioned into smaller regions (local regions) using fuzzy c-means (FCM), which are further arranged into clusters as structured groups. Then, we implement the SALSA based group lasso algorithm to impose sparsity on the groups. Our experiments are conducted on 100 skull samples obtained from hospital kuala lumpur (HKL) and the best estimation result obtained is 84.5%.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Afonso, M.V., Bioucas-Dias, J.M., Figueiredo, M.A.: An augmented Lagrangian approach to the constrained optimization formulation of imaging inverse problems. IEEE Trans. Image Process. 20(3), 681–695 (2011)

    Article  MathSciNet  Google Scholar 

  2. Arigbabu, O.A., Liao, I.Y., Abdullah, N., Noor, M.H.M.: Can computer vision techniques be applied to automated forensic examinations? A study on sex identification from human skulls using head CT scans. In: Lai, S.-H., Lepetit, V., Nishino, K., Sato, Y. (eds.) ACCV 2016. LNCS, vol. 10114, pp. 342–359. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-54190-7_21

    Chapter  Google Scholar 

  3. Boyd, S., Parikh, N., Chu, E., Peleato, B., Eckstein, J.: Distributed optimization and statistical learning via the alternating direction method of multipliers Foundations and Trends\(^{\textregistered }\). Mach. Learn. 3(1), 1–122 (2011)

    MATH  Google Scholar 

  4. Buikstra, J.E., Ubelaker., D. H.: Standards for data collection from human skeletal remains. In: Proceedings of a Seminar at the Field Museum of Natural History, Arkansas Archaeology Research Series, vol. 44 (1994)

    Google Scholar 

  5. Friedman, J., Hastie, T., Tibshirani, R.: A note on the group lasso and a sparse group lasso. arXiv:1001.0736 [math, stat], p. 8 (2010)

  6. Garcia, D.: Robust smoothing of gridded data in one and higher dimensions with missing values. Comput. Stat. Data Anal. 54(4), 1167–1178 (2010)

    Article  MathSciNet  Google Scholar 

  7. Garvin, H., Klales, A.: A validation study of the Langley et al. (2017) decision tree model for sex estimation. J. Forensic Sci. 63, 1243–1251 (2017)

    Article  Google Scholar 

  8. Graw, M., Czarnetzki, A., Haffner, H.T.: The form of the supraorbital margin as a criterion in identification of sex from the skull: investigations based on modern human skulls. Am. J. Phys. Anthropol. 108, 91–96 (1999)

    Article  Google Scholar 

  9. He, X., Niyogi, P.: Locality preserving projections. In: Neural Information Processing Systems, vol. 16, p. 153 (2004)

    Google Scholar 

  10. Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969)

    Article  MathSciNet  Google Scholar 

  11. Langley, N.R., Dudzik, B., Cloutier, A.: A decision tree for nonmetric sex assessment from the skull. J. Forensic Sci. 61(3), 743–751 (2017)

    Google Scholar 

  12. Luo, L., Chang, L., Liu, R., Duan, F.: Morphological investigations of skulls for sex determination based on sparse principal component analysis. In: Sun, Z., Shan, S., Yang, G., Zhou, J., Wang, Y., Yin, Y.L. (eds.) CCBR 2013. LNCS, vol. 8232, pp. 449–456. Springer, Cham (2013). https://doi.org/10.1007/978-3-319-02961-0_56

    Chapter  Google Scholar 

  13. Pinto, S.C.D., Urbanová, P., Cesar, R.M.: Two-dimensional wavelet analysis of supraorbital margins of the human skull for characterizing sexual dimorphism. IEEE Trans. Inf. Forensics Secur. 11(7), 1542–1548 (2016)

    Article  Google Scholar 

  14. Powell, M.J.: A method for non-linear constraints in minimization problems. In: UKAEA (1969)

    Google Scholar 

  15. Ren, J., Jiang, J., Wang, D., Ipson, S.S.: Fusion of intensity and inter-component chromatic difference for effective and robust colour edge detection. IET Image Process. 4, 294–301 (2010)

    Article  Google Scholar 

  16. Scheuer, L.: Application of osteology to forensic medicine. Clin. Anat. 15(4), 297–312 (2002)

    Article  Google Scholar 

  17. Selesnick, I.: L1-norm penalized least squares with SALSA. Connexions (2014). http://cnx.org/content/m48933/

  18. Spradley, M.K., Jantz, R.L.: Sex estimation in forensic anthropology: skull versus postcranial elements. J. Forensic Sci. 56(2), 289–296 (2011)

    Article  Google Scholar 

  19. Walker, P.L.: Sexing skulls using discriminant function analysis of visually assessed traits. Am. J. Phys. Anthropol. 136(1), 39–50 (2008)

    Article  Google Scholar 

  20. Wang, Z., Ren, J., Zhang, D., Sun, M., Jiang, J.: A deep-learning based feature hybrid framework for spatiotemporal saliency detection inside videos. Neurocomputing 287, 68–83 (2018)

    Article  Google Scholar 

  21. Williams, B.A., Rogers, T.L.: Evaluating the accuracy and precision of cranial morphological traits for sex determination. J. Forensic Sci. 51(4), 729–735 (2006)

    Article  Google Scholar 

  22. Yan, Y., Ren, J., Li, Y., Windmill, J., Ijomah, W.: Fusion of dominant colour and spatial layout features for effective image retrieval of coloured logos and trademarks. In: 2015 IEEE International Conference on Multimedia Big Data (BigMM), pp. 306–311 (2015)

    Google Scholar 

  23. Yan, Y., Ren, J., Sun, G., Zhao, H., Han, J., Li, X.: Unsupervised image saliency detection with Gestalt-laws guided optimization and visual attention based refinement. Pattern Recognit. 79, 65–78 (2018)

    Article  Google Scholar 

  24. Yan, Y., Ren, J., Zhao, H., Sun, G., Wang, Z., Zheng, J.: Cognitive fusion of thermal and visible imagery for effective detection and tracking of pedestrians in videos. Cogn. Comput. 10, 94–104 (2018)

    Article  Google Scholar 

  25. Zheng, J., Liu, Y., Ren, J., Zhu, T., Yan, Y., Yang, H.: Fusion of block and keypoints based approaches for effective copy-move image forgery detection. Multidimens. Syst. Signal Process. 27, 989–1005 (2016)

    Article  MathSciNet  Google Scholar 

  26. Zhou, Y., Zeng, F.Z., Zhao, H.M., Murray, P., Ren, J.: Hierarchical visual perception and two-dimensional compressive sensing for effective content-based color image retrieval. Cogn. Comput. 8(5), 877–889 (2016)

    Article  Google Scholar 

Download references

Acknowledgement

This research is sponsored by the eScienceFund grant 01-02-12-SF0288, Ministry of Science, Technology, and Innovation (MOSTI), Malaysia. The project has received full ethical approval from the Medical Research & Ethics Committee (MREC), Ministry of Health, Malaysia (ref: NMRR-14-1623-18717) and from the University of Nottingham Malaysia Campus (ref: IYL170414). Iman Yi Liao would like to thank the National Institute of Forensic Medicine (NIFM), Hospital Kuala Lumpur, for providing the PMCT data, and is grateful to Dr. Ahmad Hafizam Hasmi (NIFM) and Ms. Khoo Lay See (NIFM) for their assistance in coordinating the data preparation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Iman Yi Liao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Arigbabu, O.A., Liao, I.Y., Abdullah, N., Noor, M.H.M. (2018). Novel Group Variable Selection for Salient Skull Region Selection and Sex Determination. In: Ren, J., et al. Advances in Brain Inspired Cognitive Systems. BICS 2018. Lecture Notes in Computer Science(), vol 10989. Springer, Cham. https://doi.org/10.1007/978-3-030-00563-4_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-00563-4_24

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-00562-7

  • Online ISBN: 978-3-030-00563-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics