Plant Products with Antifungal Activity: From Field to Biotechnology Strategies

  • Giovanna SimonettiEmail author
  • Alessio Valletta
  • Olga Kolesova
  • Gabriella Pasqua


In this chapter, informations on the recent advances regarding antifungal activity of natural products obtained from plants collected directly from their natural habitat or from plant cell and organ, cultures have been reported. The biotechnological approaches could increase uniformity and predictability of the extracts and overcome problems associated with geographical, seasonal, and environmental variations. Human fungal pathogens are the cause of severe diseases associated with high morbidity and mortality. The major human fungal pathogens are Candida species, dermatophytes, Aspergillus species, and Cryptococcus neoformans. Side effects and resistance are frequently attributed to the current antifungal agents. Moreover, the treatments often require long-term therapy and are not resolving. Plants represent a source of antifungal agents, but up to date, the number of new phytochemicals reaching the market is very low. This review attempts to summarize the current status of botanical screening efforts, as well as in vitro and in vivo studies on antifungal activity of plant products. Despite the currently non-uniform regulatory framework in all the states, the plant-derived products are increasingly in demand for their effectiveness. The basic conclusion from these studies is that rigorous, well-designed clinical trials are needed to validate the effectiveness and safety of plant extracts for their use as antifungals.


Plant extracts Biotechnology Plant cell Organ cultures Antifungal activity 


  1. Abba Y, Hassim H, Hamzah H, Noordin MM (2015) Antiviral activity of resveratrol against human and animal viruses. Adv Virol 65(6):297–303Google Scholar
  2. Abedini A, Roumy V, Mahieux S et al (2013) Rosmarinic acid and its methyl ester as antimicrobial components of the hydromethanolic extract of Hyptis atrorubens Poit. (Lamiaceae). J Evid Based Complement Alternat Med 2013:1–11CrossRefGoogle Scholar
  3. Adrian M, Jeandet P, Veneau J et al (1997) Biological activity of resveratrol, a stilbenic compound from grapevines, against Botrytis cinerea, the causal agent for gray mold. J Chem Ecol 23(7):1689–1702CrossRefGoogle Scholar
  4. Ahmad I (2016) Recent insight into the biological activities of synthetic xanthone derivatives. Eur J Med Chem 116:267–280CrossRefPubMedGoogle Scholar
  5. Ahmad K, Talha Khalil A, Somayya R (2016) Antifungal, phytotoxic and hemagglutination activity of methanolic extracts of Ocimum basilicum. J Tradit Chin Med 36(6):794–798CrossRefPubMedGoogle Scholar
  6. Ahuja I, Kissen R, Bones AM (2012) Phytoalexins in defense against pathogens. Trends Plant Sci 17:73–90CrossRefPubMedGoogle Scholar
  7. Akroum S (2017) Antifungal activity of acetone extracts from Punica granatum L., Quercus suber L. and Vicia faba L. J Mycol Med 27(1):83–89CrossRefPubMedGoogle Scholar
  8. Alimpić A, Knežević A, Milutinović M et al (2017) Biological activities and chemical composition of Salvia amplexicaulis Lam. extracts. Ind Crop Prod 105:1–9CrossRefGoogle Scholar
  9. Arendrup MC, Patterson TF (2017) Multidrug-resistant Candida: epidemiology, molecular mechanisms, and treatment. J Infect Dis 216:S445–S451CrossRefPubMedGoogle Scholar
  10. Arunkumar S, Muthuselvam M (2009) Analysis of phytochemical constituents and antimicrobial activities of Aloe vera L. against clinical pathogens. World J Agr Sci 5(5):572–576Google Scholar
  11. Atanasov AG, Waltenberger B, Pferschy-Wenzig EM et al (2015) Discovery and resupply of pharmacologically active plant-derived natural products: a review. Biotechnol Adv 33(8):1582–1614CrossRefPubMedPubMedCentralGoogle Scholar
  12. Avato P, Raffo F, Guglielmi G et al (2004) Extracts from St John’s wort and their antimicrobial activity. Phytother Res 18(3):230–232CrossRefPubMedGoogle Scholar
  13. Bais HP, Walker TS, Schweizer HP et al (2002) Root specific elicitation and antimicrobial activity of rosmarinic acid in hairy root cultures of Ocimum basilicum. Plant Physiol Biochem 40(11):983–995CrossRefGoogle Scholar
  14. Balakumar S, Rajan S, Thirunalasundari T et al (2011) Antifungal activity of Aegle marmelos (L.) Correa (Rutaceae) leaf extract on dermatophytes. Asian Pac J Trop Biomed 1(4):309–312CrossRefPubMedPubMedCentralGoogle Scholar
  15. Balouiri M, Sadiki M, Ibnsouda SK (2016) Methods for in vitro evaluating antimicrobial activity: a review. J Pharm Anal 6:71–79CrossRefPubMedGoogle Scholar
  16. Bansod S, Rai M (2008) Antifungal activity of essential oils from Indian medicinal plants against human pathogenic Aspergillus fumigatus and A. niger. World J Med Sci 3(2):81–88Google Scholar
  17. Basri DF, Xian LW, Abdul Shukor NI et al (2014) Bacteriostatic antimicrobial combination: antagonistic interaction between epsilon-viniferin and vancomycin against methicillin-resistant Staphylococcus aureus. Biomed Res Int 2014:1–8CrossRefGoogle Scholar
  18. Bassiri-Jahromi S, Pourshafie MR, Ardakani EM et al (2017) In vivo comparative evaluation of the pomegranate (Punica granatum) peel extract as an alternative agent to nystatin against oral candidiasis. Iran J Med Sci 43(3):296–304Google Scholar
  19. Belchí-Navarro S, Almagro L, Lijavetzky D et al (2012) Enhanced extracellular production of trans-resveratrol in Vitis vinifera suspension cultured cells by using cyclodextrins and methyljasmonate. Plant Cell Rep 31(1):81–89CrossRefPubMedGoogle Scholar
  20. Belhadj A, Telef N, Saigne C et al (2008) Effect of methyl jasmonate in combination with carbohydrates on gene expression of PR proteins, stilbene and anthocyanin accumulation in grapevine cell cultures. Plant Physiol Biochem 46(4):493–499CrossRefPubMedGoogle Scholar
  21. Bertoli A, Giovannini A, Ruffoni B et al (2008) Bioactive constituent production in St. John’s wort in vitro hairy roots. Regenerated plant lines. J Agric Food Chem 56(13):5078–5082CrossRefPubMedGoogle Scholar
  22. Bhuyan DJ, Vuong QV, Chalmers AC et al (2017) Phytochemical, antibacterial and antifungal properties of an aqueous extract of Eucalyptus microcorys leaves. S Afr J Bot 112:180–185CrossRefGoogle Scholar
  23. Bragutsa EV (2007) Treatment of chronic resistant forms of fungal skin lesions (malasshesiosis and mycosis of the foot) using combined therapy with the Terbizil preparation. Ukr. J Dermatol, Venereal, Brach Metol 1:57–59Google Scholar
  24. Brandle JE, Starratt AN, Gijzen M (1998) Stevia rebaudiana: its agricultural, biological, and chemical properties. Can J Plant Sci 78(4):527–536CrossRefGoogle Scholar
  25. Brigham LA, Michaels PJ, Flores HE (1999) Cell-specific production and antimicrobial activity of naphthoquinones in roots of Lithospermum erythrorhizon. Plant Physiol 119(2):417–428CrossRefPubMedPubMedCentralGoogle Scholar
  26. Brighenti FL, Salvador MJ, Gontijo AVL et al (2017) Plant extracts: initial screening, identification of bioactive compounds and effect against Candida albicans biofilms. Future Microbiol 12:15–27Google Scholar
  27. Brooks GF et al (2013) Jawetz Melnick & Adelbergs medical microbiology, 26th edn. McGraw-Hill, New YorkGoogle Scholar
  28. Buck M, Hamilton C (2011) The Nagoya Protocol on access to genetic resources and the fair and equitable sharing of benefits arising from their utilization to the Convention on Biological Diversity. Rev Eur Community Int Environ Law 20(1):47–61CrossRefGoogle Scholar
  29. Bulgakov VP, Inyushkina YV, Fedoreyev SA (2012) Rosmarinic acid and its derivatives: biotechnology and applications. Crit Rev Biotechnol 32(3):203–217CrossRefPubMedGoogle Scholar
  30. Cabañes FJ, Vega S, Castellá G (2011) Malassezia cuniculi sp. nov., a novel yeast species isolated from rabbit skin. Mala Med Mycol 49(1):40–48CrossRefGoogle Scholar
  31. Canter PH, Thomas H, Ernst E (2005) Bringing medicinal plants into cultivation: opportunities and challenges for biotechnology. Trends Biotechnol 23(4):180–185CrossRefPubMedGoogle Scholar
  32. Carrasco-Zuber JE, Navarrete-Dechent C, Bonifaz A et al (2016) Cutaneous involvement in the deep mycoses: a literature review. Part I—subcutaneous mycoses. Actas Dermosifiliogr 107(10):806–815CrossRefPubMedGoogle Scholar
  33. Chalal M, Klinguer A, Echairi A et al (2014) Antimicrobial activity of resveratrol analogues. Molecules 19(6):7679–7688CrossRefPubMedPubMedCentralGoogle Scholar
  34. Chan MMY (2002) Antimicrobial effect of resveratrol on dermatophytes and bacterial pathogens of the skin. Biochem Pharmacol 63(2):99–104CrossRefPubMedGoogle Scholar
  35. Chattopadhyay D, Maiti K, Kundu AP et al (2001) Antimicrobial activity of Alstonia macrophylla: a folklore of bay islands. J Ethnopharmacol 77(1):49–55CrossRefPubMedGoogle Scholar
  36. Chen SL, Yu H, Luo HM et al (2016) Conservation and sustainable use of medicinal plants: problems, progress, and prospects. Chin Med 11(1):37CrossRefPubMedPubMedCentralGoogle Scholar
  37. Chong J, Poutaraud A, Hugueney P (2009) Metabolism and roles of stilbenes in plants. Plant Sci 177(3):143–155CrossRefGoogle Scholar
  38. Chuang PH, Lee CW, Chou JY et al (2007) Anti-fungal activity of crude extracts and essential oil of Moringa oleifera Lam. Bioresour Technol 98(1):232–236CrossRefPubMedGoogle Scholar
  39. Clouser CL, Chauhan J, Bess MA et al (2012) Anti-HIV-1 activity of resveratrol derivatives and synergistic inhibition of HIV-1 by the combination of resveratrol and decitabine. Bioorg Med Chem Lett 22(21):6642–6646CrossRefPubMedPubMedCentralGoogle Scholar
  40. Conceição LFR, Ferreres Tavares RM, Dias ACP (2006) Induction of phenolic compounds in Hypericum perforatum L. cells by Colletotrichum gloeosporioides elicitation. Phytochemistry 67:149–155CrossRefPubMedGoogle Scholar
  41. Dar TA, Uddin M, Khan MMA et al (2015) Jasmonates counter plant stress: a review. Environ Exp Bot 115:49–57CrossRefGoogle Scholar
  42. De Assis PA, Theodoro PN, De Paula JE et al (2014) Antifungal ether diglycosides from Matayba guianensis Aublet. Bioorg Med Chem Lett 24(5):1414–1416CrossRefPubMedGoogle Scholar
  43. De Leo A, Arena G, Lacanna E et al (2012) Resveratrol inhibits epstein barr virus lytic cycle in Burkitt’s lymphoma cells by affecting multiple molecular targets. Antivir Res 96(2):196–202CrossRefPubMedGoogle Scholar
  44. De Morais CB, Scopel M, Pedrazza GPR et al (2017) Anti-dermatophyte activity of Leguminosae plants from Southern Brazil with emphasis on Mimosa pigra (Leguminosae). J Mycol Med 27(4):530–538CrossRefPubMedGoogle Scholar
  45. Debnath M (2007) Clonal propagation and antimicrobial activity of an endemic medicinal plant Stevia rebaudiana. J Med Plants Res 2(2):045–051Google Scholar
  46. Decendit A, Waffo-Teguo P, Richard T et al (2002) Galloylated catechins and stilbene diglucosides in Vitis vinifera cell suspension cultures. Phytochemistry 60(8):795–798CrossRefPubMedGoogle Scholar
  47. Denning DW, Bromley MJ (2015) How to bolster the antifungal pipeline. Science 347(6229):1414–1416CrossRefPubMedGoogle Scholar
  48. Denning DW, Venkateswarlu K, Oakley KL et al (1997) Itraconazole resistance in Aspergillus fumigatus. Antimicrob Agents Chemother 41(6):1364–1368CrossRefPubMedPubMedCentralGoogle Scholar
  49. Dias MI, Sousa MJ, Alves RC et al (2016) Exploring plant tissue culture to improve the production of phenolic compounds: A review. Ind Crop Prod 82:9–22CrossRefGoogle Scholar
  50. DiDone L, Oga D, Krysan DJ (2011) A novel assay of biofilm antifungal activity reveals that amphotericin B and caspofungin lyse Candida albicans cells in biofilms. Yeast 28(8):561–568CrossRefPubMedGoogle Scholar
  51. Docherty JJ, Fu MMH, Stiffler BS et al (1999) Resveratrol inhibition of herpes simplex virus replication. Antivir Res 43(3):145–155CrossRefPubMedGoogle Scholar
  52. Docherty JJ, Sweet TJ, Bailey E et al (2006) Resveratrol inhibition of varicella-zoster virus replication in vitro. Antivir Res 72(3):171–177CrossRefPubMedGoogle Scholar
  53. Donlan RM (2001) Biofilms and device-associated infections. Emerg Infect Dis 7(2):277CrossRefPubMedPubMedCentralGoogle Scholar
  54. Dovigo LN, Pavarina AC, Carmello JC et al (2011) Susceptibility of clinical isolates of Candida to photodynamic effects of curcumin. Lasers Surg Med 43(9):927–934CrossRefPubMedGoogle Scholar
  55. El-Atawi K, Elhalik M, Kulkarni T et al (2017) Evolving invasive neonatal systemic candidiasis, a review. J Pediatr Neonatal Care 6(6):00271CrossRefGoogle Scholar
  56. Endo EH, Costa GM, Nakamura TU et al (2015) Antidermatophytic activity of hydroalcoholic extracts from Rosmarinus officinalis and Tetradenia riparia. J Mycol Med 25(4):274–279CrossRefPubMedGoogle Scholar
  57. Evensen NA, Braun PC (2009) The effects of tea polyphenols on Candida albicans: inhibition of biofilm formation and proteasome inactivation. Can J Microbiol 55(9):1033–1039CrossRefPubMedGoogle Scholar
  58. Falahati M, Tabrizib NO, Jahaniani F (2005) Anti dermatophyte activities of Eucalyptus camaldulensis in comparison with Griseofulvin. Iran J Pharmacol Ther 4(2):80–83Google Scholar
  59. Ferri M, Tassoni A, Franceschetti M et al (2009) Chitosan treatment induces changes of protein expression profile and stilbene distribution in Vitis vinifera cell suspensions. Proteomics 9(3):610–624CrossRefPubMedGoogle Scholar
  60. Ferri M, Dipalo SC, Bagni N et al (2011) Chitosan elicits mono-glucosylated stilbene production and release in fed-batch bioreactor cultures of grape cells. Food Chem 124(4):1473–1479CrossRefGoogle Scholar
  61. Fernanda Lourenção Brighenti, Marcos José Salvador, Aline Vidal Lacerda Gontijo, Alberto Carlos Botazzo Delbem, Ádina Cléia Botazzo Delbem, Cristina Pacheco Soares, Maria Alcionéia Carvalho de Oliveira, Camila Miorelli Girondi, Cristiane Yumi Koga-Ito, (2017) Plant extracts: initial screening, identification of bioactive compounds and effect against biofilms. Future Microbiology 12(1):15–27Google Scholar
  62. Filip R, Davicino R, Anesini C (2010) Antifungal activity of the aqueous extract of Ilex paraguariensis against Malassezia furfur. Phytother Res 24(5):715–719PubMedGoogle Scholar
  63. Franklin G, Conceição LF, Kombrink E et al (2009) Xanthone biosynthesis in Hypericum perforatum cells provides antioxidant and antimicrobial protection upon biotic stress. Phytochemistry 70(1):60–68CrossRefPubMedGoogle Scholar
  64. Galindo I, Hernáez B, Berná J et al (2011) Comparative inhibitory activity of the stilbenes resveratrol and oxyresveratrol on African swine fever virus replication. Antivir Res 91(1):57–63CrossRefPubMedGoogle Scholar
  65. Gerth A, Schmidt D, Wilken D (2006) The production of plant secondary metabolites using bioreactors. In: XXVII international horticultural congress-IHC2006: international symposium on plant biotechnology: From Bench to 764, pp 95–104Google Scholar
  66. Grohskopf LA, Vincent JL (1996) Systemic Candida infections. Yale J Biol Med 69(6):505–515PubMedPubMedCentralGoogle Scholar
  67. Gullo FP, Rossi SA, de CO Sardi J et al (2013) Cryptococcosis: epidemiology, fungal resistance, and new alternatives for treatment. Eur J Clin Microbiol Infect Diss 32(11):1377–1391CrossRefGoogle Scholar
  68. Güllüce M, Sökmen M, Daferera D et al (2003) In vitro antibacterial, antifungal, and antioxidant activities of the essential oil and methanol extracts of herbal parts and callus cultures of Satureja hortensis L. J Agric Food Chem 51(14):3958–3965CrossRefPubMedGoogle Scholar
  69. Gurgel LA, Sidrim JJC, Martins DT (2005) In vitro antifungal activity of dragon’s blood from Croton urucurana against dermatophytes. J Ethnopharmacol 97(2):409–412CrossRefPubMedGoogle Scholar
  70. Hall RD (2000) Plant cell culture initiation. Mol Biotechnol 16(2):161–173CrossRefPubMedGoogle Scholar
  71. Havlickova B, Czaika VA, Friedrich M (2008) Epidemiological trends in skin mycoses worldwide. Mycoses 51(s4):2–15CrossRefPubMedGoogle Scholar
  72. Hedayati MT, Pasqualotto AC, Warn PA (2007) Aspergillus flavus: human pathogen, allergen and mycotoxin producer. Microbiology 153(6):1677–1692CrossRefPubMedGoogle Scholar
  73. Hope WW, Castagnola E, Groll AH et al (2012) ESCMID guideline for the diagnosis and management of Candida diseases 2012: prevention and management of invasive infections in neonates and children caused by Candida spp. Clin Microbiol Infect 18(s7):38–52CrossRefPubMedGoogle Scholar
  74. Jeandet P, Douillet-Breuil AC, Bessis R et al (2002) Phytoalexins from the Vitaceae: biosynthesis, phytoalexin gene expression in transgenic plants, antifungal activity, and metabolism. J Agric Food Chem 50(10):2731–2741CrossRefPubMedGoogle Scholar
  75. Kalidindi N, Thimmaiah NV, Jagadeesh NV et al (2015) Antifungal and antioxidant activities of organic and aqueous extracts of Annona squamosa Linn. leaves. J Food Drug Anal 23(4):795–802CrossRefPubMedGoogle Scholar
  76. Kauffmann CA, Mandell GL (2010) Atlas of fungal diseases. GEOTAR Media, Moscow, p 2010Google Scholar
  77. Kedzierski L, Curtis JM, Kaminska M et al (2007) In vitro antileishmanial activity of resveratrol and its hydroxylated analogues against Leishmania major promastigotes and amastigotes. J Parasitol Res 102(1):91–97CrossRefGoogle Scholar
  78. Khan N, Shreaz S, Bhatia R et al (2012) Anticandidal activity of curcumin and methyl cinnamaldehyde. Fitoterapia 83(3):434–440CrossRefPubMedGoogle Scholar
  79. Kim JY (2016) Human fungal pathogens: Why should we learn? J Microbiol 54(2016):145–148CrossRefPubMedGoogle Scholar
  80. Kinghorn K (2010) Toxic plants. Columbia University Press, New YorkGoogle Scholar
  81. Klotter F, Studer A (2014) Total synthesis of resveratrol-based natural products using a palladium-catalyzed decarboxylative arylation and an oxidative heck reaction. Angew Chem Int Ed Engl 53(9):2473–2476CrossRefPubMedGoogle Scholar
  82. Koch C, Uhle F, Wolff M et al (2015) Cardiac effects of echinocandins after central venous administration in adult rats. Antimicrob Agents Chemother 59(3):1612–1619CrossRefPubMedPubMedCentralGoogle Scholar
  83. Koperdáková J, Komarovská H, Košuth J et al (2009) Characterization of hairy root-phenotype in transgenic Hypericum perforatum L. clones. Acta Physiol Plant 31(2):351–358CrossRefGoogle Scholar
  84. Koroishi AM, Foss SR, Cortez DA et al (2008) In vitro antifungal activity of extracts and neolignans from Piper regnellii against dermatophytes. J Ethnopharmacol 117(2):270–277CrossRefPubMedGoogle Scholar
  85. Kulko AB (2012) Pathogens spectrum of deep human mycosis. Oncohematology 7(3):55–61Google Scholar
  86. Kullberg BJ, Arendrup MC (2015) Invasive candidiasis. N Engl J Med 373(15):1445–1456CrossRefPubMedGoogle Scholar
  87. Laniado-Laborín R, Cabrales-Vargas MN (2009) Amphotericin B: side effects and toxicity. Rev Iberoam Micol 26(4):223–227CrossRefPubMedGoogle Scholar
  88. Laphookhieo S, Syers JK, Kiattansakul R et al (2006) Cytotoxic and antimalarial prenylated xanthones from Cratoxylum cochinchinense. Chem Pharm Bull 54(5):745–747CrossRefPubMedGoogle Scholar
  89. Larronde F, Richard T, Delaunay JC et al (2005) New stilbenoid glucosides isolated from Vitis vinifera cell suspension cultures (cv. Cabernet Sauvignon). Planta Med 71(09):888–890CrossRefPubMedGoogle Scholar
  90. Lichterman BL (2004) Book: aspirin: the story of a wonder drug. Br Med J 329(7479):1408CrossRefGoogle Scholar
  91. Liu M, Katerere DR, Gray AI et al (2009) Phytochemical and antifungal studies on Terminalia mollis and Terminalia brachystemma. Fitoterapia 80(6):369–373CrossRefPubMedGoogle Scholar
  92. Lubbe A, Verpoorte R (2011) Cultivation of medicinal and aromatic plants for specialty industrial materials. Ind Crop Prod 34(1):785–801CrossRefGoogle Scholar
  93. Mahboubi M, HeidaryTabar R, Mahdizadeh E (2017) The anti-dermatophyte activity of Zataria multiflora essential oils. J Mycol Med 27(2):232–237CrossRefPubMedGoogle Scholar
  94. Mahmoud DA, Hassanein NM, Youssef KA et al (2011) Antifungal activity of different neem leaf extracts and the nimonol against some important human pathogens. Braz J Microbiol 42(3):1007–1016CrossRefPubMedPubMedCentralGoogle Scholar
  95. Mahmoudabadi AZ, Nasery MG (2009) Anti fungal activity of shallot, Allium ascalonicum Linn.(Liliaceae) in vitro. J Med Plants Res 3(5):450–453Google Scholar
  96. Mahmoudabadi AZ, Dabbagh MA, Fouladi Z (2007) In vitro anti-Candida activity of Zataria multiflora Boiss. J Evid Based Complement Altern Med 4(3):351–353CrossRefGoogle Scholar
  97. Mander L, Liu HW (2010) Comprehensive natural products II: chemistry and biology, vol 1. ElsevierGoogle Scholar
  98. Martins N, Barros L, Henriques M et al (2015a) Activity of phenolic compounds from plant origin against Candida species. Ind Crop Prod 74:648–670CrossRefGoogle Scholar
  99. Martins N, Ferreira IC, Barros L et al (2015b) Plants used in folk medicine: The potential of their hydromethanolic extracts against Candida species. Ind Crop Prod 66:62–67CrossRefGoogle Scholar
  100. Morais-Braga MFB, Carneiro JNP, Machado AJT et al (2016) Psidium guajava L., from ethnobiology to scientific evaluation: Elucidating bioactivity against pathogenic microorganisms. J Ethnopharmacol 24(194):1140–1152CrossRefGoogle Scholar
  101. Morales M, Ros B, Pedreno MA (2000) Plant stilbenes: recent advances in their chemistry and biology. Advances in Plant Physiology 3:39–70Google Scholar
  102. More NV, Kharat AS (2016) Antifungal and Anticancer Potential of Argemone mexicana L. Medicines 3(4):28CrossRefPubMedCentralPubMedGoogle Scholar
  103. Mulinacci N, Santamaria AR, Giaccherini C et al (2008) Anthocyanins and flavan-3-ols from grapes and wines of Vitis vinifera cv. Cesanese d’Affile. Nat Prod Res 22(12):1033–1039CrossRefPubMedGoogle Scholar
  104. Murthy HN, Lee EJ, Paek KY (2014) Production of secondary metabolites from cell and organ cultures: strategies and approaches for biomass improvement and metabolite accumulation. Plant Cell Tissue Organ Cult 118(1):1–16CrossRefGoogle Scholar
  105. Naeem I, Saddiqe Z, Patel A et al (2010) Analysis of flavonoid and antimicrobial activity of extracts of Hypericum perforatum. Asian J Chem 22(5):3596Google Scholar
  106. Naik PM, Al-Khayri JM (2016) Abiotic and biotic elicitors–role in secondary metabolites production through in vitro culture of medicinal plants. In: Shanker AK, Shanker C (eds) Abiotic and biotic stress in plants—recent advances and future perspectives. InTech, Rijeka, pp 247–277. Scholar
  107. Namdeo AG (2007) Plant cell elicitation for production of secondary metabolites: a review. Pharmacog Rev 1(1):69–79Google Scholar
  108. Neelofar K, Shreaz S, Rimple B et al (2011) Curcumin as a promising anticandidal of clinical interest. Can J Microbiol 57(3):204–210CrossRefPubMedGoogle Scholar
  109. Nejad BS, Deokule SS (2009) Anti-dermatophytic activity of Drynaria quercifolia (L.) J. Smith. Jundishapur J Microbiol 2(1):25Google Scholar
  110. Nepovím A, Vaněk T (1998) In vitro propagation of Stevia rebaudina plants using multiple shoot culture. Planta Med 64(08):775–776CrossRefPubMedGoogle Scholar
  111. Nicolaou KC, Kang Q, Wu T et al (2010) Total synthesis and biological evaluation of the resveratrol-derived polyphenol natural products hopeanol and hopeahainol. J Am Chem Soc 132(21):7540–7548CrossRefPubMedGoogle Scholar
  112. Onlom C, Khanthawong S, Waranuch N (2014) In vitro anti-Malassezia activity and potential use in anti-dandruff formulation of Asparagus racemosus. Int J Cosmet Sci 6(1):74–78CrossRefGoogle Scholar
  113. Palamara AT, Nencioni L, Aquilano K et al (2005) Inhibition of influenza A virus replication by resveratrol. J Infect Dis 191(10):1719–1729CrossRefPubMedGoogle Scholar
  114. Pappas PG, Kauffman CA, Andes DR (2015) Clinical practice guideline for the management of candidiasis: 2016 update by the Infectious Diseases Society of America. Clin Infect Dis 62(4):e1–e50PubMedPubMedCentralGoogle Scholar
  115. Parsaeimehr A, Sargsyan E, Javidnia K (2010) A comparative study of the antibacterial, antifungal and antioxidant activity and total content of phenolic compounds of cell cultures and wild plants of three endemic species of Ephedra. Molecules 15(3):1668–1678CrossRefPubMedPubMedCentralGoogle Scholar
  116. Pasqua G, Monacelli B, Silvestrini A (2003) Accumulation of essential oils in relation to root differentiation in Angelica archangelica L. Eur J Histochem 47(1):87CrossRefPubMedGoogle Scholar
  117. Pasqua G, Monacelli B, Valletta A et al (2005) Synthesis and/or accumulation of bioactive molecules in the in vivo and in vitro root. Plant Biosyst 139(2):180–188CrossRefGoogle Scholar
  118. Paulo L, Oleastro M, Gallardo E et al (2001) Antimicrobial properties of resveratrol: a review. In: Science against microbial pathogens: communicating current research and technological advances 2:1225–1235Google Scholar
  119. Petersen M, Simmonds MS (2003) Rosmarinic acid. Phytochemistry 62(2):121–125CrossRefPubMedGoogle Scholar
  120. Pezet R, Pont V (1995) Mode of toxic action of Vitaceae stilbenes on fungal cells. In: Daniel M, Purkayastha RE (eds) Handbook of phytoalexin metabolism and action. Dekker, New York, pp 317–331Google Scholar
  121. Pezet R, Gindro K, Viret O et al (2004) Effects of resveratrol, viniferins and pterostilbene on Plasmopara viticola zoospore mobility and disease development. Vitis-Geilweilerhof 43(3):145–148Google Scholar
  122. Pfaller MA (2012) Antifungal drug resistance: mechanisms, epidemiology, and consequences for treatment. Am J Med 125(1):S3–S13CrossRefPubMedGoogle Scholar
  123. Pinheiro L, Nakamura CV, Dias Filho BP et al (2003) Antibacterial xanthones from Kielmeyera variabilis mart. (Clusiaceae). Mem Inst Oswaldo Cruz 98(4):549–552CrossRefPubMedGoogle Scholar
  124. Piraccini BM, Gianni C (2013) Update on the management of onychomycosis. G Ital Dermatol Venereol 148(6):633–638PubMedGoogle Scholar
  125. Policegoudra RS, Chattopadhyay P, Aradhya SM et al (2014) Inhibitory effect of Tridax procumbens against human skin pathogens. J Herb Med 4(2):83–88CrossRefGoogle Scholar
  126. Pulianmackal AJ, Kareem AV, Durgaprasad K et al (2014) Competence and regulatory interactions during regeneration in plants. Front Plant Sci 5:142CrossRefPubMedPubMedCentralGoogle Scholar
  127. Ranganathan S, Balajee SAM (2000) Anti-Cryptococcus activity of combination of extracts of Cassia alata and Ocimum sanctum. Mycoses 43(7–8):299–301CrossRefPubMedGoogle Scholar
  128. Rangkadilok N, Tongchusak S, Boonhok R et al (2012) In vitro antifungal activities of longan (Dimocarpus longan Lour.) seed extract. Fitoterapia 83(3):545–553CrossRefPubMedGoogle Scholar
  129. Rao SR, Ravishankar GA (2002) Plant cell cultures: chemical factories of secondary metabolites. Biotechnol Adv 20(2):101–153CrossRefPubMedGoogle Scholar
  130. Raut JS, Karuppayil SM (2014) A status review on the medicinal properties of essential oils. Ind Crop Prod 62:250–264CrossRefGoogle Scholar
  131. Reichling J, Weseler A, Saller R (2001) A current review of the antimicrobial activity of Hypericum perforatum L. Pharmacopsychiatry 34(1):116–118CrossRefGoogle Scholar
  132. Rodrigues ER, Nogueira NGP, Zocolo GJ et al (2012) Pothomorphe umbellata: antifungal activity against strains of Trichophyton rubrum. J Mycol Med 22(3):265–269CrossRefPubMedGoogle Scholar
  133. Saddiqe Z, Naeem I, Maimoona A (2010) A review of the antibacterial activity of Hypericum perforatum L. J Ethnopharmacol 131(3):511–521CrossRefPubMedGoogle Scholar
  134. Sakagami Y, Sawabe A, Komemushi S et al (2007) Antibacterial activity of stilbene oligomers against vancomycin-resistant Enterococci (VRE) and methicillin-resistant Staphylococcus aureus (MRSA) and their synergism with antibiotics. Biocontrol Sci 12(1):7–14CrossRefPubMedGoogle Scholar
  135. Santamaria AR, Antonacci D, Caruso G et al (2010) Stilbene production in cell cultures of Vitis vinifera L. cvs Red Globe and Michele Palieri elicited by methyl jasmonate. Natl Prod Res 24(15):1488–1498CrossRefGoogle Scholar
  136. Santamaria AR, Mulinacci N, Valletta A et al (2011) Effects of elicitors on the production of resveratrol and viniferins in cell cultures of Vitis vinifera L. cv Italia. J Agric Food Chem 59(17):9094–9101CrossRefPubMedGoogle Scholar
  137. Santamaria AR, Innocenti M, Mulinacci N et al (2012) Enhancement of viniferin production in Vitis vinifera L. cv. Alphonse Lavallée Cell suspensions by low-energy ultrasound alone and in combination with methyl jasmonate. J Agric Food Chem 60(44):11135–11142CrossRefPubMedGoogle Scholar
  138. Schaller M, Friedrich M, Papini M et al (2016) Topical antifungal-corticosteroid combination therapy for the treatment of superficial mycoses: conclusions of an expert panel meeting. Mycoses 59(6):365–373CrossRefPubMedGoogle Scholar
  139. Schultz TP, Boldin WD, Fisher TH et al (1992) Structure-fungicidal properties of some 3-and 4-hydroxylated stilbenes and bibenzyl analogues. Phytochemistry 31(11):3801–3806CrossRefGoogle Scholar
  140. Schulze K, Schreiber L, Szankowski I (2005) Inhibiting effects of resveratrol and its glucoside piceid against Venturia inaequalis, the causal agent of apple scab. J Agric Food Chem 53(2):356–362CrossRefPubMedGoogle Scholar
  141. Shams-Ghahfarokhi M, Shokoohamiri MR, Amirrajab N et al (2006) In vitro antifungal activities of Allium cepa, Allium sativum and ketoconazole against some pathogenic yeasts and dermatophytes. Fitoterapia 77(4):321–323CrossRefPubMedGoogle Scholar
  142. Shaokat SS, Hameed HA, Mohammad HJ (2017) Anti-fungal activity of Punica granatum I. peels powder and extracts from pathogenic samples. Indian J Pharm Sci 16(2):12–20Google Scholar
  143. Shariff N, Sudarshana MS, Umesha S et al (2006) Antimicrobial activity of Rauvolfia tetraphylla and Physalis minima leaf and callus extracts. Afr J Biotechnol 5(10):946–950Google Scholar
  144. Shin S, Kang CA (2003) Antifungal activity of the essential oil of Agastache rugosa Kuntze and its synergism with ketoconazole. Lett Appl Microbiol 36(2):111–115CrossRefPubMedGoogle Scholar
  145. Simonetti G, Santamaria AR, D’Auria FD et al (2014) Evaluation of anti-Candida activity of Vitis vinifera L. seed extracts obtained from wine and table cultivars. Biomed Res Int 2014:1–11CrossRefGoogle Scholar
  146. Simonetti G, Tocci N, Valletta A et al (2016) In vitro antifungal activity of extracts obtained from Hypericum perforatum adventitious roots cultured in a mist bioreactor against planktonic cells and biofilm of Malassezia furfur. Nat Prod Res 30(5):544–550.
  147. Simonetti G, D’Auria FD, Mulinacci N et al (2017a) Phenolic content and in vitro antifungal activity of unripe grape extracts from agro-industrial wastes. Nat Prod Res:1–5.
  148. Simonetti G, D’auria FD, Mulinacci N (2017b) Anti-dermatophyte and anti-Malassezia activity of extracts rich in polymeric flavan-3-ols obtained from Vitis vinifera seeds. Phytother Res 31(1):124–131CrossRefPubMedGoogle Scholar
  149. Snyder SA, Gollner A, Chiriac MI (2011) Regioselective reactions for programmable resveratrol oligomer synthesis. Nature 474(7352):461–466CrossRefPubMedPubMedCentralGoogle Scholar
  150. Sobrinho ACN, de Souza EB, Rocha MFG et al (2016) Chemical composition, antioxidant, antifungal and hemolytic activities of essential oil from Baccharis trinervis (Lam.) Pers. (Asteraceae). Ind Crop Prod 84:108–115CrossRefGoogle Scholar
  151. Sökmen M, Serkedjieva J, Daferera D et al (2004) In vitro antioxidant, antimicrobial, and antiviral activities of the essential oil and various extracts from herbal parts and callus cultures of Origanum acutidens. J Agric Food Chem 52(11):3309–3312CrossRefPubMedGoogle Scholar
  152. Soliman S, Alnajdy D, El-Keblawy AA et al (2017) Plants’ natural products as alternative promising anti-Candida drugs. Pharmacogn Rev 11(22):104CrossRefPubMedPubMedCentralGoogle Scholar
  153. Srivastava S, Srivastava AK (2007) Hairy root culture for mass-production of high-value secondary metabolites. Crit Rev Biotechnol 27(1):29–43CrossRefPubMedGoogle Scholar
  154. Suksamrarn S, Suwannapoch N, Phakhodee W et al (2003) Antimycobacterial activity of prenylated xanthones from the fruits of Garcinia mangostana. Chem Pharm Bull 51(7):857–859CrossRefPubMedGoogle Scholar
  155. Süntar I, Oyardı O, Akkol EK (2016) Antimicrobial effect of the extracts from Hypericum perforatum against oral bacteria and biofilm formation. Pharm Biol 54(6):1065–1070CrossRefPubMedGoogle Scholar
  156. Swarup V, Ghosh J, Ghosh S et al (2007) Antiviral and anti-inflammatory effects of rosmarinic acid in an experimental murine model of Japanese encephalitis. Antimicrob Agents Chemother 51(9):3367–3370CrossRefPubMedPubMedCentralGoogle Scholar
  157. Tassoni A, Fornalè S, Franceschetti M et al (2005) Jasmonates and Na-orthovanadate promote resveratrol production in Vitis vinifera cv. Barbera cell cultures. New Phytol 166(3):895–905CrossRefPubMedGoogle Scholar
  158. Taylor EJ, Yu Y, Champer J et al (2014) Resveratrol demonstrates antimicrobial effects against Propionibacterium acnes in vitro. Dermatol Ther 4(2):249–257CrossRefGoogle Scholar
  159. Teodoro GR, Ellepola K, Seneviratne CJ et al (2015) Potential use of phenolic acids as anti-Candida agents: a review. Front Microbiol 6(1420):2015Google Scholar
  160. Tocci N, Ferrari F, Santamaria AR et al (2010) Chitosan enhances xanthone production in Hypericum perforatum subsp. angustifolium cell cultures. Nat Prod Res 24(3):286–293CrossRefPubMedGoogle Scholar
  161. Tocci N, Simonetti G, D’Auria FD et al (2011) Root cultures of Hypericum perforatum subsp. angustifolium elicited with chitosan and production of xanthone-rich extracts with antifungal activity. Appl Microbiol Biotechnol 91(4):977–987CrossRefPubMedGoogle Scholar
  162. Tocci N, D’Auria FD, Simonetti G et al (2012) A three-step culture system to increase the xanthone production and antifungal activity of Hypericum perforatum subsp. angustifolium in vitro roots. Plant Physiol Biochem 57:54–58CrossRefPubMedGoogle Scholar
  163. Tocci N, D’Auria FD, Simonetti G et al (2013a) Bioassay-guided fractionation of extracts from Hypericum perforatum in vitro roots treated with carboxymethylchitosans and determination of antifungal activity against human fungal pathogens. Plant Physiol Biochem 70:342–347CrossRefPubMedGoogle Scholar
  164. Tocci N, Simonetti G, D’Auria FD et al (2013b) Chemical composition and antifungal activity of Hypericum perforatum subsp. angustifolium roots from wild plants and plants grown under controlled conditions. Plant Biosyst 147(3):557–562CrossRefGoogle Scholar
  165. Tocci N, Gaid M, Kaftan F et al (2017) Exodermis and endodermis are the sites of xanthone biosynthesis in Hypericum perforatum roots. New Phytol 217(3):1099–1112CrossRefPubMedGoogle Scholar
  166. Tolba H, Moghrani H, Benelmouffok A et al (2015) Essential oil of Algerian Eucalyptus citriodora: Chemical composition, antifungal activity. J Mycol Med 25(4):e128–e133CrossRefPubMedGoogle Scholar
  167. Tusevski O, Simic SG (2013) Phenolic acids and flavonoids in Hypericum perforatum L. hairy roots. Int J Pharm Bio Sci 4(3):737–748Google Scholar
  168. Tusevski O, Stanoeva J, Stefova M et al (2013a) Hairy roots of Hypericum perforatum L.: a promising system for xanthone production. Open Life Sci 8(10):1010–1022Google Scholar
  169. Tusevski O, Petreska Stanoeva J, Stefova M et al (2013b) Phenolic profile of dark-grown and photoperiod-exposed Hypericum perforatum L. hairy root cultures. Sci World J 2013:1CrossRefGoogle Scholar
  170. Valente J, Zuzarte M, Gonçalves MJ et al (2013) Antifungal, antioxidant and anti-inflammatory activities of Oenanthe crocata L. essential oil. Food Chem Toxicol 62:349–354CrossRefPubMedGoogle Scholar
  171. Valletta A, Trainotti L, Santamaria AR et al (2010) Cell-specific expression of tryptophan decarboxylase and 10-hydroxygeraniol oxidoreductase, key genes involved in camptothecin biosynthesis in Camptotheca acuminata Decne (Nyssaceae). BMC Plant Biol 10(1):69CrossRefPubMedPubMedCentralGoogle Scholar
  172. Valletta A, De Angelis G, Badiali C et al (2016) Acetic acid acts as an elicitor exerting a chitosan-like effect on xanthone biosynthesis in Hypericum perforatum L. root cultures. Plant Cell Rep 35(5):1009–1020CrossRefPubMedGoogle Scholar
  173. Vasconcelos LCS, Sampaio MCC, Sampaio FC et al (2003) Use of Punica granatum as an antifungal agent against candidosis associated with denture stomatitis. Mycoses 46:192–196CrossRefPubMedGoogle Scholar
  174. Velegraki A, Cafarchia C, Gaitanis G (2015) Malassezia infections in humans and animals: pathophysiology, detection, and treatment. PLoS Pathog 11(1):e1004523CrossRefPubMedPubMedCentralGoogle Scholar
  175. Vermes A, Guchelaar HJ, Dankert J (2000) Flucytosine: a review of its pharmacology, clinical indications, pharmacokinetics, toxicity and drug interactions. J Antimicrob Chemother 46(2):171–179CrossRefPubMedGoogle Scholar
  176. Verpoorte R, Contin A, Memelink J (2002) Biotechnology for the production of plant secondary metabolites. Phytochem Rev 1(1):13–25CrossRefGoogle Scholar
  177. Verweij PE, Snelders E, Kema GH et al (2009) Azole resistance in Aspergillus fumigatus: a side-effect of environmental fungicide use? Lancet Infect Dis 9(12):789–795CrossRefPubMedGoogle Scholar
  178. Vinterhalter B, Ninković S, Cingel A et al (2006) Shoot and root culture of Hypericum perforatum L. transformed with Agrobacterium rhizogenes A4M70GUS. Biol Plant 50(4):767–770CrossRefGoogle Scholar
  179. Vorzheva II, Chernyak AB (2004) Allergy to dermatophyte fungies. Allergology 4:42–47Google Scholar
  180. Waffo-Teguo P, Lee D, Cuendet M (2001) Two new stilbene dimer glucosides from grape (Vitis vinifera) cell cultures. J Nat Prod 64(1):136–138CrossRefPubMedGoogle Scholar
  181. White TC, Findley K, Dawson TL et al (2014) Fungi on the skin: dermatophytes and malassezia. Cold Spring Harb Perspect Med 4:a019802CrossRefPubMedPubMedCentralGoogle Scholar
  182. Wilson AS, Roberts SC (2012) Recent advances towards development and commercialization of plant cell culture processes for the synthesis of biomolecules. Plant Biotechnol J 10(3):249–268CrossRefPubMedGoogle Scholar
  183. Xi HF, Ma L, Wang LN et al (2015) Differential response of the biosynthesis of resveratrols and flavonoids to UV-C irradiation in grape leaves. N Z J Crop Hortic Sci 43(3):163–172CrossRefGoogle Scholar
  184. Zang N, Deng XX et al (2011) Resveratrol-mediated gamma interferon reduction prevents airway inflammation and airway hyperresponsiveness in respiratory syncytial virus-infected immunocompromised mice. J Virol 85:13061–13068CrossRefPubMedPubMedCentralGoogle Scholar
  185. Zavrel M, White TC (2015) Medically important fungi respond to azole drugs: an update. Future Microbiol 10:1355–1373CrossRefPubMedGoogle Scholar
  186. Zorofchian Moghadamtousi S, Abdul Kadir H, Hassandarvish P et al (2014) A review on antibacterial, antiviral, and antifungal activity of curcumin. Biomed Res Int 2014:1–12CrossRefGoogle Scholar
  187. Zubrická D, Mišianiková A, Henzelyová J et al (2015) Xanthones from roots, hairy roots and cell suspension cultures of selected Hypericum species and their antifungal activity against Candida albicans. Plant Cell Rep 34(11):1953–1962CrossRefPubMedGoogle Scholar
  188. Zuzarte M, Gonçalves MJ, Cavaleiro C et al (2013) Antifungal and anti-inflammatory potential of Lavandula stoechas and Thymus herba-barona essential oils. Ind Crop Prod 44:97–103CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Giovanna Simonetti
    • 1
    Email author
  • Alessio Valletta
    • 2
  • Olga Kolesova
    • 1
  • Gabriella Pasqua
    • 2
  1. 1.Department of Public Health and Infectious Diseases“Sapienza” University of RomeRomeItaly
  2. 2.Department of Environmental Biology“Sapienza” University of RomeRomeItaly

Personalised recommendations