Skip to main content

X-Ray Free Electron Lasers and Their Applications

  • Chapter
  • First Online:
Book cover X-ray Free Electron Lasers

Abstract

X-ray free electron lasers (FELs) represent the latest generation of X-ray sources, with unique properties and capabilities that present novel opportunities in the study of matter in unique forms as well as the study of interactions and dynamics on ultrafast timescales. For the purpose of this book focused on the use of X-ray FEL beams for the study of biological materials, the story begins with the availability of these novel sources to the scientific community as user facilities. Let us however take a quick step back and provide a brief historical background on what has led to the advent of X-ray FEL sources. This will be followed by a short description of the principles of operation of X-ray FELs and the breadth of their scientific use.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abad-Zapatero, C. (2012, May). Notes of a protein crystallographer: On the high-resolution structure of the PDB growth rate. Acta Crystallographica Section D, 68(5), 613–617.

    Article  CAS  Google Scholar 

  2. Ackermann, W., et al. (2007). Operation of a free electron laser from the extreme ultraviolet to the water window. Nature Photonics, 1, 336.

    Article  Google Scholar 

  3. Ahrens, T. J. (2013). Mineral physics & crystallography: A handbook of physical constants. Washington, DC: American Geophysical Union.

    Google Scholar 

  4. Allaria, E., Appio, R., Badano, L., Barletta, W. A., Bassanese, S., Biedron, S. G., et al. (2012). Highly coherent and stable pulses from the Fermi seeded free-electron laser in the extreme ultraviolet. Nature Photonics, 6, 699.

    Article  CAS  Google Scholar 

  5. Als-Nielsen, J., & McMorrow, D. (2011). Elements of modern X-ray physics. New York: Wiley.

    Book  Google Scholar 

  6. Berman, H. M., Westbrook, J., Feng, Z., Gilliland, G., Bhat, T. N., Weissig, H., et al. (2000). The protein data bank. Nucleic Acids Research, 28(1), 235–242.

    Article  CAS  Google Scholar 

  7. Bilderback, D. H., Elleaume, P., & Weckert, E. (2005). Review of third and next generation synchrotron light sources. Journal of Physics B: Atomic, Molecular and Optical Physics, 38(9), S773.

    Article  CAS  Google Scholar 

  8. Bionta, M. R., Hartmann, N., Weaver, M., French, D., Nicholson, D. J., Cryan, J. P., et al. (2014). Spectral encoding method for measuring the relative arrival time between X-ray/optical pulses. Review of Scientific Instruments, 85(8), 083116.

    Article  CAS  Google Scholar 

  9. Blaj, G., Caragiulo, P., Carini, G., Carron, S., Dragone, A., Freytag, D., et al. (2015, May). X-ray detectors at the Linac Coherent Light Source. Journal of Synchrotron Radiation, 22(3), 577–583.

    Article  CAS  Google Scholar 

  10. Bostedt, C., Boutet, S., Fritz, D. M., Huang, Z., Lee, H. J., Lemke, H. T., et al. (2016, March). Linac coherent light source: The first five years. Reviews of Modern Physics, 88, 015007.

    Google Scholar 

  11. Briggs, R., Gorman, M. G., Coleman, A. L., McWilliams, R. S., McBride, E. E., McGonegle, D., et al. (2017, January). Ultrafast X-ray diffraction studies of the phase transitions and equation of state of scandium shock compressed to 82 GPa. Physical Review Letters, 118, 025501.

    Google Scholar 

  12. Canton, S. E., Kjar, K. S., Vanko, G., van Driel, T. B., Adachi, S., Bordage, A., et al. (2015). Visualizing the non-equilibrium dynamics of photoinduced intramolecular electron transfer with femtosecond X-ray pulses. Nature Communications, 6, 6359.

    Article  CAS  Google Scholar 

  13. Clark, J. N., Beitra, L., Xiong, G., Higginbotham, A., Fritz, D. M., Lemke, H. T., et al. (2013). Ultrafast three-dimensional imaging of lattice dynamics in individual gold nanocrystals. Science, 341(6141), 56–59.

    Article  CAS  Google Scholar 

  14. Cocco, D., Moeller, S., Ploenjes, E., & Zangrando, M. (2018, January). PhotonDiag2017 workshop: Introductory overview. Journal of Synchrotron Radiation, 25(1), 1–2.

    Article  Google Scholar 

  15. Deacon, D. A. G., Elias, L. R., Madey, J. M. J., Ramian, G. J., Schwettman, H. A., & Smith, T. I. (1977). First operation of a free-electron laser. Physical Review Letters, 38, 892.

    Article  Google Scholar 

  16. Emma, P., Akre, R., Arthur, J., Bionta, R., Bostedt, C., Bozek, J., et al. (2010). First lasing and operation of an Ångstrom-wavelength free-electron laser. Nature Photonics, 4(9), 641–647.

    Article  CAS  Google Scholar 

  17. Ferguson, K. R., Bucher, M., Gorkhover, T., Boutet, S., Fukuzawa, H., Koglin, J. E., et al. (2016). Transient lattice contraction in the solid-to-plasma transition. Science Advances, 2(1), e1500837.

    Article  Google Scholar 

  18. Fletcher, L. B., Lee, H. J., Dppner, T., Galtier, E., Nagler, B., Heimann, P., et al. (2015). Ultrabright X-ray laser scattering for dynamic warm dense matter physics. Nature Photonics, 9, 274–279.

    Article  CAS  Google Scholar 

  19. Fritz, D. M., Cammarata, M., Aymeric, R., Caronna, C., Lemke, H. T., Zhu, D., et al. (2011). A single-shot intensity-position monitor for hard X-ray FEL sources. Proceedings of SPIE, 8140:8140-1–8140–6.

    Google Scholar 

  20. Fuchs, M., Trigo, M., Chen, J., Ghimire, S., Shwartz, S., Kozina, M., et al. (2015). Anomalous nonlinear X-ray Compton scattering. Nature Physics, 11, 964–970.

    Article  CAS  Google Scholar 

  21. Ghimire, S., Fuchs, M., Hastings, J., Herrmann, S. C., Inubushi, Y., Pines, J., et al. (2016, October). Nonsequential two-photon absorption from the k shell in solid zirconium. Physical Review A, 94, 043418.

    Google Scholar 

  22. Gleason, A. E., Bolme, C. A., Lee, H. J., Nagler, B., Galtier, E., Milathianaki, D., et al. (2015). Ultrafast visualization of crystallization and grain growth in shock-compressed SiO2. Nature Communications, 6, 8191.

    Article  CAS  Google Scholar 

  23. Gutt, C., Wochner, P., Fischer, B., Conrad, H., Castro-Colin, M., Lee, S., et al. (2012). Single shot spatial and temporal coherence properties of the SLAC linac coherent light source in the hard X-ray regime. Physical Review Letters, 108(2):024801.

    Article  CAS  Google Scholar 

  24. Hara, T., Inubushi, Y., Katayama, T., Sato, T., Tanaka, H., Tanaka, T., et al. (2013). Two-colour hard X-ray free-electron laser with wide tunability. Nature Communications, 4, 2919.

    Article  Google Scholar 

  25. Harmand, M., Coffee, R., Bionta, M. R., Chollet, M., French, D., Zhu, D., et al. (2013). Achieving few-femtosecond time-sorting at hard X-ray free-electron lasers. Nature Photonics, 7(3), 215–218.

    Article  CAS  Google Scholar 

  26. Hecht, E. (2002). Optics. Reading, MA: Addison-Wesley.

    Google Scholar 

  27. Huang, Z., & Kim, K.-J. (2007). A review of X-ray free-electron laser theory. Physical Review Special Topics – Accelerators and Beams, 10, 034801.

    Article  Google Scholar 

  28. Inoue, I., Inubushi, Y., Sato, T., Tono, K., Katayama, T., Kameshima, T., et al. (2016). Observation of femtosecond X-ray interactions with matter using an X-ray-X-ray pump-probe scheme. Proceedings of the National Academy of Sciences of the United States of America, 113, 1492.

    Article  CAS  Google Scholar 

  29. Inoue, I., Tono, K., Joti, Y., Kameshima, T., Ogawa, K., Shinohara, Y., et al. (2015). Characterizing transverse coherence of an ultra-intense focused X-ray free-electron laser by an extended young’s experiment. IUCrJ, 2, 620.

    Article  CAS  Google Scholar 

  30. Inubushi, Y., Tono, K., Togashi, T., Sato, T., Hatsui, T., Kameshima, T., et al. (2012). Determination of the pulse duration of an X-ray free electron laser using highly resolved single-shot spectra. Physical Review Letters, 109, 144801.

    Article  Google Scholar 

  31. Ishikawa, T., Aoyagi, H., Asaka, T., Asano, Y., Azumi, N., Bizen, T., et al. (2012). A compact X-ray free-electron laser emitting in the sub-Ångström region. Nature Photonics, 6, 540.

    Article  CAS  Google Scholar 

  32. IUCr, & Wilson, A. J. C. (2016). International tables for crystallography. Dordrecht: Kluwer Academic Publishers.

    Google Scholar 

  33. Jiang, M. P., Trigo, M., Savić, I., Fahy, S., Murray, D., Bray, C., et al. (2016, July). The origin of incipient ferroelectricity in lead telluride. Nature Communications, 7, 12291.

    Google Scholar 

  34. Katayama, T., Owada, S., Togashi, T., Ogawa, K., Karvinen, P., Vartiainen, I., et al. (2016). A beam branching method for timing and spectral characterization of hard X-ray free-electron lasers. Structure and Dynamics, 3, 034301.

    Article  Google Scholar 

  35. Kendrew, J. C., Bodo, G., Dintzis, H. M., Parrish, R. G., Wyckoff, H., & Phillips, D. C. (1958). A three-dimensional model of the myoglobin molecule obtained by X-ray analysis. Nature, 181(4610), 662–666.

    Article  CAS  Google Scholar 

  36. Kim, K. H., Kim, J. G., Nozawa, S., Sato, T., Oang, K. Y., Kim, T. W., et al. (2015). Direct observation of bond formation in solution with femtosecond X-ray scattering. Nature, 518, 385.

    Article  CAS  Google Scholar 

  37. Kubacka, T., Johnson, J. A., Hoffmann, M. C., Vicario, C., de Jong, S., Beaud, P., et al. (2014). Large-amplitude spin dynamics driven by a THz pulse in resonance with an electromagnon. Science, 343(6177), 1333–1336.

    Article  CAS  Google Scholar 

  38. Lantz, G., Mansart, B., Grieger, D., Boschetto, D., Nilforoushan, N., Papalazarou, E., et al. (2017, January). Ultrafast evolution and transient phases of a prototype out-of-equilibrium Mott–Hubbard material. Nature Communications, 8, 13917.

    Article  CAS  Google Scholar 

  39. Lee, S., Roseker, W., Gutt, C., Fischer, B., Conrad, H., Lehmkühler, F., et al. (2013). Single shot speckle and coherence analysis of the hard X-ray free electron laser LCLS. Optics Express, 21(21), 24647–24664.

    Article  Google Scholar 

  40. Lehmann, C. S., Picón, A., Bostedt, C., Rudenko, A., Marinelli, A., Moonshiram, D., et al. (2016, July). Ultrafast X-ray-induced nuclear dynamics in diatomic molecules using femtosecond X-ray-pump˘X-ray-probe spectroscopy. Physical Review A, 94, 013426.

    Google Scholar 

  41. Lehmkühler, F., Gutt, C., Fischer, B., Schroer, M. A., Sikorski, M., Song, S., et al. (2014). Single shot coherence properties of the free-electron laser SACLA in the hard X-ray regime. Scientific Reports, 4, 5234.

    Article  Google Scholar 

  42. Lehmkühler, F., Kwaśniewski, P., Roseker, W., Fischer, B., Schroer, M. A., Tono, K., et al. (2015). Sequential single shot X-ray photon correlation spectroscopy at the SACLA free electron laser. Scientific Reports, 5, 17193.

    Article  Google Scholar 

  43. Lemke, H. T., Kjær, K. S., Hartsock, R., van Driel, T. B., Chollet, M., Glownia, J. M., et al. (2017, May). Coherent structural trapping through wave packet dispersion during photoinduced spin state switching. Nature Communications, 8, 15342.

    Article  CAS  Google Scholar 

  44. Madey, J. (1971). Stimulated emission of bremsstrahlung in a periodic magnetic field. Journal of Applied Physics, 42, 1906.

    Article  CAS  Google Scholar 

  45. Marinelli, A., Coffee, R., Vetter, S., Hering, P., West, G. N., Gilevich, S., et al. (2016, June). Optical shaping of X-ray free-electron lasers. Physical Review Letters, 116, 254801.

    Google Scholar 

  46. Marinelli, A., Ratner, D., Lutman, A. A., Turner, J., Welch, J., Decker, F.-J., et al. (2015). High-intensity double-pulse X-ray free-electron laser. Nature Communications, 6, 6369.

    Article  CAS  Google Scholar 

  47. Miao, J., Ishikawa, T., Robinson, I. K., & Murnane, M. M. (2015). Beyond crystallography: Diffractive imaging using coherent X-ray light sources. Science, 348(6234), 530–535.

    Article  CAS  Google Scholar 

  48. Milathianaki, D., Boutet, S., Williams, G. J., Higginbotham, A., Ratner, D., Gleason, A. E., et al. (2013). Femtosecond visualization of lattice dynamics in shock-compressed matter. Science, 342(6155):220–223.

    Article  CAS  Google Scholar 

  49. Minitti, M. P., Budarz, J. M., Kirrander, A., Robinson, J. S., Ratner, D., Lane, T. J., et al. (2015, June). Imaging molecular motion: Femtosecond X-ray scattering of an electrocyclic chemical reaction. Physical Review Letters, 114, 255501.

    Google Scholar 

  50. Mitzner, R., Siemer, B., Neeb, M., Noll, T., Siewert, F., Roling, S., et al. (2008). Spatio-temporal coherence of free electron laser pulses in the soft X-ray regime. Optics Express, 16(24), 19909.

    Article  CAS  Google Scholar 

  51. Murphy, J. B., & Pellegrini, C. (1990). Introduction to the physics of the free electron laser. Amsterdam: North-Holland.

    Google Scholar 

  52. Neutze, R., Wouts, R., van der Spoel, D., Weckert, E., & Hajdu, J. (2000). Potential for biomolecular imaging with femtosecond X-ray pulses. Nature, 406(6797), 752–757.

    Article  CAS  Google Scholar 

  53. Ostrom, H., Oberg, H., Xin, H., LaRue, J., Beye, M., Dell’Angela, M., et al. (2015). Probing the transition state region in catalytic CO oxidation on RU. Science, 347(6225), 978–982.

    Article  CAS  Google Scholar 

  54. Pellegrini, C. (2012). The history of X-ray free-electron lasers. European Physical Journal H, 37(5), 659–708.

    Article  Google Scholar 

  55. Pellegrini, C., Marinelli, A., & Reiche, S. (2016, March). The physics of X-ray free-electron lasers. Reviews of Modern Physics, 88, 015006.

    Google Scholar 

  56. Prince, K. C., Allaria, E., Callegari, C., Cucini, R., De Ninno, G., Di Mitri, S., et al. (2016). Coherent control with a short-wavelength free-electron laser. Nature Photonics, 10, 176–179.

    Article  CAS  Google Scholar 

  57. Rohringer, N., Ryan, D., London, R. A., Purvis, M., Albert, F., Dunn, J., et al. (2012). Atomic inner-shell X-ray laser at 1.46 nanometres pumped by an X-ray free-electron laser. Nature, 481(7382), 488–491.

    Article  CAS  Google Scholar 

  58. Ruiz-Lopez, M., Faenov, A., Pikuz, T., Ozaki, N., Mitrofanov, A., Albertazzi, B., et al. (2017, January). Coherent X-ray beam metrology using 2D high-resolution Fresnel-diffraction analysis. Journal of Synchrotron Radiation, 24(1), 196–204.

    Article  CAS  Google Scholar 

  59. Saldin, E. L., Schneidmiller, E. A., & Yurkov, M. V. (2000). The physics of free electron lasers. Berlin: Springer.

    Book  Google Scholar 

  60. Schmüser, P., Dohlus, M., Rossbach, J., & Behrens, C. (2014). Free-electron lasers in the ultraviolet and X-ray regime: Physical principles, experimental results, technical realization. Springer Tracts in Modern Physics. Cham: Springer.

    Google Scholar 

  61. Shintake, T., Tanaka, H., Hara, T., Tanaka, T., Togawa, K., Yabashi, M., et al. (2008). A compact free-electron laser for generating coherent radiation in the extreme ultraviolet region. Nature Photonics, 2(9), 555–559.

    Article  CAS  Google Scholar 

  62. Shpyrko, O. G. (2014, September). X-ray photon correlation spectroscopy. Journal of Synchrotron Radiation, 21(5), 1057–1064.

    Article  CAS  Google Scholar 

  63. Swinburne, T. D., Glavicic, M. G., Rahman, K. M., Jones, N. G., Coakley, J., Eakins, D. E., et al. (2016, April). Picosecond dynamics of a shock-driven displacive phase transformation in Zr. Physical Review B, 93, 144119.

    Google Scholar 

  64. Tamasaku, K., Shigemasa, E., Inubushi, Y., Katayama, T., Sawada, K., Yumoto, H., et al. (2014). X-ray two-photon absorption competing against single and sequential multiphoton processes. Nature Photonics, 8, 313.

    Article  CAS  Google Scholar 

  65. Tiedtke, K., Azima, A., von Bargen, N., Bittner, L., Bonfigt, S., Düsterer, S., et al. (2009). The soft X-ray free-electron laser flash at DESY: Beamlines, diagnostics and end-stations. New Journal of Physics, 11(2), 023029.

    Article  Google Scholar 

  66. Tono, K., Togashi, T., Inubushi, Y., Sato, T., Katayama, T., Ogawa, K., et al. (2013). Beamline, experimental stations and photon beam diagnostics for the hard X-ray free electron laser of SACLA. New Journal of Physics, 15(8), 083035.

    Article  Google Scholar 

  67. Tono, K., Togashi, T., Inubushi, Y., Sato, T., Katayama, T., Ogawa, K., et al. (2013). Beamline for X-ray free electron laser of SACLA. New Journal of Physics, 12, 083035.

    Article  Google Scholar 

  68. Trigo, M., Fuchs, M., Chen, J., Jiang, M. P., Cammarata, M., Fahy, S., et al. (2013). Fourier-transform inelastic X-ray scattering from time- and momentum-dependent phonon-phonon correlations. Nature Physics, 9(12), 790–794.

    Article  CAS  Google Scholar 

  69. Ullrich, J., Rudenko, A., & Moshammer, R. (2012). Free-electron lasers: New avenues in molecular physics and photochemistry. Annual Review of Physical Chemistry, 63(1), 635–660. PMID: 22404584.

    Article  CAS  Google Scholar 

  70. Usenko, S., Przystawik, A., Jakob, M. A., Lazzarino, L. L., Brenner, G., Toleikis, S., et al. (2017). Attosecond interferometry with self-amplified spontaneous emission of a free-electron laser. Nature Communications, 8, 15626.

    Article  CAS  Google Scholar 

  71. Vartanyants, I. A., Singer, A., Mancuso, A. P., Yefanov, O. M., Sakdinawat, A., Liu, Y., et al. (2011). Coherence properties of individual femtosecond pulses of an X-ray free-electron laser. Physical Review Letters, 107(14), 144801.

    Article  CAS  Google Scholar 

  72. Vinko, S. M., Ciricosta, O., Cho, B. I., Engelhorn, K., Chung, H. K., Brown, C. R., et al. (2012). Creation and diagnosis of a solid-density plasma with an X-ray free-electron laser. Nature, 482(7383), 59–62.

    Article  CAS  Google Scholar 

  73. Warren, B. E. (1969). X-ray diffraction. Addison-Wesley series in metallurgy and materials engineering. Mineola, NY: Dover Publications.

    Google Scholar 

  74. Yabashi, M., Tanaka, H., Tanaka, T., Tomizawa, H., Togashi, T., Nagasono, M., et al. (2013). Compact XFEL and AMO sciences: SACLA and SCSS. Journal of Physics B, 46(16), 164001.

    Article  Google Scholar 

  75. Yoneda, H., Inubushi, Y., Nagamine, K., Michine, Y., Ohashi, H., Yumoto, H., et al. (2015). Atomic inner-shell laser at 1.5-angstrom wavelength pumped by an X-ray free-electron laser. Nature, 524, 446–449.

    Article  CAS  Google Scholar 

  76. Zastrau, U., Gamboa, E. J., Kraus, D., Benage, J. F., Drake, R. P., Efthimion, P., et al. (2016). Tracking the density evolution in counter-propagating shock waves using imaging X-ray scattering. Applied Physics Letters, 109(3), 031108.

    Article  Google Scholar 

  77. Zhang, W., Alonso-Mori, R., Bergmann, U., Bressler, C., Chollet, M., Galler, A., et al. (2014). Tracking excited-state charge and spin dynamics in iron coordination complexes. Nature, 509(7500), 345–348.

    Article  CAS  Google Scholar 

  78. Zhu, D., Cammarata, M., Feldkamp, J., Fritz, D. M., Hastings, J., Lee, S., et al. (2013). Design and operation of a hard X-ray transmissive single-shot spectrometer at LCLS. Journal of Physics Conference Series, 425(5), 052033.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sébastien Boutet .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Boutet, S., Yabashi, M. (2018). X-Ray Free Electron Lasers and Their Applications. In: Boutet, S., Fromme, P., Hunter, M. (eds) X-ray Free Electron Lasers. Springer, Cham. https://doi.org/10.1007/978-3-030-00551-1_1

Download citation

Publish with us

Policies and ethics