Skip to main content

Towards Molecular Movies of Enzymes

  • Chapter
  • First Online:
X-ray Free Electron Lasers

Abstract

Macromolecular crystallography has been highly successful in the past 60 years as it has been the predominant method to solve macromolecular structures, with more than 100,000 protein structures determined and posted to structural databases [www.rcsb.org, (Berman et al., Nucleic Acids Res 28:235–242, 2000)]. Crystallography methods are capable of determining structures at high resolution (<1.5 Å) as demonstrated by the many structures available at this or better resolution. A central objective of structural biology is not only to solve static structures but to also observe their associated dynamics to infer and explore their functions. To examine reactions that occur in biological macromolecules, time-resolved methods are required. In time-resolved crystallography, a reaction is triggered inside a crystal and the progress of this reaction is then probed by short but highly intense X-ray pulses, shorter than both the dynamics studied and the reaction trigger. Time-resolved crystallographic experiments have been successfully carried out at synchrotron X-ray sources (Moffat, Annu Rev Biophys Biophys Chem 18:309–332, 1989; Moffat, Chem Rev 101:1569–1581, 2001; Schmidt, Synchrotron Radiat News 28:25–30, 2015). Mainly cyclic reversible, and light-activated reactions were examined. Irreversible (single path) reactions, for example those catalyzed by enzymes, remain difficult to investigate. The initiation of a reaction by adding a substrate or ligand to protein crystals remains a challenge, which prevents routine applications. The arrival of X-ray free electron lasers and micro-focus synchrotron beamlines, with their intense X-ray pulses, permit the use of significantly smaller crystals. With small crystals faster diffusion times are achieved which allow for straightforward investigations of these reactions. Several successful experiments have already been reported which show how the structures of transiently occupied intermediates and their dynamics can be investigated at room temperature in real time. In this chapter we will discuss the experimental setup, feasibility, and potential impact of the new facilities on the field of enzymology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. DePristo, M. A., de Bakker, P. I., & Blundell, T. L. (2004). Heterogeneity and inaccuracy in protein structures solved by X-ray crystallography. Structure, 12, 831–838.

    Article  CAS  PubMed  Google Scholar 

  2. Botha, S., Nass, K., Barends, T. R., Kabsch, W., Latz, B., Dworkowski, F., et al. (2015). Room-temperature serial crystallography at synchrotron X-ray sources using slowly flowing free-standing high-viscosity microstreams. Acta Crystallographica. Section D, Biological Crystallography, 71, 387–397.

    Article  CAS  PubMed  Google Scholar 

  3. Frauenfelder, H., Sligar, S. G., & Wolynes, P. G. (1991). The energy landscapes and motions of proteins. Science, 254, 1598–1603.

    Article  CAS  PubMed  Google Scholar 

  4. McCammon, J. A., & Harvey, S. C. (1987). Dynamics of proteins and nucleic acids. Cambridge, UK: Cambridge University Press.

    Book  Google Scholar 

  5. Steinbach, P. J., Ansari, A., Berendzen, J., Braunstein, D., Chu, K., Cowen, B. R., et al. (1991). Ligand binding to heme proteins: Connection between dynamics and function. Biochemistry, 30, 3988–4001.

    Article  CAS  PubMed  Google Scholar 

  6. Moffat, K. (1989). Time-resolved macromolecular crystallography. Annual Review of Biophysics and Biophysical Chemistry, 18, 309–332.

    Article  CAS  PubMed  Google Scholar 

  7. Moffat, K. (2001). Time-resolved biochemical crystallography: A mechanistic perspective. Chemical Reviews, 101, 1569–1581.

    Article  CAS  PubMed  Google Scholar 

  8. Schmidt, M. (2008). Structure based enzyme kinetics by time-resolved X-ray crystallography. In Ultrashort laser pulses in medicine and biology. Berlin, Germany: Springer.

    Google Scholar 

  9. Schmidt, M. (2015). Time-resolved crystallography at X-ray free Electron lasers and synchrotron light sources. Synchrotron Radiation News, 28, 25–30.

    Article  Google Scholar 

  10. Stoddard, B. L. (2001). Trapping reaction intermediates in macromolecular crystals for structural analyses. Methods, 24, 125–138.

    Article  CAS  PubMed  Google Scholar 

  11. Bourgeois, D., & Weik, M. (2009). Kinetic protein crystallography: A tool to watch proteins in action. Crystallography Reviews, 15, 87–118.

    Article  CAS  Google Scholar 

  12. Flint, A. J., Tiganis, T., Barford, D., & Tonks, N. K. (1997). Development of “substrate-trapping” mutants to identify physiological substrates of protein tyrosine phosphatases. Proceedings of the National Academy of Sciences of the United States of America, 94, 1680–1685.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Buch, I., Giorgino, T., & De Fabritiis, G. (2011). Complete reconstruction of an enzyme-inhibitor binding process by molecular dynamics simulations. Proceedings of the National Academy of Sciences of the United States of America, 108, 10184–10189.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Schmidt, M., & Saldin, D. K. (2014). Enzyme transient state kinetics in crystal and solution from the perspective of a time-resolved crystallographer. Structural Dynamics, 1, 1–14.

    Article  CAS  Google Scholar 

  15. Steinfeld, J. I., Francisco, J. S., & Hase, W. L. (1985). Chemical kinetics and dynamics. Upper Saddle River, NJ: Prentience Hall.

    Google Scholar 

  16. Schmidt, M., Srajer, V., Henning, R., Ihee, H., Purwar, N., Tenboer, J., et al. (2013). Protein energy landscapes determined by five-dimensional crystallography. Acta Crystallographica Section D, 69, 2534–2542.

    Article  CAS  Google Scholar 

  17. Rajagopal, S., Anderson, S., Srajer, V., Schmidt, M., Pahl, R., & Moffat, K. (2005). A structural pathway for signaling in the E46Q mutant of photoactive yellow protein. Structure, 13, 55–63.

    Article  CAS  PubMed  Google Scholar 

  18. Schmidt, M., Rajagopal, S., Ren, Z., & Moffat, K. (2003). Application of singular value decomposition to the analysis of time-resolved macromolecular X-ray data. Biophysical Journal, 84, 2112–2129.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Ihee, H., Rajagopal, S., Srajer, V., Pahl, R., Anderson, S., Schmidt, M., et al. (2005). Visualizing reaction pathways in photoactive yellow protein from nanoseconds to seconds. Proceedings of the National Academy of Sciences of the United States of America, 102, 7145–7150.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Jung, Y. O., Lee, J. H., Kim, J., Schmidt, M., Moffat, K., Srajer, V., et al. (2013). Volume-conserving trans-cis isomerization pathways in photoactive yellow protein visualized by picosecond X-ray crystallography. Nature Chemistry, 5, 212–220.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Knapp, J. E., Pahl, R., Srajer, V., & Royer, W. E., Jr. (2006). Allosteric action in real time: Time-resolved crystallographic studies of a cooperative dimeric hemoglobin. Proceedings of the National Academy of Sciences of the United States of America, 103, 7649–7654.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Schmidt, M., Nienhaus, K., Pahl, R., Krasselt, A., Anderson, S., Parak, F., et al. (2005). Ligand migration pathway and protein dynamics in myoglobin: A time-resolved crystallographic study on L29W MbCO. Proceedings of the National Academy of Sciences of the United States of America, 102, 11704–11709.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Schotte, F., Cho, H. S., Kaila, V. R., Kamikubo, H., Dashdorj, N., Henry, E. R., et al. (2012). Watching a signaling protein function in real time via 100-ps time-resolved Laue crystallography. Proceedings of the National Academy of Sciences of the United States of America, 109, 19256–19261.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Schotte, F., Lim, M., Jackson, T. A., Smirnov, A. V., Soman, J., Olson, J. S., et al. (2003). Watching a protein as it functions with 150-ps time-resolved X-ray crystallography. Science, 300, 1944–1947.

    Article  CAS  PubMed  Google Scholar 

  25. Srajer, V., Ren, Z., Teng, T. Y., Schmidt, M., Ursby, T., Bourgeois, D., et al. (2001). Protein conformational relaxation and ligand migration in myoglobin: A nanosecond to millisecond molecular movie from time-resolved Laue X-ray diffraction. Biochemistry, 40, 13802–13815.

    Article  CAS  PubMed  Google Scholar 

  26. Srajer, V., Teng, T. Y., Ursby, T., Pradervand, C., Ren, Z., Adachi, S., et al. (1996). Photolysis of the carbon monoxide complex of myoglobin: Nanosecond time-resolved crystallography. Science, 274, 1726–1729.

    Article  CAS  PubMed  Google Scholar 

  27. Tripathi, S., Srajer, V., Purwar, N., Henning, R., & Schmidt, M. (2012). pH dependence of the photoactive yellow protein photocycle investigated by time-resolved crystallography. Biophysical Journal, 102, 325–332.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Boutet, S., Lomb, L., Williams, G. J., Barends, T. R., Aquila, A., Doak, R. B., et al. (2012). High-resolution protein structure determination by serial femtosecond crystallography. Science, 337(6092), 362–364.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Chapman, H. N., Fromme, P., Barty, A., White, T. A., Kirian, R. A., Aquila, A., et al. (2011). Femtosecond X-ray protein nanocrystallography. Nature, 470, 73–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Kupitz, C., Basu, S., Grotjohann, I., Fromme, R., Zatsepin, N. A., Rendek, K. N., et al. (2014). Serial time-resolved crystallography of photosystem II using a femtosecond X-ray laser. Nature, 513, 5.

    Article  CAS  Google Scholar 

  31. Pande, K., Hutchison, C. D. M., Groenhof, G., Aquila, A., Robinson, J. S., Tenboer, J., et al. (2016). Femtosecond structural dynamics drives the trans/Cis isomerization in photoactive yellow protein. Science, 352, 725–729.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Tenboer, J., Basu, S., Zatsepin, N., Pande, K., Milathianaki, D., Frank, M., et al. (2014). Time-resolved serial crystallography captures high-resolution intermediates of photoactive yellow protein. Science, 346, 1242–1246.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Neutze, R., Wouts, R., van der Spoel, D., Weckert, E., & Hajdu, J. (2000). Potential for biomolecular imaging with femtosecond X-ray pulses. Nature, 406, 752–757.

    Article  CAS  PubMed  Google Scholar 

  34. Chapman, H. N., Barty, A., Bogan, M. J., Boutet, S., Frank, M., Hau-Riege, S. P., et al. (2006). Femtosecond diffractive imaging with a soft-X-ray free-electron laser. Nature Physics, 2, 839–843.

    Article  CAS  Google Scholar 

  35. Aquila, A., Hunter, M. S., Doak, R. B., Kirian, R. A., Fromme, P., White, T. A., et al. (2012). Time-resolved protein nanocrystallography using an X-ray free-electron laser. Optics Express, 20, 2706–2716.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Barty, A., Caleman, C., Aquila, A., Timneanu, N., Lomb, L., White, T. A., et al. (2012). Self-terminating diffraction gates femtosecond X-ray nanocrystallography measurements. Nature Photonics, 6, 35–40.

    Article  CAS  PubMed  Google Scholar 

  37. Parak, F. G., Achterhold, K., Croci, S., & Schmidt, M. (2007). A physical picture of protein dynamics and conformational changes. Journal of Biological Physics, 33, 371–387.

    Article  CAS  PubMed  Google Scholar 

  38. Bourgeois, D., & Weik, M. (2005). New perspectives in kinetic protein crystallography using caged compounds. Hoboken, NJ: Wiley.

    Google Scholar 

  39. Calvey, G. D., Katz, A. M., Schaffer, C. B., & Pollack, L. (2016). Mixing injector enables time-resolved crystallography with high hit rate at X-ray free electron lasers. Structural Dynamics, 3, 054301.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Kupitz, C., Olmos, J., Holl, M., Tremblay, L. W., Pande, K., Pandey, S., et al. (2017). Structural enzymology using X-ray free Electron lasers. Structural Dynamics, 4, 044003.

    Article  PubMed  CAS  Google Scholar 

  41. Hekstra, D. R., White, K. I., Socolich, M. A., Henning, R. W., Srajer, V., & Ranganathan, R. (2016). Electric-field-stimulated protein mechanics. Nature, 540, 400–405.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Spence, J. C., Weierstall, U., & Chapman, H. N. (2012). X-ray lasers for structural and dynamic biology. Reports on progress in physics. Physical Society, 75, 102601.

    CAS  Google Scholar 

  43. Key, J. M., Srajer, V., Pahl, R., & Moffat, K. (2004). Time-resolved crystallographic studies of the heme-based sensor protein FixL. Biophysical Journal, 86, 246a–246a.

    Google Scholar 

  44. Barends, T. R., Foucar, L., Ardevol, A., Nass, K., Aquila, A., Botha, S., et al. (2015). Direct observation of ultrafast collective motions in CO myoglobin upon ligand dissociation. Science, 350(6259), 445–450.

    Article  CAS  PubMed  Google Scholar 

  45. Barty, A., Kirian, R. A., Maia, F. R. N. C., Hantke, M., Yoon, C. H., White, T. A., et al. (2014). Cheetah: Software for high-throughput reduction and analysis of serial femtosecond X-ray diffraction data. Journal of Applied Crystallography, 47, 1118–1131.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Bourgeois, D., Vallone, B., Arcovito, A., Sciara, G., Schotte, F., Anfinrud, P. A., et al. (2006). Extended subnanosecond structural dynamics of myoglobin revealed by Laue crystallography. Proceedings of the National Academy of Sciences of the United States of America, 103, 4924–4929.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Nienhaus, K., Ostermann, A., Nienhaus, G. U., Parak, F. G., & Schmidt, M. (2005). Ligand migration and protein fluctuations in myoglobin mutant L29W. Biochemistry, 44, 5095–5105.

    Article  CAS  PubMed  Google Scholar 

  48. Schmidt, M., Graber, T., Henning, R., & Srajer, V. (2010). Five-dimensional crystallography. Acta crystallographica. Section A, Foundations of crystallography, 66, 198–206.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Schmidt, M., Ihee, H., Pahl, R., & Srajer, V. (2005). Protein-ligand interaction probed by time-resolved crystallography. Methods in Molecular Biology, 305, 115–154.

    CAS  PubMed  Google Scholar 

  50. Van Brederode, M. E., Hoff, W. D., Van Stokkum, I. H., Groot, M. L., & Hellingwerf, K. J. (1996). Protein folding thermodynamics applied to the photocycle of the photoactive yellow protein. Biophysical Journal, 71, 365–380.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Hutchison, C. D. M., Tenboer, J., Kupitz, C., Moffat, K., Schmidt, M., & van Thor, J. J. (2016). Photocycle populations with femtosecond excitation of crystalline photoactive yellow protein. Chemical Physics Letters, 654, 63–71.

    Article  CAS  Google Scholar 

  52. Lincoln, C. N., Fitzpatrick, A. E., & van Thor, J. J. (2012). Photoisomerisation quantum yield and non-linear cross-sections with femtosecond excitation of the photoactive yellow protein. Physical Chemistry Chemical Physics: PCCP, 14, 15752–15764.

    Article  CAS  PubMed  Google Scholar 

  53. Bourgeois, D., & Royant, A. (2005). Advances in kinetic protein crystallography. Current Opinion in Structural Biology, 15, 538–547.

    Article  CAS  PubMed  Google Scholar 

  54. Pelliccioli, A. P., & Wirz, J. (2002). Photoremovable protecting groups: Reaction mechanisms and applications. Photochemical & Photobiological Sciences, 1, 441–458.

    Article  Google Scholar 

  55. Goelder, M., & Givens, R. (2005). Dynamic studies in biology: Phototriggers, photoswitches and caged biomolecules. Hoboken, NJ: Wiley.

    Book  Google Scholar 

  56. Schlichting, I., Almo, S. C., Rapp, G., Wilson, K., Petratos, K., Lentfer, A., et al. (1990). Time-resolved X-ray crystallographic study of the conformational change in ha-Ras P21 protein on Gtp hydrolysis. Nature, 345, 309–315.

    Article  CAS  PubMed  Google Scholar 

  57. Stoddard, B. L., Cohen, B. E., Brubaker, M., Mesecar, A. D., & Koshland, D. E., Jr. (1998). Millisecond Laue structures of an enzyme-product complex using photocaged substrate analogs. Nature Structural Biology, 5, 891–897.

    Article  CAS  PubMed  Google Scholar 

  58. Moglich, A., & Hegemann, P. (2013). Biotechnology: Programming genomes with light. Nature, 500, 406–408.

    Article  PubMed  CAS  Google Scholar 

  59. Moglich, A., & Moffat, K. (2010). Engineered photoreceptors as novel optogenetic tools. Photochemical & Photobiological Sciences, 9, 1286–1300.

    Article  CAS  Google Scholar 

  60. Crosson, S., & Moffat, K. (2002). Photoexcited structure of a plant photoreceptor domain reveals a light-driven molecular switch. The Plant Cell, 14, 1067–1075.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Geremia, S., Campagnolo, M., Demitri, N., & Johnson, L. N. (2006). Simulation of diffusion time of small molecules in protein crystals. Structure, 14, 393–400.

    Article  CAS  PubMed  Google Scholar 

  62. Hajdu, J., Acharya, K. R., Stuart, D. I., Mclaughlin, P. J., Barford, D., Oikonomakos, N. G., et al. (1987). Catalysis in the crystal - synchrotron radiation studies with glycogen phosphorylase-B. The EMBO Journal, 6, 539–546.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Sjogren, T., Svensson-Ek, M., Hajdu, J., & Brzezinski, P. (2000). Proton-coupled structural changes upon binding of carbon monoxide to cytochrome cd1: A combined flash photolysis and X-ray crystallography study. Biochemistry, 39, 10967–10974.

    Article  CAS  PubMed  Google Scholar 

  64. Sluyterman, L. A., & de Graaf, M. J. (1969). The activity of papain in the crystalline state. Biochimica et Biophysica Acta, 171, 277–287.

    Article  CAS  PubMed  Google Scholar 

  65. Kim, T. H., Mehrabi, P., Ren, Z., Sljoka, A., Ing, C., Bezginov, A., et al. (2017). The role of dimer asymmetry and protomer dynamics in enzyme catalysis. Science, 355, 28104837.

    Article  CAS  Google Scholar 

  66. Kurisu, G., Sugimoto, A., Kai, Y., & Harada, S. (1997). A flow cell suitable for time-resolved X-ray crystallography by the Laue method. Journal of Applied Crystallography, 30, 555–556.

    Article  CAS  Google Scholar 

  67. Petsko, G. A. (1985). Diffraction methods for biological macromolecules. Flow cell construction and use. Methods in Enzymology, 114, 141–146.

    Article  CAS  PubMed  Google Scholar 

  68. Chupas, P. J., Chapman, K. W., Kurtz, C., Hanson, J. C., Lee, P. L., & Grey, C. P. (2008). A versatile sample-environment cell for non-ambient X-ray scattering experiments. Journal of Applied Crystallography, 41, 822–824.

    Article  CAS  Google Scholar 

  69. Schmidt, M. (2013). Mix and inject, reaction initiation by diffusion for time-resolved macromolecular crystallography. Advances on Condensed Matter Physics, 2013, 1–10.

    Article  CAS  Google Scholar 

  70. Purwar, N., McGarry, J. M., Kostera, J., Pacheco, A. A., & Schmidt, M. (2011). Interaction of nitric oxide with catalase: Structural and kinetic analysis. Biochemistry, 50, 4491–4503.

    Article  CAS  PubMed  Google Scholar 

  71. Weierstall, U., Spence, J. C., & Doak, R. B. (2012). Injector for scattering measurements on fully solvated biospecies. The Review of Scientific Instruments, 83, 035108.

    Article  CAS  PubMed  Google Scholar 

  72. Nogly, P., James, D., Wang, D., White, T. A., Zatsepin, N., Shilova, A., et al. (2015). Lipidic cubic phase serial millisecond crystallography using synchrotron radiation. IUCrJ, 2, 168–176.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Weierstall, U., James, D., Wang, C., White, T. A., Wang, D., Liu, W., et al. (2014). Lipidic cubic phase injector facilitates membrane protein serial femtosecond crystallography. Nature Communications, 5, 3309.

    Article  PubMed  CAS  Google Scholar 

  74. Sierra, R. G., Gati, C., Laksmono, H., Dao, E. H., Gul, S., Fuller, F., et al. (2016). Concentric-flow electrokinetic injector enables serial crystallography of ribosome and photosystem II. Nature Methods, 13, 59–62.

    Article  CAS  PubMed  Google Scholar 

  75. Sierra, R. G., Laksmono, H., Kern, J., Tran, R., Hattne, J., Alonso-Mori, R., et al. (2012). Nanoflow electrospinning serial femtosecond crystallography. Acta Crystallographica. Section D, Biological Crystallography, 68, 1584–1587.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Hunter, M. S., Segelke, B., Messerschmidt, M., Williams, G. J., Zatsepin, N. A., Barty, A., et al. (2014). Fixed-target protein serial microcrystallography with an X-ray free electron laser. Scientific Reports, 4, 6026.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Mueller, C., Marx, A., Epp, S. W., Zhong, Y., Kuo, A., Balo, A. R., et al. (2015). Fixed target matrix for femtosecond time-resolved and in situ serial micro-crystallography. Structural Dynamics, 2(5), 054302.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Perry, S. L., Guha, S., Pawate, A. S., Henning, R., Kosheleva, I., Srajer, V., et al. (2014). In situ serial Laue diffraction on a microfluidic crystallization device. Journal of Applied Crystallography, 47, 1975–1982.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Roedig, P., Vartiainen, I., Duman, R., Panneerselvam, S., Stube, N., Lorbeer, O., et al. (2015). A micro-patterned silicon chip as sample holder for macromolecular crystallography experiments with minimal background scattering. Scientific Reports, 5, 10451.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Roessler, C. G., Agarwal, R., Allaire, M., Alonso-Mori, R., Andi, B., Bachega, J. F., et al. (2016). Acoustic injectors for drop-on-demand serial femtosecond crystallography. Structure, 24, 631–640.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Ren, Z., Perman, B., Srajer, V., Teng, T. Y., Pradervand, C., Bourgeois, D., et al. (2001). A molecular movie at 1.8 A resolution displays the photocycle of photoactive yellow protein, a eubacterial blue-light receptor, from nanoseconds to seconds. Biochemistry, 40, 13788–13801.

    Article  CAS  PubMed  Google Scholar 

  82. Stagno, J. R., Liu, Y., Bhandari, Y. R., Conrad, C. E., Panja, S., Swain, M., et al. (2017). Structures of riboswitch RNA reaction states by mix-and-inject XFEL serial crystallography. Nature, 541(7636), 242–246.

    Article  CAS  PubMed  Google Scholar 

  83. Adams, P. D., Afonine, P. V., Bunkoczi, G., Chen, V. B., Davis, I. W., Echols, N., et al. (2010). PHENIX: A comprehensive python-based system for macromolecular structure solution. Acta Crystallographica. Section D, Biological Crystallography, 66, 213–221.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Brunger, A. T., & Rice, L. M. (1997). Crystallographic refinement by simulated annealing: Methods and applications. Methods in Enzymology, 277, 243–269.

    Article  CAS  PubMed  Google Scholar 

  85. Romo, T. D., Clarage, J. B., Sorensen, D. C., & Phillips, G. N., Jr. (1995). Automatic identification of discrete substates in proteins: Singular value decomposition analysis of time-averaged crystallographic refinements. Proteins, 22, 311–321.

    Article  CAS  PubMed  Google Scholar 

  86. Henry, E. R., & Hofrichter, J. (1992). Singular value decomposition - application to analysis of experimental-data. Methods in Enzymology, 210, 129–192.

    Article  CAS  Google Scholar 

  87. Emsley, P., Lohkamp, B., Scott, W. G., & Cowtan, K. (2010). Features and development of coot. Acta Crystallographica. Section D, Biological Crystallography, 66, 486–501.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Murshudov, G. N., Skubak, P., Lebedev, A. A., Pannu, N. S., Steiner, R. A., Nicholls, R. A., et al. (2011). REFMAC5 for the refinement of macromolecular crystal structures. Acta Crystallographica. Section D, Biological Crystallography, 67, 355–367.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Hugonnet, J. E., Tremblay, L. W., Boshoff, H. I., Barry, C. E., 3rd, & Blanchard, J. S. (2009). Meropenem-clavulanate is effective against extensively drug-resistant Mycobacterium tuberculosis. Science, 323, 1215–1218.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Tremblay, L. W., Hugonnet, J. E., & Blanchard, J. S. (2008). Structure of the covalent adduct formed between Mycobacterium tuberculosis beta-lactamase and clavulanate. Biochemistry, 47, 5312–5316.

    Article  CAS  PubMed  Google Scholar 

  91. Hugonnet, J. E., & Blanchard, J. S. (2007). Irreversible inhibition of the Mycobacterium tuberculosis beta-lactamase by clavulanate. Biochemistry, 46, 11998–12004.

    Article  CAS  PubMed  Google Scholar 

  92. Boyd, D. B., & Lunn, W. H. (1979). Electronic structures of cephalosporins and penicillins. 9. Departure of a leaving group in cephalosporins. Journal of Medicinal Chemistry, 22, 778–784.

    Article  CAS  PubMed  Google Scholar 

  93. Deponte, D. P., McKeown, J. T., Weierstall, U., Doak, R. B., & Spence, J. C. (2011). Towards ETEM serial crystallography: Electron diffraction from liquid jets. Ultramicroscopy, 111, 824–827.

    Article  CAS  PubMed  Google Scholar 

  94. Holton, J. M., & Frankel, K. A. (2010). The minimum crystal size needed for a complete diffraction data set. Acta Crystallographica Section D, 66, 393–408.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christopher Kupitz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kupitz, C., Schmidt, M. (2018). Towards Molecular Movies of Enzymes. In: Boutet, S., Fromme, P., Hunter, M. (eds) X-ray Free Electron Lasers. Springer, Cham. https://doi.org/10.1007/978-3-030-00551-1_12

Download citation

Publish with us

Policies and ethics