Skip to main content

Structure Determination by Continuous Diffraction from Imperfect Crystals

  • Chapter
  • First Online:

Abstract

The coherent diffraction pattern of a non-periodic finite object does not consist of Bragg peaks but is continuously and smoothly varying. Such patterns do not suffer from the well-known phase problem of crystallography. In this case, robust iterative algorithms exist to determine the electron density of the object from the diffraction pattern alone. Continuous diffraction is accessible from ensembles of aligned molecules, including disordered protein crystals. We discuss the application of the concepts of coherent diffractive imaging to such cases and describe the experimental considerations to adequately measure the weak continuous diffraction signals.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    Throughout this chapter we will use the indices abc to uniquely distinguish atom a of rigid body b in unit cell c. When it is not needed to report on which body or cell an atom is part of, we just use the index i.

  2. 2.

    Although \({\mathbf {C}}_{ac\,a'c'}\) runs over four subscripts, this is really two dimensional, since any given atom in the crystal is specified by the indices ac (or a′c′) specifying which atom a in the molecule and which unit cell c in the crystal.

References

  1. Ayyer, K., Yefanov, O. M., Oberthür, D., Roy-Chowdhury, S., Galli, L., Mariani, V., et al. (2016). Macromolecular diffractive imaging using imperfect crystals. Nature, 530, 202–206.

    Article  CAS  Google Scholar 

  2. Bates, R. H. T. (1982). Fourier phase problems are uniquely solvable in more than one dimension: 1. Underlying theory. Optik, 61, 247–262.

    Google Scholar 

  3. Bernal, J. D., Fankuchen, I., & Perutz, M. (1938). An X-ray study of chymotrypsin and hæmoglobin. Nature, 141, 523–524.

    Article  CAS  Google Scholar 

  4. Bragg, W. L., & Perutz, M. F. (1952). The structure of hæmoglobin. Proceedings of the Royal Society of London, 213, 425–435.

    Google Scholar 

  5. Bruck, Y., & Sodin, L. (1979). On the ambiguity of the image reconstruction problem. Optics Communication, 30, 304–308.

    Article  Google Scholar 

  6. Caleman, C., Tîmneanu, N., Martin, A. V., Jönsson, H. O., Aquila, A., Barty, A., et al. (2015). Ultrafast self-gating Bragg diffraction of exploding nanocrystals in an X-ray laser. Optics Express, 23, 1213–1231.

    Article  Google Scholar 

  7. Chapman, H. N., Barty, A., Marchesini, S., Noy, A., Hau-Riege, S. P., Cui, C., et al. (2006). High-resolution ab initio three-dimensional X-ray diffraction microscopy. Journal of the Optical Society of America A, 23, 1179–1200.

    Article  Google Scholar 

  8. Chapman, H. N., Yefanov, O. M., Ayyer, K., White, T. A., Barty, A., Morgan, A., et al. (2017). Continuous diffraction of molecules and disordered molecular crystals. Journal of Applied Crystallography, 50, 1084–1103.

    Article  CAS  Google Scholar 

  9. Clarage, J. B., Clarage, M. S., Phillips, W. C., Sweet, R. M., & Caspar, D. L. D. (1992). Correlations of atomic movements in lysozyme crystals. Proteins: Structure, Function, and Bioinformatics, 12(2), 145–157.

    Article  CAS  Google Scholar 

  10. Cowley, J. M. (1981). Diffraction physics. Amsterdam: North-Holland.

    Google Scholar 

  11. Cowtan, K. (1998). Introduction to density modification. In Direct methods for solving macromolecular structures. Dordrecht: Springer.

    Chapter  Google Scholar 

  12. Crimmins, T. R., Fienup, J., & Thelen, B. J. (1990). Improved bounds on object support from autocorrelation support and application to phase retrieval. Journal of the Optical Society of America A, 7, 3–13.

    Article  Google Scholar 

  13. Crowther, R., DeRosier, D., & Klug, A. (1970). The reconstruction of a three-dimensional structure from its projections and its applications to electron microscopy. Proceedings of the Royal Society of London, 317, 319–340.

    Google Scholar 

  14. Elser, V. (2003). Phase retrieval by iterated projections. Journal of the Optical Society of America A, 20, 40–55.

    Article  Google Scholar 

  15. Elser, V. (2013). Direct phasing of nanocrystal diffraction. Acta Crystallographica Section A, 69, 559–569.

    Article  CAS  Google Scholar 

  16. Elser, V., & Millane, R. P. (2008). Reconstruction of an object from its symmetry-averaged diffraction pattern. Acta Crystallographica Section A, 64, 273–279.

    Article  CAS  Google Scholar 

  17. Fienup, J. R. (1978). Reconstruction of an object from the modulus of its Fourier transform. Optics Letters, 3, 27–29.

    Article  CAS  Google Scholar 

  18. Fienup, J. R. (1982). Phase retrieval algorithms: a comparison. Applied Optics, 21, 2758–2769.

    Article  CAS  Google Scholar 

  19. Flewett, S., Quiney, H. M., Tran, C. Q., & Nugent, K. A. (2009). Extracting coherent modes from partially coherent wavefields. Optics Letters, 34, 2198–2200.

    Article  Google Scholar 

  20. French, S., & Wilson, K. (1978). On the treatment of negative intensity observations. Acta Crystallographica Section A, 34, 517–525.

    Article  Google Scholar 

  21. Gerchberg, R. W., & Saxton, O. (1972). Practical algorithm for determination of phase from image and diffraction plane pictures. Optik, 35, 237–246.

    Google Scholar 

  22. He, H., & Su, W.-P. (2015). Direct phasing of protein crystals with high solvent content. Acta Crystallographica Section A, 71, 92–98.

    Article  CAS  Google Scholar 

  23. He, H., Fang, H., Miller, M. D., Phillips, G. N. Jr., & Su, W.-P. (2016). Improving the efficiency of molecular replacement by utilizing a new iterative transform phasing algorithm. Acta Crystallographica Section A, 72, 539–547.

    Article  CAS  Google Scholar 

  24. Hensley, C. J., Yang, J., & Centurion, M. (2012). Imaging of isolated molecules with ultrafast electron pulses. Physical Review Letters, 109, 133, 202.

    Google Scholar 

  25. Howells, M. R., Beetz, T., Chapman, H. N., Cui, C., Holton, J. M., Jacobsen, C. J., et al. (2009). An assessment of the resolution limitation due to radiation-damage in X-ray diffraction microscopy. Journal of Electron Spectroscopy and Related Phenomena, 170, 4–12.

    Article  CAS  Google Scholar 

  26. Kabsch, W. (2010). Integration, scaling, space-group assignment and post-refinement. Acta Crystallographica Section D, 66, 133–144.

    Article  CAS  Google Scholar 

  27. Kewish, C. M., Thibault, P., Bunk, O., & Pfeiffer, F. (2010). The potential for two-dimensional crystallography of membrane proteins at future X-ray free-electron laser sources. New Journal of Physics, 12, 035,005.

    Article  Google Scholar 

  28. Marchesini, S. (2007). A unified evaluation of iterative projection algorithms for phase retrieval. The Review of Scientific Instruments, 78, 011301.

    Article  CAS  Google Scholar 

  29. Marchesini, S., He, H., Chapman, H. N., Hau-Riege, S. P., Noy, A., Howells, M. R., et al. (2003). X-ray image reconstruction from a diffraction pattern alone. Physical Review B, 68, 140,101.

    Article  Google Scholar 

  30. Miao, J., Sayre, D., & Chapman, H. N. (1998). Phase retrieval from the magnitude of the Fourier transforms of nonperiodic objects. Journal of the Optical Society of America A, 15, 1662–1669.

    Article  Google Scholar 

  31. Miao, J., Charalambous, P., Kirz, J., & Sayre, D. (1999). Extending the methodology of X-ray crystallography to allow imaging of micrometre-sized non-crystalline specimens. Nature, 400, 342–344.

    Article  CAS  Google Scholar 

  32. Millane, R. P. (1990). Phase retrieval in crystallography and optics. Journal of the Optical Society of America A, 7, 394–411.

    Article  Google Scholar 

  33. Millane, R. P. (2017). The phase problem for one-dimensional crystals. Acta Crystallographica Section A, 73, 140–150.

    Article  CAS  Google Scholar 

  34. Millane, R. P., & Lo, V. L. (2013). Iterative projection algorithms in protein crystallography. I. Theory. Acta Crystallographica Section A, 69, 517–527.

    Article  CAS  Google Scholar 

  35. Mizuguchi, K., Kidera, A., & Gō, N. (1994). Collective motions in proteins investigated by X-ray diffuse scattering. Proteins: Structure, Function, and Bioinformatics, 18, 34–48.

    Article  CAS  Google Scholar 

  36. Moore, P. B. (2009). On the relationship between diffraction patterns and motions in macromolecular crystals. Structure, 17, 1307–1315.

    Article  CAS  Google Scholar 

  37. Oberthuer, D., Knoška, J., Wiedorn, M. O., Beyerlein, K. R., Bushnell, D. A., Kovaleva, E. G., et al. (2017). Double-flow focused liquid injector for efficient serial femtosecond crystallography. Scientific Reports, 7, 44628.

    Article  Google Scholar 

  38. Oszlanyi, G., & Suto, A. (2004). Ab initio structure solution by charge flipping. Acta Crystallographica Section A, 60, 134–141.

    Google Scholar 

  39. Peck, A., Poitevin, F., & Lane, T. J. (2018). Intermolecular correlations are necessary to explain diffuse scattering from protein crystals. IUCrJ, 5, 211–222.

    Article  CAS  Google Scholar 

  40. Rees, D. C. (1980). The influence of twinning by merohedry on intensity statistics. Acta Crystallographica Section A, 36, 578–581.

    Article  Google Scholar 

  41. Sayre, D. (2002). X-ray crystallography: The past and present of the phase problem. Structural Chemistry, 13, 81–96.

    Article  CAS  Google Scholar 

  42. Schmidt, E., & Neder, R. B. (2017). Diffuse single-crystal scattering corrected for molecular form factor effects. Acta Crystallographica Section A, 73, 231–237.

    Article  CAS  Google Scholar 

  43. Shannon, C. E. (1949). Communication in the presence of noise. Proceedings of the IRE, 37, 10–21.

    Article  Google Scholar 

  44. Shapiro, D., Thibault, P., Beetz, T., Elser, V., Howells, M., Jacobsen, C., et al. (2005). Biological imaging by soft X-ray diffraction microscopy. Proceedings of the National Academy of Sciences, 102, 15343–15346.

    Article  CAS  Google Scholar 

  45. Simonov, A., Weber, T., & Steurer, W. (2014). Experimental uncertainties of three-dimensional pair distribution function investigations exemplified on the diffuse scattering from a tris-tert-butyl-1,3,5-benzene tricarboxamide single crystal. Journal of Applied Crystallography, 47, 2011–2018.

    Article  CAS  Google Scholar 

  46. Simonov, A., Weber, T., & Goodwin, A. (2017). Single crystal diffuse scattering—A solution to the phase problem? Acta Crystallographica Section A, 73, C1045.

    Article  Google Scholar 

  47. Spence, J. C. H., Weierstall, U., Fricke, T. T., Glaeser, R. M., & Downing, K. H. (2003). Three-dimensional diffractive imaging for crystalline monolayers with one-dimensional compact support. Journal of Structural Biology, 144, 209–218.

    Article  CAS  Google Scholar 

  48. Spence, J. C. H., & Doak, R. B. (2004). Single molecule diffraction. Physical Review Letters, 92, 198102.

    Article  CAS  Google Scholar 

  49. Spence, J. C. H., Kirian, R. A., Wang, X., Weierstall, U., Schmidt, K. E., White, T. et al. (2011) Phasing of coherent femtosecond X-ray diffraction from size-varying nanocrystals. Optics Express, 19, 2866–2873.

    Article  CAS  Google Scholar 

  50. Stroud, R. M., & Agard, D. A. (1979). Structure determination of asymmetric membrane profiles using an iterative Fourier method. Biophysical Journal, 25, 495–512.

    Article  CAS  Google Scholar 

  51. Szoke, A. (1999). Time-resolved holographic diffraction at atomic resolution. Chemical Physics Letters, 313, 778–788.

    Article  Google Scholar 

  52. Szoke, A. (2001). Diffraction of partially coherent X-rays and the crystallographic phase problem. Acta Crystallographica Section A, 57, 586–603.

    Article  CAS  Google Scholar 

  53. von Laue, M. (1936). The external shape of crystals and its influence on interference phenomena in crystalline lattices. Annales de Physique, 26, 55–68.

    Article  Google Scholar 

  54. Waasmaier, D., & Kirfel, A. (1995). New analytical scattering-factor functions for free atoms and ions. Acta Crystallographica Section A, 51, 416.

    Google Scholar 

  55. Welberry, T. R. (1985). Diffuse X-ray scattering models of disorder. Reports on Progress in Physics, 48, 1543–1593.

    Article  CAS  Google Scholar 

  56. White, T. A., Kirian, R. A., Martin, A. V., Aquila, A., Nass, K., Barty, A., et al. (2012). CrystFEL: a software suite for snapshot serial crystallography. Journal of Applied Crystallography, 45, 335–341.

    Article  CAS  Google Scholar 

  57. White, T. A., Mariani, V., Brehm, W., Yefanov, O., Barty, A., Beyerlein, K. R., et al. (2016). Recent developments in CrystFEL. Journal of Applied Crystallography, 49, 680–689.

    Article  CAS  Google Scholar 

  58. Whitehead, L. W., Williams, G. J., Quiney, H. M., Vine, D. J., Dilanian, R. A., Flewett, S., et al. (2009). Diffractive imaging using partially coherent X rays. Physical Review Letters, 103, 243902.

    Article  CAS  Google Scholar 

  59. Wilson, A. J. C. (1949). The probability distribution of X-ray intensities. Acta Crystallographica, 2, 318–321.

    Article  Google Scholar 

  60. Yefanov, O., Gati, O., Bourenkov, G., Kirian, R. A., White, T. A., Spence, J. C. H., et al. (2014). Mapping the continuous reciprocal space intensity distribution of X-ray serial crystallography. Philosophical Transactions of the Royal Society B, 369, 1647.

    Article  Google Scholar 

  61. Yefanov, O., Mariani, V., Gati, C., White, T. A., Chapman, H. N., & Barty, A. (2015). Accurate determination of segmented X-ray detector geometry. Optics Express, 23, 28459–28470.

    Article  Google Scholar 

Download references

Acknowledgements

We acknowledge the Gottfried Wilhelm Leibniz Program of the DFG, and the European Research Council under the European Union’s Seventh Framework Programme ERC Synergy Grant 609920 “AXSIS.”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Henry N. Chapman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ayyer, K., Yefanov, O.M., Chapman, H.N. (2018). Structure Determination by Continuous Diffraction from Imperfect Crystals. In: Boutet, S., Fromme, P., Hunter, M. (eds) X-ray Free Electron Lasers. Springer, Cham. https://doi.org/10.1007/978-3-030-00551-1_9

Download citation

Publish with us

Policies and ethics