Skip to main content

Single Molecule Imaging Using X-ray Free Electron Lasers

  • Chapter
  • First Online:
Book cover X-ray Free Electron Lasers
  • 1289 Accesses

Abstract

The potential to image single molecules in action with a resolution sufficiently high to reveal atomic information at room temperature without the need for crystallization is one of the most exciting applications of X-ray free electron lasers. Significant progress has been made towards this goal over the past years. Here we discuss the current status and describe the steps still required to realize atomic resolution X-ray single particle imaging.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ayvazyan, V., Baboi, N., Bähr, J., Balandin, V., Beutner, B., Brandt, A., et al. (2005). First operation of a free-electron laser generating GW power radiation at 32 nm wavelength. European Physical Journal D: Atomic, Molecular, Optical and Plasma Physics, 37(2), 297–303.

    Article  CAS  Google Scholar 

  2. Allaria, E., Badano, L., Bassanese, S., Capotondi, F., Castronovo, D., Cinquegrana, P., et al. (2015). The FERMI free-electron lasers. Journal of Synchrotron Radiation, 22, 485–491.

    Article  CAS  PubMed  Google Scholar 

  3. Emma, P., Akre, R., Arthur, J., Bionta, R., Bostedt, C., Bozek, J., et al. (2010). First lasing and operation of an ångstrom-wavelength free-electron laser. Nature Photonics, 4(9), 641–647.

    Article  CAS  Google Scholar 

  4. Ishikawa, T., Aoyagi, H., Asaka, T., Asano, Y., Azumi, N., Bizen, T., et al. (2012). A compact X-ray free-electron laser emitting in the sub-ångström region. Nature Photonics, 6(8), 540–544.

    Article  CAS  Google Scholar 

  5. Altarelli, M. (2011). The European X-ray free-electron laser facility in Hamburg. Nuclear Instruments and Methods in Physics Research B, 269, 2845.

    Article  CAS  Google Scholar 

  6. Fenalti, G., Zatsepin, N. A., Betti, C., Giguere, P., Han, G. W., Ishchenko, A., et al. (2015). Structural basis for bifunctional peptide recognition at human δ-opioid receptor. Nature Structural & Molecular Biology, 22(3), 265–268.

    Article  CAS  Google Scholar 

  7. Kang, Y., Zhou, X. E., Gao, X., He, Y., Liu, W., Ishchenko, A., et al. (2015). Crystal structure of rhodopsin bound to arrestin by femtosecond X-ray laser. Nature, 523(7562), 561–567.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Liu, W., Wacker, D., Gati, C., Han, G. W., James, D., Wang, D., et al. (2013). Serial femtosecond crystallography of G protein-coupled receptors. Science, 342(6165), 1521–1524.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Aquila, A., Hunter, M. S., Doak, R. B., Kirian, R. A., Fromme, P., White, T. A., et al. (2012). Time-resolved protein nanocrystallography using an X-ray free-electron laser. Optics Express, 20(3), 2706–2716.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Barends, T. R. M., Foucar, L., Ardevol, A., Nass, K., Aquila, A., Botha, S., et al. (2015). Direct observation of ultrafast collective motions in CO myoglobin upon ligand dissociation. Science, 350(6259), 445–450.

    Article  CAS  PubMed  Google Scholar 

  11. Kupitz, C., Basu, S., Grotjohann, I., Fromme, R., Zatsepin, N. A., Rendek, K. N., et al. (2014). Serial time-resolved crystallography of photosystem II using a femtosecond X-ray laser. Nature, 513(7517), 261–265.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Neutze, R. (2014). Opportunities and challenges for time-resolved studies of protein structural dynamics at X-ray free-electron lasers. Philosophical Transactions of the Royal Society, B: Biological Sciences, 369(1647), 20130318.

    Article  PubMed Central  Google Scholar 

  13. Pande, K., Hutchison, C. D. M., Groenhof, G., Aquila, A., Robinson, J. S., Tenboer, J., et al. (2016). Femtosecond structural dynamics drives the trans/cis isomerization in photoactive yellow protein. Science, 352(6286), 725–729.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Spence, J. (2008). X-ray imaging - ultrafast diffract-and-destroy movies. Nature Photonics, 2(7), 390–391.

    Article  CAS  Google Scholar 

  15. Kupitz, C., Olmos, J. L., Holl, M., Tremblay, L., Pande, K., Pandey, S., et al. (2017). Structural enzymology using X-ray free electron lasers. Structural Dynamics, 4(4), 044003.

    Article  CAS  PubMed  Google Scholar 

  16. Stagno, J. R., Liu, Y., Bhandari, Y. R., Conrad, C. E., Panja, S., Swain, M., et al. (2017). Structures of riboswitch RNA reaction states by mix-and-inject XFEL serial crystallography. Nature, 541(7636), 242–246.

    Article  CAS  PubMed  Google Scholar 

  17. Arnlund, D., Johansson, L. C., Wickstrand, C., Barty, A., Williams, G. J., Malmerberg, E., et al. (2014). Visualizing a protein quake with time-resolved X-ray scattering at a free-electron laser. Nature Methods, 11(9), 923–926.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Cammarata, M., Levantino, M., Schotte, F., Anfinrud, P. A., Ewald, F., Choi, J., et al. (2008). Tracking the structural dynamics of proteins in solution using time-resolved wide-angle X-ray scattering. Nature Methods, 5(10), 881–886.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Alonso-Mori, R., Kern, J., Gildea, R. J., Sokaras, D., Weng, T. C., Lassalle-Kaiser, B., et al. (2012). Energy-dispersive X-ray emission spectroscopy using an X-ray free-electron laser in a shot-by-shot mode. Proceedings of the National Academy of Sciences, 109(47), 19103–19107.

    Article  CAS  Google Scholar 

  20. Kern, J., Alonso-Mori, R., Tran, R., Hattne, J., Gildea, R. J., Echols, N., et al. (2013). Simultaneous femtosecond X-ray spectroscopy and diffraction of photosystem II at room temperature. Science, 340(6131), 491–495.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Ayyer, K., Geloni, G., Kocharyan, V., Saldin, E., Serkez, S., Yefanov, O., et al. (2015). Perspectives for imaging single protein molecules with the present design of the European XFEL. Structural Dynamics, 2(4), 041702–041711.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Neutze, R., Wouts, R., van der Spoel, D., Weckert, E., & Hajdu, J. (2000). Potential for biomolecular imaging with femtosecond X-ray pulses. Nature, 406(6797), 752–757.

    Article  CAS  PubMed  Google Scholar 

  23. SOLEM, J. C. (1986). Imaging biological specimens with high-intensity soft X-rays. Journal of the Optical Society of America B: Optical Physics, 3(11), 1551–1565.

    Article  CAS  Google Scholar 

  24. Chapman, H. N., Barty, A., Bogan, M. J., Boutet, S., Frank, M., Hau-Riege, S. P., et al. (2006). Femtosecond diffractive imaging with a soft-X-ray free-electron laser. Nature Physics, 2(12), 839–843.

    Article  CAS  Google Scholar 

  25. Chapman, H. N., Fromme, P., Barty, A., White, T. A., Kirian, R. A., Aquila, A., et al. (2011). Femtosecond X-ray protein nanocrystallography. Nature, 470(7332), 73–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Boutet, S., Lomb, L., Williams, G. J., Barends, T. R. M., Aquila, A., Doak, R. B., et al. (2012). High-resolution protein structure determination by serial femtosecond crystallography. Science, 337(6092), 362–364.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Galayda, J. N. (2003). LCLS the first experiments. SLAC-R-611. http://www-public.slac.stanford.edu/scidoc/index.asp

  28. Chao, W., Harteneck, B. D., Liddle, J. A., Anderson, E. H., & Attwood, D. T. (2005). Soft X-ray microscopy at a spatial resolution better than 15 nm. Nature, 435(7046), 1210–1213.

    Article  CAS  PubMed  Google Scholar 

  29. Marchesini, S., He, H., Chapman, H. N., Hau-Riege, S. P., Noy, A., Howells, M. R., et al. (2003). X-ray image reconstruction from a diffraction pattern alone. Physical Review B, 68(14), 140101.

    Article  CAS  Google Scholar 

  30. Miao, J., Charalambous, P., Kirz, J., & Sayre, D. (1999). Extending the methodology of X-ray crystallography to allow imaging of micrometre-sized non-crystalline specimens. Nature, 400(6742), 342–344.

    Article  CAS  Google Scholar 

  31. Barty, A., Marchesini, S., Chapman, H. N., Cui, C., Howells, M. R., Shapiro, D. A., et al. (2008). Three-dimensional coherent X-ray diffraction imaging of a ceramic nanofoam: Determination of structural deformation mechanisms. Physical Review Letters, 101(5), 055501.

    Article  CAS  PubMed  Google Scholar 

  32. Chapman, H. N., Barty, A., Marchesini, S., Noy, A., Hau-Riege, S. P., Cui, C., et al. (2006). High-resolution ab initio three-dimensional x-ray diffraction microscopy. Journal of the Optical Society of America. A, 23(5), 1179–1200.

    Article  Google Scholar 

  33. Boutet, S., Bogan, M. J., Barty, A., Frank, M., Benner, W. H., Marchesini, S., et al. (2008). Ultrafast soft X-ray scattering and reference-enhanced diffractive imaging of weakly scattering nanoparticles. Journal of Electron Spectroscopy and Related Phenomena, 166-167, 65–73.

    Article  CAS  Google Scholar 

  34. Seibert, M. M., Boutet, S., Svenda, M., Ekeberg, T., Maia, F. R. N. C., Bogan, M. J., et al. (2010). Femtosecond diffractive imaging of biological cells. Journal of Physics B, 43(19), 194015.

    Article  CAS  Google Scholar 

  35. Seibert, M. M., Ekeberg, T., Maia, F. R. N. C., Svenda, M., Andreasson, J., Jonsson, O., et al. (2011). Single mimivirus particles intercepted and imaged with an X-ray laser. Nature, 470(7332), 78–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Ekeberg, T., Svenda, M., Abergel, C., Maia, F. R. N. C., Seltzer, V., Claverie, J.-M., et al. (2015). Three-dimensional reconstruction of the giant mimivirus particle with an x-ray free-electron laser. Physical Review Letters, 114(9), 098102.

    Article  PubMed  CAS  Google Scholar 

  37. Hantke, M. F., Hasse, D., Maia, F. R. N. C., Ekeberg, T., John, K., Svenda, M., et al. (2014). High-throughput imaging of heterogeneous cell organelles with an X-ray laser. Nature Photonics, 8(12), 943–949.

    Article  CAS  Google Scholar 

  38. Reddy, H. K. N., Yoon, C. H., Aquila, A., Awel, S., Ayyer, K., Barty, A., et al. (2017). Coherent soft X-ray diffraction imaging of coliphage PR772 at the Linac Coherent Light Source. Scientific Data, 4, 170079.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Kimura, T., Joti, Y., Shibuya, A., Song, C., Kim, S., Tono, K., et al. (2013). Imaging live cell in micro-liquid enclosure by X-ray laser diffraction. Nature Communications, 5, 1–7.

    Google Scholar 

  40. van der Schot, G., Svenda, M., Maia, F. R. N. C., Hantke, M., DePonte, D. P., Seibert, M. M., et al. (2015). Imaging single cells in a beam of live cyanobacteria with an X-ray laser. Nature Communications, 6, 5704.

    Article  PubMed  CAS  Google Scholar 

  41. Loh, N. D., Hampton, C. Y., Martin, A. V., Starodub, D., Sierra, R. G., Barty, A., et al. (2012). Fractal morphology, imaging and mass spectrometry of single aerosol particles in flight. Nature, 486(7404), 513–517.

    Article  CAS  PubMed  Google Scholar 

  42. Aquila, A., Barty, A., Bostedt, C., Boutet, S., Carini, G., de Ponte, D., et al. (2015). The Linac Coherent Light Source single particle imaging road map. Structural Dynamics, 2(4), 041701–041713.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Daurer, B. J., Okamoto, K., Bielecki, J., Maia, F. R. N. C., Mühlig, K., Seibert, M. M., et al. (2017). Experimental strategies for imaging bioparticles with femtosecond hard X-ray pulses. IUCrJ, 4(3), 251–262.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Munke, A., Andreasson, J., Aquila, A., Awel, S., Ayyer, K., Barty, A., et al. (2016). Coherent diffraction of single Rice Dwarf virus particles using hard X-rays at the Linac Coherent Light Source. Scientific Data, 3, 160064.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Strüder, L., Epp, S., Rolles, D., Hartmann, R., Holl, P., Lutz, G., et al. (2010). Large-format, high-speed, X-ray pnCCDs combined with electron and ion imaging spectrometers in a multipurpose chamber for experiments at 4th generation light sources. Nuclear Instruments and Methods in Physics Research Section A, 614, 483–496.

    Article  CAS  Google Scholar 

  46. Liang, M., Williams, G. J., Messerschmidt, M., Seibert, M. M., Montanez, P. A., Hayes, M., et al. (2015). The coherent X-ray imaging instrument at the Linac Coherent Light Source. Journal of Synchrotron Radiation, 22, 514–519.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Young, L., Kanter, E. P., Krässig, B., Li, Y., March, A. M., Pratt, S. T., et al. (2010). Femtosecond electronic response of atoms to ultra-intense X-rays. Nature, 466(7302), 56–61.

    Article  CAS  PubMed  Google Scholar 

  48. Nagler, B., Aquila, A., Boutet, S., Galtier, E. C., Hashim, A., Hunter, M. S., et al. (2017). Focal spot and wavefront Sensing of an X-ray free electron laser using Ronchi shearing interferometry. Scientific Reports, 7(1), 13698.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Barty, A., Soufli, R., McCarville, T., Baker, S. L., Pivovaroff, M. J., Stefan, P., et al. (2009). Predicting the coherent X-ray wavefront focal properties at the Linac Coherent Light Source (LCLS) X-ray free electron laser. Optics Express, 17(18), 15508–15519.

    Article  CAS  PubMed  Google Scholar 

  50. Bean, R. J., Aquila, A., Samoylova, L., & Mancuso, A. P. (2016). Design of the mirror optical systems for coherent diffractive imaging at the SPB/SFX instrument of the European XFEL. Journal of Optics, 18(7), 074011.

    Article  CAS  Google Scholar 

  51. Loh, N.-T. D., & Elser, V. (2009). Reconstruction algorithm for single-particle diffraction imaging experiments. Physical Review E, 80(2), 026705.

    Article  CAS  Google Scholar 

  52. Ayyer, K., Philipp, H. T., Tate, M. W., Wierman, J. L., Elser, V., & Gruner, S. M. (2015). Determination of crystallographic intensities from sparse data. IUCrJ, 2(1), 29–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Giannakis, D., Schwander, P., & Ourmazd, A. (2012). The symmetries of image formation by scattering. I. Theoretical framework. Optics Express, 20(12), 12799–12826.

    Article  PubMed  Google Scholar 

  54. Tegze, M., & Bortel, G. (2012). Atomic structure of a single large biomolecule from diffraction patterns of random orientations. Journal of Structural Biology, 179, 41–45.

    Article  CAS  PubMed  Google Scholar 

  55. Donatelli, J. J., Zwart, P. H., & Sethian, J. A. (2015). Iterative phasing for fluctuation X-ray scattering. Proceedings of the National Academy of Sciences of the United States of America, 112(33), 10286–10291.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Kirian, R. A., Schmidt, K. E., Wang, X., Doak, R. B., & Spence, J. C. H. (2011). Signal, noise, and resolution in correlated fluctuations from snapshot small-angle x-ray scattering. Physical Review E, 84(1), 011921.

    Article  CAS  Google Scholar 

  57. Saldin, D. K., Poon, H. C., Shneerson, V. L., Howells, M., Chapman, H. N., Kirian, R. A., et al. (2010). Beyond small-angle x-ray scattering: Exploiting angular correlations. Physical Review B, 81(17), 174105.

    Article  CAS  Google Scholar 

  58. Philipp, H. T., Ayyer, K., Tate, M. W., Elser, V., & Gruner, S. M. (2012). Solving structure with sparse, randomly-oriented X-ray data. Optics Express, 20(12), 13129–13137.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Loh, N. D. (2012). Effects of extraneous noise in cryptotomography. Proceedings of SPIE, 8500, 85000K.

    Article  Google Scholar 

  60. Andreasson, J., Martin, A. V., Liang, M., Timneanu, N., Aquila, A., Wang, F., et al. (2014). Automated identification and classification of single particle serial femtosecond X-ray diffraction data. Optics Express, 22(3), 2497–2510.

    Article  PubMed  Google Scholar 

  61. Denes, P. (2014). Two-dimensional imaging detectors for structural biology with X-ray lasers. Philosophical Transactions of the Royal Society, B: Biological Sciences, 369(1647), 20130334.

    Article  PubMed Central  Google Scholar 

  62. Hatsui, T., & Graafsma, H. (2015). X-ray imaging detectors for synchrotron and XFEL sources. IUCrJ, M2, 371–383.

    Article  CAS  Google Scholar 

  63. Becker, J., Greiffenberg, D., Trunk, U., Shi, X., Dinapoli, R., Mozzanica, A., et al. (2012). The single photon sensitivity of the adaptive gain integrating pixel detector. Nuclear Instruments and Methods in Physics Research A, 694, 82–90.

    Article  CAS  Google Scholar 

  64. Wunderer, C. B., Marras, A., Bayer, M., Correa, J., Lange, S., Shevyakov, I., et al. (2014). Percival: An international collaboration to develop a MAPS-based soft X-ray imager. Synchrotron Radiation News, 27(4), 30–34.

    Article  Google Scholar 

  65. Blaj. G., Caragiulo, P., Carini, G., Dragone, A., Haller, G. (2015). Design and performance of the ePix camera systems.

    Google Scholar 

  66. Carini, G. A., Alonso-Mori, R., Blaj, G. (2016). ePix100 camera: Use and applications at LCLS. Available from https://www.researchgate.net/profile/Angelo_Dragone/publication/305685847_ePix100_camera_Use_and_applications_at_LCLS/links/57c6e09908aec24de042a16a.pdf

  67. Mozzanica, A., Bergamaschi, A., Cartier, S., Dinapoli, R., Greiffenberg, D., Johnson, I., et al. (2014). Prototype characterization of the JUNGFRAU pixel detector for SwissFEL. Journal of Instrumentation, 9(5), C05010.

    Article  CAS  Google Scholar 

  68. Bogan, M. J., Boutet, S., Chapman, H. N., Marchesini, S., Barty, A., Benner, W. H., et al. (2010). Aerosol imaging with a soft X-ray free electron laser. Aerosol Science and Technology, 44(3), i–vi.

    Article  CAS  Google Scholar 

  69. Frank, M., Frank, M., Carlson, D. B., Carlson, D. B., Hunter, M. S., Hunter, M. S., et al. (2014). Femtosecond X-ray diffraction from two-dimensional protein crystals. IUCrJ, 1(Pt 2), 95–100.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Pedrini, B., Tsai, C.-J., Capitani, G., Padeste, C., Hunter, M. S., Zatsepin, N. A., et al. (2014). 7 Å resolution in protein two-dimensional-crystal X-ray diffraction at Linac Coherent Light Source. Philosophical Transactions of the Royal Society, B: Biological Sciences, 369(1647), 20130500.

    Article  PubMed Central  Google Scholar 

  71. Yuk, J. M., Park, J., Ercius, P., Kim, K., Hellebusch, D. J., Crommie, M. F., et al. (2012). High-resolution EM of colloidal nanocrystal growth using graphene liquid cells. Science, 336(6077), 61–64.

    Article  CAS  PubMed  Google Scholar 

  72. Seuring, C., Ayyer, K., Filippaki, E., Barthelmess, M., Longchamp, J.-N., Ringler, P., et al. (2018). Femtosecond X-ray coherent diffraction of aligned amyloid fibrils on low background graphene. Nature Communications, 9, 1–10. https://doi.org/10.1038/s41467-018-04116-9.

  73. Hart, P., Boutet, S., Carini, G., Dubrovin, M., Duda, B., Fritz, D., et al. (2012). The CSPAD megapixel x-ray camera at LCLS. Proceedings of SPIE, 8504, 85040C.

    Article  Google Scholar 

  74. Ferguson, K. R., Bucher, M., Bozek, J. D., Carron, S., Castagna, J. C., Coffee, R., et al. (2015). The atomic, molecular and optical science instrument at the Linac Coherent Light Source. Journal of Synchrotron Radiation, 22, 492–497.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Hosseinizadeh, A., Mashayekhi, G., Copperman, J., Schwander, P., Dashti, A., Sepehr, R., et al. (2017). Conformational landscape of a virus by single-particle X-ray scattering. Nature Methods, 5(9), 4061–4881.

    Google Scholar 

  76. Kurta, R. P., Donatelli, J. J., Yoon, C. H., Berntsen, P., Bielecki, J., Daurer, B. J., et al. (2017). Correlations in scattered X-ray laser pulses reveal nanoscale structural features of viruses. Physical Review Letters, 119(15), 158102.

    Article  PubMed  PubMed Central  Google Scholar 

  77. Maia, F. R. N. C. (2012). The coherent X-ray imaging data bank. Nature Methods, 9(9), 854–855.

    Article  CAS  PubMed  Google Scholar 

  78. Miao, J., & Sayre, D. (2000). On possible extensions of X-ray crystallography through diffraction-pattern oversampling. Acta Crystallographica. Section A, 56, 596–605.

    Google Scholar 

  79. Loh, N. D. (2014). A minimal view of single-particle imaging with X-ray lasers. Philosophical Transactions of the Royal Society, B: Biological Sciences, 369(1647), 20130328–20130328.

    Article  PubMed Central  Google Scholar 

  80. Bobkov, S. A., Teslyuk, A. B., Kurta, R. P., Gorobtsov, O. Y., Yefanov, O. M., Ilyin, V. A., et al. (2015). Sorting algorithms for single-particle imaging experiments at X-ray free-electron lasers. Journal of Synchrotron Radiation, 22(6), 1345–1352.

    Article  CAS  PubMed  Google Scholar 

  81. Hosseinizadeh, A., Schwander, P., Dashti, A., Fung, R., D'Souza, R. M., & Ourmazd, A. (2014). High-resolution structure of viruses from random diffraction snapshots. Philosophical Transactions of the Royal Society, B: Biological Sciences, 369(1647), 20130326–20130326.

    Article  CAS  PubMed Central  Google Scholar 

  82. Yoon, C. H., Schwander, P., Abergel, C., Andersson, I., Andreasson, J., Aquila, A., et al. (2011). Unsupervised classification of single-particle X-ray diffraction snapshots by spectral clustering. Optics Express, 19(17), 16542–16549.

    Article  PubMed  Google Scholar 

  83. Park, H. J., Loh, N. D., Sierra, R. G., Hampton, C. Y., Starodub, D., Martin, A. V., et al. (2013). Toward unsupervised single-shot diffractive imaging of heterogeneous particles using X-ray free-electron lasers. Optics Express, 21(23), 28729–28742.

    Article  PubMed  Google Scholar 

  84. Shneerson, V. L., Ourmazd, A., & Saldin, D. K. (2008). Crystallography without crystals. I. The common-line method for assembling a three-dimensional diffraction volume from single-particle scattering. Acta Crystallographica, Section A: Foundations of Crystallography, 64(2), 303–315.

    Article  CAS  Google Scholar 

  85. Ayyer, K., Lan, T. Y., Elser, V., & Loh, N. D. (2016). Dragonfly: An implementation of the expand-maximize-compress algorithm for single-particle imaging. Journal of Applied Crystallography, 49, 1320–1335.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Starodub, D., Aquila, A., Bajt, S., Barthelmess, M., Barty, A., Bostedt, C., et al. (2012). Single-particle structure determination by correlations of snapshot X-ray diffraction patterns. Nature Communications, 3, 1276.

    Article  CAS  PubMed  Google Scholar 

  87. Barty, A., Küpper, J., & Chapman, H. N. (2013). Molecular imaging using X-ray free-electron lasers. Annual Review of Physical Chemistry, 64, 415–435.

    Article  CAS  PubMed  Google Scholar 

  88. Chapman, H. N., & Nugent, K. A. (2010). Coherent lensless X-ray imaging. Nature Photonics, 4(12), 833–839.

    Article  CAS  Google Scholar 

  89. Marchesini, S. (2007). Phase retrieval and saddle-point optimization. Journal of the Optical Society of America. A, 24(10), 3289–3296.

    Article  Google Scholar 

  90. Shechtman, Y., Eldar, Y. C., Cohen, O., & Segev, M. (2013). Efficient coherent diffractive imaging for sparsely varying objects. Optics Express, 21(5), 6327–6338.

    Article  PubMed  Google Scholar 

  91. Jiang, H., Song, C., Chen, C.-C., Xu, R., Raines, K. S., Fahimian, B. P., et al. (2010). Quantitative 3D imaging of whole, unstained cells by using X-ray diffraction microscopy. Proceedings of the National Academy of Sciences, 107(25), 11234–11239.

    Article  CAS  Google Scholar 

  92. Robinson, I. (2008). Coherent diffraction - giant molecules or tiny crystals? Nature Materials, 7(4), 275–276.

    Article  CAS  PubMed  Google Scholar 

  93. Martin, A. V., Loh, N. D., Hampton, C. Y., Sierra, R. G., Wang, F., Aquila, A., et al. (2012). Femtosecond dark-field imaging with an X-ray free electron laser. Optics Express, 20(12), 13501–13512.

    Article  CAS  PubMed  Google Scholar 

  94. Donatelli, J. J., Sethian, J. A., & Zwart, P. H. (2017). Reconstruction from limited single-particle diffraction data via simultaneous determination of state, orientation, intensity, and phase. Proceedings of the National Academy of Sciences, 114(28), 7222–7227.

    Article  CAS  Google Scholar 

  95. Kierspel, T., Wiese, J., Mullins, T., Robinson, J., Aquila, A., Barty, A., et al. (2015). Strongly aligned gas-phase molecules at free-electron lasers. Journal of Physics B: Atomic, Molecular and Optical Physics, 48(20), 1–7.

    Article  CAS  Google Scholar 

  96. Starodub, D., Doak, R. B., Schmidt, K., Weierstall, U., Wu, J. S., Spence, J. C. H., et al. (2005). Damped and thermal motion of laser-aligned hydrated macromolecule beams for diffraction. The Journal of Chemical Physics, 123(24), 244304.

    Article  CAS  PubMed  Google Scholar 

  97. Stern, S., Holmegaard, L., Filsinger, F., Rouzee, A., Rudenko, A., Johnsson, P., et al. (2014). Toward atomic resolution diffractive imaging of isolated molecules with X-ray free-electron lasers. The Royal Society of Chemistry, 171, 393–418.

    CAS  Google Scholar 

  98. Pedrini, B., Menzel, A., Guizar-Sicairos, M., Guzenko, V. A., Gorelick, S., David, C., et al. (2013). Two-dimensional structure from random multiparticle X-ray scattering images using cross-correlations. Nature Communications, 4, 1647.

    Article  CAS  PubMed  Google Scholar 

  99. Gipson, B., Masiel, D., Browning, N., Spence, J., Mitsuoka, K., & Stahlberg, H. (2011). Automatic recovery of missing amplitudes and phases in tilt-limited electron crystallography of two-dimensional crystals. Physical Review E, 84(1), 011916.

    Article  CAS  Google Scholar 

  100. Berman, H. M., Westbrook, J., Feng, Z., Gilliland, G., Bhat, T. N., Weissig, H., et al. (2000). The protein data bank. Nucleic Acids Research, 28(1), 235–242.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Sayre, D. (1952). Some implications of a theorem due to Shannon. Acta Crystallographica, 5(6), 843–843.

    Article  Google Scholar 

  102. Kirian, R. A., Bean, R. J., Beyerlein, K. R., Yefanov, O. M., White, T. A., Barty, A., et al. (2014). Phasing coherently illuminated nanocrystals bounded by partial unit cells. Philosophical Transactions of the Royal Society, B: Biological Sciences, 369(1647), 20130331–20130331.

    Article  PubMed Central  Google Scholar 

  103. Spence, J. C. H., Kirian, R. A., Wang, X., Weierstall, U., Schmidt, K. E., White, T., et al. (2011). Phasing of coherent femtosecond X-ray diffraction from size-varying nanocrystals. Optics Express, 19(4), 2866–2873.

    Article  CAS  PubMed  Google Scholar 

  104. Kirian, R. A., Bean, R. J., Beyerlein, K. R., Barthelmess, M., Yoon, C. H., Wang, F., et al. (2015). Direct phasing of finite crystals illuminated with a free-electron laser. Physical Review X, 5(1), 011015.

    Article  CAS  Google Scholar 

  105. Ayyer, K., Yefanov, O. M., Oberthür, D., Roy-Chowdhury, S., Galli, L., Mariani, V., et al. (2016). Macromolecular diffractive imaging using imperfect crystals. Nature, 530(7589), 202–206.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Eisebitt, S., Lüning, J., Schlotter, W. F., Lorgen, M., Hellwig, O., Eberhardt, W., et al. (2004). Lensless imaging of magnetic nanostructures by X-ray spectro-holography. Nature, 432(7019), 885–888.

    Article  CAS  PubMed  Google Scholar 

  107. McNulty, I., Kirz, J., Jacobsen, C., Anderson, E. H., Howells, M. R., & KERN, D. P. (1992). High-resolution imaging by Fourier-transform X-ray holography. Science, 256(5059), 1009–1012.

    Article  CAS  PubMed  Google Scholar 

  108. Solem, J. C., & Baldwin, G. C. (1982). Micro-holography of living organisms. Science, 218(4569), 229–235.

    Article  CAS  PubMed  Google Scholar 

  109. Wu, B., Wang, T., Graves, C. E., Zhu, D., Schlotter, W. F., Turner, J. J., et al. (2016). Elimination of X-ray diffraction through stimulated X-ray transmission. Physical Review Letters, 117(2), 027401.

    Article  CAS  PubMed  Google Scholar 

  110. Schlotter, W. F., Rick, R., Chen, K., Scherz, A., Stöhr, J., Lüning, J., et al. (2006). Multiple reference Fourier transform holography with soft x rays. Applied Physics Letters, 89(16), 163112.

    Article  CAS  Google Scholar 

  111. Marchesini, S., Boutet, S., Sakdinawat, A. E., Bogan, M. J., Bajt, S., Barty, A., et al. (2008). Massively parallel X-ray holography. Nature Photonics, 2(9), 560–563.

    Article  CAS  Google Scholar 

  112. Martin, A. V. (2014). The correlation of single-particle diffraction patterns as a continuous function of particle orientation. Philosophical Transactions of the Royal Society, B: Biological Sciences, 369(1647), 20130329.

    Article  PubMed Central  Google Scholar 

  113. Gorkhover, T., Ulmer, A., & Ferguson, K. (2017). Femtosecond X-ray Fourier holography imaging of free-flying nanoparticles. Nature Photonics, 12, 150–153.

    Article  CAS  Google Scholar 

  114. Bai, X.-C., McMullan, G., & Scheres, S. H. W. (2015). How cryo-EM is revolutionizing structural biology. Trends in Biochemical Sciences, 40(1), 49–57.

    Article  CAS  PubMed  Google Scholar 

  115. Cheng, Y. (2015). Single-particle cryo-EM at crystallographic resolution. Cell, 161(3), 450–457.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Henderson, R. (2015). Overview and future of single particle electron cryomicroscopy. Archives of Biochemistry and Biophysics, 581, 19–24.

    Article  CAS  PubMed  Google Scholar 

  117. Danev, R., & Baumeister, W. (2016). Cryo-EM single particle analysis with the Volta phase plate. eLife, 5, e13046.

    Article  PubMed  PubMed Central  Google Scholar 

  118. Glaeser, R. M. (2013). Invited Review Article: Methods for imaging weak-phase objects in electron microscopy. The Review of Scientific Instruments, 84(11), 111101–111117.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  119. Garman, E. F. (2010). Radiation damage in macromolecular crystallography: What is it and why should we care? Acta Crystallographica. Section D, Biological Crystallography, 66(4), 339–351.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Caleman, C., Ortiz, C., Marklund, E., Bultmark, F., Gabrysch, M., Parak, F. G., et al. (2009). Radiation damage in biological material: Electronic properties and electron impact ionization in urea. Europhysics Letters, 85(1), 18005.

    Article  CAS  Google Scholar 

  121. Nagler, B., Zastrau, U., Fäustlin, R. R., Vinko, S. M., Whitcher, T., Nelson, A. J., et al. (2009). Turning solid aluminium transparent by intense soft X-ray photoionization. Nature Physics, 5(8), 1–4.

    Google Scholar 

  122. Armstrong, M. R., Boyden, K., Browning, N. D., Campbell, G. H., Colvin, J. D., DeHope, W. J., et al. (2007). Practical considerations for high spatial and temporal resolution dynamic transmission electron microscopy. Ultramicroscopy, 107(4-5), 356–367.

    Article  CAS  PubMed  Google Scholar 

  123. LaGrange, T., Armstrong, M. R., Boyden, K., Brown, C. G., Campbell, G. H., Colvin, J. D., et al. (2006). Single-shot dynamic transmission electron microscopy. Applied Physics Letters, 89(4), 044105.

    Article  CAS  Google Scholar 

  124. Altarelli, M., & Mancuso, A. P. (2014). Structural biology at the European X-ray free-electron laser facility. Philosophical Transactions of the Royal Society, B: Biological Sciences, 369(1647), 20130311–20130311.

    Article  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anton Barty .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Aquila, A., Barty, A. (2018). Single Molecule Imaging Using X-ray Free Electron Lasers. In: Boutet, S., Fromme, P., Hunter, M. (eds) X-ray Free Electron Lasers. Springer, Cham. https://doi.org/10.1007/978-3-030-00551-1_14

Download citation

Publish with us

Policies and ethics