Skip to main content

DAU-GAN: Unsupervised Object Transfiguration via Deep Attention Unit

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 10989))

Abstract

Object transfiguration aims to translate objects in image from a kind to another, which is a subtask of image translation. Recently, researchers have proposed many effective approaches for object transfiguration. However, most of them ignore the difference between target objects and background, which would make background deformation, discolor and other problems. We propose a novel attention-based model for unsupervised object transfiguration called Deep Attention Units Generative Adversarial Network (DAU-GAN). We utilize spatial consistencies of objects and background to enable model to preserve background of image. Such an attention-based design enables DAU-GAN to enhance the expression of meaningful features and let the model able to distinguish specific objects and background in images. Experimental results demonstrate that our approach improves the performance of object transfiguration as well as effectively preserves background.

Z. Ye and F. Lyu—The first two authors contributed to this work equally.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Johnson, J., Alahi, A., Fei-Fei, L.: Perceptual losses for real-time style transfer and super-resolution. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9906, pp. 694–711. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46475-6_43

    Chapter  Google Scholar 

  2. Isola, P., Zhu, J.Y., Zhou, T., Efros, A.A.: Image-to-image translation with conditional adversarial networks. In: CVPR, pp. 1125–1134 (2017)

    Google Scholar 

  3. Ledig, C., et al.: Photo-realistic single image super-resolution using a generative adversarial network. In: CVPR, pp. 4681–4690 (2017)

    Google Scholar 

  4. Zhang, H., et al.: Stackgan: Text to photo-realistic image synthesis with stacked generative adversarial networks. In: ICCV, pp. 5907–5915 (2017)

    Google Scholar 

  5. Feng, Y., Ren, J., Jiang, J.: Object-based 2D-to-3D video conversion for effective stereoscopic content generation in 3D-TV applications. IEEE Trans. Broadcast 57(2), 500–509 (2011)

    Article  Google Scholar 

  6. Yan, Y., et al.: Cognitive fusion of thermal and visible imagery for effective detection and tracking of pedestrians in videos. Cogn. Comput. 10(1), 94–104 (2018)

    Article  Google Scholar 

  7. Han, J., Zhang, D., Hu, X., Guo, L., Ren, J., Wu, F.: Background prior-based salient object detection via deep reconstruction residual. IEEE Trans. Circuits Syst. Video Technol. 25(8), 1309–1321 (2015)

    Article  Google Scholar 

  8. Ren, J., Jiang, J., Wang, D., Ipson, S.: Fusion of intensity and inter-component chromatic difference for effective and robust colour edge detection. IET Image Process. 4(4), 294–301 (2010)

    Article  Google Scholar 

  9. Han, J., Zhang, D., Cheng, G., Guo, L., Ren, J.: Object detection in optical remote sensing images based on weakly supervised learning and high-level feature learning. IEEE Trans. Geosci. Remote Sens. 53(6), 3325–3337 (2015)

    Article  Google Scholar 

  10. Fu, X., Huang, J., Zeng, D., Huang, Y., Ding, X., Paisley, J.: Removing rain from single images via a deep detail network. In: CVPR, pp. 3855–3863 (2017)

    Google Scholar 

  11. Liu, M.Y., Breuel, T., Kautz, J.: Unsupervised image-to-image translation networks. In: NIPS, pp. 700–708 (2017)

    Google Scholar 

  12. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural networks. In: NIPS, pp. 1097–1105 (2012)

    Google Scholar 

  13. Liao, J., Yao, Y., Yuan, L., Hua, G., Kang, S.B.: Visual attribute transfer through deep image analogy. ACM Trans. Graph. 36(4), 120 (2017)

    Article  Google Scholar 

  14. Choi, Y., Choi, M., Kim, M., Ha, J.W., Kim, S., Choo, J.: Stargan: Unified generative adversarial networks for multi-domain image-to-image translation. arXiv preprint arXiv:1711.09020 (2017)

  15. Zhu, J.Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: CVPR, pp. 2223–2232 (2017)

    Google Scholar 

  16. Yi, Z., Zhang, H., Tan, P., Gong, M.: Dualgan: unsupervised dual learning for image-to-image translation. In: CVPR, pp. 2849–2857 (2017)

    Google Scholar 

  17. Zhao, B., Feng, J., Wu, X., Yan, S.: A survey on deep learning-based fine-grained object classification and semantic segmentation. Int. J. Autom. Comput. 14(2), 119–135 (2017)

    Article  Google Scholar 

  18. Yan, Y., et al.: Unsupervised image saliency detection with gestalt-laws guided optimization and visual attention based refinement. Pattern Recogn. 79, 65–78 (2018)

    Article  Google Scholar 

  19. Goodfellow, I., et al.: Generative adversarial nets. In: NIPS, pp. 2672–2680 (2014)

    Google Scholar 

  20. Radford, A., Metz, L., Chintala, S.: Unsupervised representation learning with deep convolutional generative adversarial networks. arXiv preprint arXiv:1511.06434 (2015)

  21. Zhu, J.-Y., Krähenbühl, P., Shechtman, E., Efros, A.A.: Generative visual manipulation on the natural image manifold. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9909, pp. 597–613. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46454-1_36

    Chapter  Google Scholar 

  22. Briggs, F., Mangun, G.R., Usrey, W.M.: Attention enhances synaptic efficacy and the signal-to-noise ratio in neural circuits. Nature 499(7459), 476 (2013)

    Article  Google Scholar 

  23. Aboudib, A., Gripon, V., Coppin, G.: A biologically inspired framework for visual information processing and an application on modeling bottom-up visual attention. Cogn. Comput. 8(6), 1007–1026 (2016)

    Article  Google Scholar 

  24. Ma, S., Fu, J., Chen, C.W., Mei, T.: Da-gan: Instance-level image translation by deep attention generative adversarial networks (with supplementary materials). In: CVPR (2018)

    Google Scholar 

  25. Wang, F., et al.: Residual attention network for image classification. In: CVPR pp. 3156–3164 (2017)

    Google Scholar 

  26. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: CVPR pp. 770–778 (2016)

    Google Scholar 

  27. Fu, J., Zheng, H., Mei, T.: Look closer to see better: Recurrent attention convolutional neural network for fine-grained image recognition. In: CVPR pp. 4438–4446 (2017)

    Google Scholar 

  28. Xu, K., et al.: Show, attend and tell: Neural image caption generation with visual attention. In: ICML pp. 2048–2057 (2015)

    Google Scholar 

  29. Glorot, X., Bordes, A., Bengio, Y.: Deep sparse rectifier neural networks. In: Proceedings of the Fourteenth International Conference on Artificial Intelligence and Statistics pp. 315–323 (2011)

    Google Scholar 

  30. Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: Imagenet: a large-scale hierarchical image database. In: CVPR pp. 248–255 (2009)

    Google Scholar 

Download references

Acknowledgments

This work was supported by the Natural Science Foundation of China (Nos. 61472267, 61728205, 61502329, 61672371), Primary Research & Developement Plan of Jiangsu Province (No. BE2017663) and Aeronautical Science Foundation (20151996016).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fuyuan Hu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ye, Z., Lyu, F., Ren, J., Sun, Y., Fu, Q., Hu, F. (2018). DAU-GAN: Unsupervised Object Transfiguration via Deep Attention Unit. In: Ren, J., et al. Advances in Brain Inspired Cognitive Systems. BICS 2018. Lecture Notes in Computer Science(), vol 10989. Springer, Cham. https://doi.org/10.1007/978-3-030-00563-4_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-00563-4_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-00562-7

  • Online ISBN: 978-3-030-00563-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics