Skip to main content

Modelling of Isolated Systems

  • Chapter
  • First Online:
Wind Power Based Isolated Energy Systems

Abstract

A detailed overview of the necessity and classification of off-grid power systems along with its component subsystems is presented in this chapter. Different interconnection schemes and their relative merits are then discussed. The fundamental issues underlying the design of an isolated power system are the match between the load and resource and the size of the storage system. Parameters affecting the sizing of the storage and the entire isolated system have been discoursed. In order to understand the trade-offs in the design, it is necessary to formulate the problem in terms of a mathematical model. The mathematical model of the wind turbine consisting of the blades, transmission and electrical generator, the model of the photovoltaic system, the inverter and battery bank are discussed. Models of the photovoltaic array and diesel generator system are also presented. These subsystem models are linked together to form the entire system model through an energy balance on the system. Through time series simulation of the system energy balance along with different design constraints, a set of feasible design options, known as the design space, can be identified. Such a plot of various feasible design options enables identification of the limits of wind turbine rated power and the battery size for a given demand and resource characteristics within which a feasible design is guaranteed. Contemporary software tools used accomplishing similar tasks are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abbott, I. H., & Von Doenhoeff, A. E. (1959). Theory of wing sections including a summary of airfoil data. New York: Dover Publications Inc.

    Google Scholar 

  • Akker, J., & Tapka, J. (2003). Solar PV on top of the world. Renewable Energy World, 6(1), 54–63.

    Google Scholar 

  • Anderson, M. B., Milborrow, D. J., & Ross, J. N. (1982). Performance and wake measurement on a 3 m diameter horizontal axis wind turbine: Comparison of theory, wind tunnel and field test data. In Fourth international symposium on wind energy systems (pp. 113–136). Stockholm, BHRA.

    Google Scholar 

  • Arun, P., Banerjee, R., & Bandyopadhyay, S. (2008). Optimum sizing of battery integrated diesel generator for remote electrification through design space approach. Energy, 33(7), 1155–1168.

    Article  Google Scholar 

  • Bandyopadhyay, S., Varghese, J., & Bansal, V. (2010). Targeting for cogeneration potential through total site integration. Applied Thermal Engineering, 30(1), 6–14.

    Article  Google Scholar 

  • Bernal-Agustín, J. L., & Dufo-López, R. (2009). Simulation and optimization of stand-alone hybrid renewable energy systems. Renewable and Sustainable Energy Reviews, 13(8), 2111–2118.

    Article  Google Scholar 

  • Burlig, F., & Preonas, L. (2016). Out of darkness and into the light? Development effects of rural electrification in India, Energy Institute at Haas working paper 268.

    Google Scholar 

  • Burton, T., Sharpe, D., Jenkins, N., & Bossanyi, E. (2001). Wind energy handbook. Chichester: Wiley.

    Book  Google Scholar 

  • De Souza Ribeiro, L. A., Saavedra, O. R., De Lima, S. L., & De Matos, J. G. (2011). Isolated micro-grids with renewable hybrid generation: The case of Lençóis Island. IEEE Transactions on Sustainable Energy, 2(1), 1–11.

    Article  Google Scholar 

  • Dunnett, S., Khennas, S., & Piggott, H. (2001). Small wind systems for battery charging – A guide for development workers. Department for International Development.

    Google Scholar 

  • El-Halwagi, M. M. (2006). Process integration. Amsterdam: Elsevier.

    Google Scholar 

  • Ganesan, K., Jain, A., & Urpelainen, J. (2017). Rural electrification in India: Focus on service quality. Available on http://www.ideasforindia.in/article.aspx?article_id=1757#sthash.aeInlDYe.dpuf. Last accessed on 3 May 2017.

  • Hansen, M. L. (2000). Aerodynamics of wind turbines- rotors, loads and structure. London: James and James Publications.

    Google Scholar 

  • iHOGA (Improved Hybrid Optimization by Genetic Algorithms). Available from: https://ihoga.unizar.es/en/. Last accessed 2 Oct 2018.

  • HOMER (The Hybrid Optimization Model for Electric Renewables). Available from http://www.nrel/gov/HOMER

  • Hunter, R., & Elliot, G. (Eds.). (1994). Wind-diesel systems: A guide to the technology and its implementation. New York: Cambridge University Press.

    Google Scholar 

  • HYBRID2. (2017). Available from http://www.ceere.org/rerl/projects/software/hybrid2/

  • Info of Fixed Cost Estimates. (2017). Annexure-II. Available on https://www.tssouthernpower.com/ShowProperty/CP_CM_REPO/Pages/TS%20-%20iPASS/InfoFixedCostEstimates. Last accessed on 3 May 2017.

  • Jain, A., Ray, S., Ganesan, K., Aklin, M., Cheng, C. Y., & Urpelainen, J. (2015). Access to clean cooking energy and electricity: Survey of six states. New Delhi: Council on Energy, Environment and Water.

    Google Scholar 

  • Johnson, G. L. (1985). Wind energy systems. New York: Prentice Hall.

    Google Scholar 

  • Justus, C. G. (1978). Wind energy statistics for large arrays of wind turbines (New England and central US regions). Solar Energy, 20(5), 379–386.

    Article  Google Scholar 

  • Kempener, R., Lavagned’Ortigue, O., Saygin, D., Skeer, J., Vinci, S., & Gielen, D. (2015). Off-grid renewable energy systems: Status and methodological issues, Working paper, International Renewable Energy Agency (IRENA), NewYork, USA.

    Google Scholar 

  • Lambert, T., Gilman, P., & Lilienthal, P. (2005, December). Micro-power system modelling with HOMER. In F. A. Farret & M. G. Simões (Eds.), Integration of alternative sources of energy. ISBN 0471712329 John Wiley & Sons Inc., Hoboken, New Jersey, USA.

    Google Scholar 

  • Linhoff, B., Townsend, D. W., Boland, D., Hewitt, G. F., Thomas, B. E. A., Guy, A. R., & Marsland, R. H. (1982). User guide on process integration for the efficient use of energy. Rugby: The Institution of Chemical Engineers.

    Google Scholar 

  • Manwell, J. F., & McGowan, J. G. A. (1994). Combined probabilistic/ time series model for wind-diesel system simulation. Solar Energy, 53(6), 481–490.

    Article  Google Scholar 

  • Mattei, M., Notton, G., Cristofari, C., Muselli, M., & Poggi, P. (2006). Calculation of the polycrystalline PV module temperature using a simple method of energy balance. Renewable Energy, 31(4), 553–567.

    Article  Google Scholar 

  • McGowan, J. G., Manwell, J. F., Avelar, C., & Warner, C. L. (1996). Hybrid wind/PV/diesel hybrid power systems modelling and South American applications. Renewable Energy, 9(1–4), 836–847.

    Article  Google Scholar 

  • Moharil, R. M., & Kulkarni, P. S. (2009). A case study of solar photovoltaic power system at Sagardeep Island, India. Renewable and Sustainable Energy Reviews, 13(3), 673–681.

    Article  Google Scholar 

  • Nehrir, H., Wang, C., Strunz, K., Aki, H., Ramakumar, R., Bing, J., Miao, Z., & Salameh, Z. (2011). A review of hybrid renewable/alternative energy systems for electric power generation: Configurations, control, and applications. IEE Transactions on Sustainable Energy, 2(4), 392–403.

    Article  Google Scholar 

  • Nouni, M. R., Mullick, S. C., & Kandpal, T. C. (2008). Providing electricity access to remote areas in India – An approach for identifying potential areas for decentralized electricity supply. Renewable and Sustainable Energy Reviews, 12(5), 1187–1220.

    Article  Google Scholar 

  • RETScreen. (2017). International clean energy project analysis software. Varennes: Varennes CANMET Energy Technology Centre. http://www.retscreen.net/ang/t_software.php

  • Roy, A., Kedare, S. B., & Bandyopadhyay, S. (2009). Application of design space methodology for optimum sizing of wind–battery systems. Applied Energy, 86(12), 2690–2703.

    Article  Google Scholar 

  • Ruddell, A. J., Dutton, A. G., Wenzl, H., Ropeter, C., Sauer, D. U., Merten, J., Orfanogiannis, C., Twidell, J. W., & Vezin, P. (2002). Analysis of battery current microcycles in autonomous renewable energy systems. Journal of Power Sources, 112(2), 531–546.

    Article  Google Scholar 

  • Rydh, C., & Sanden, B. (2005). Energy analysis of batteries in photovoltaic systems. Part I: Performance and energy requirements. Energy Conversion and Management, 46(11–12), 1957–1979.

    Article  Google Scholar 

  • Sahu, G. C., & Bandyopadhyay, S. (2011, December). Holistic approach for resource conservation. Chemical Engineering World, pp. 104–108 .

    Google Scholar 

  • Schnitzer, D. (2014). Micro-grids for electrification: A critical review of best practices based on seven case studies. Washington, DC: UN Foundation. http://energyaccess.org/images/content/files/Micro-gridsReportFINAL_low.pdf

  • Simões, M. G., & Farret, F. A. (2004). Renewable energy systems design and analysis with induction generators. Boca Raton: CRC Press.

    Google Scholar 

  • Singal, S. K., Varun, & Singh, R. P. (2007). Rural electrification of a remote island by renewable energy sources. Renewable Energy, 32(15), 2491–2501.

    Article  Google Scholar 

  • Singhvi, A., & Shenoy, U. V. (2002). Aggregate planning in supply chains by pinch analysis. Chemical Engineering Research Design, 80(6), 597–605.

    Article  Google Scholar 

  • Sinha, S., & Chandel, S. S. (2014). Review of software tools for hybrid renewable energy systems. Renewable and Sustainable Energy Reviews, 32, 192–205.

    Article  Google Scholar 

  • Skoplaki, E., & Palyvos, J. A. (2009). On the temperature dependence of photovoltaic module electrical performance: A review of efficiency/power correlations. Solar Energy, 83(5), 614–624.

    Article  Google Scholar 

  • Sreeraj, E. S., Chatterjee, K., & Bandyopadhyay, S. (2010). Design of isolated renewable hybrid power systems. Solar Energy, 84(7), 1124–1136.

    Article  Google Scholar 

  • TATA Power Solar. (2017). TP 250 series datasheet.

    Google Scholar 

  • Wang, Y. P., & Smith, R. (1994). Waste water minimization. Chemical Engineering Science, 49(7), 981–1006.

    Article  Google Scholar 

  • Willis, H. L., & Scott, W. G. (2000). Distributed power generation: Planning and evaluation. New York: Marcel Dekker Inc.

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Roy, A., Bandyopadhyay, S. (2019). Modelling of Isolated Systems. In: Wind Power Based Isolated Energy Systems. Springer, Cham. https://doi.org/10.1007/978-3-030-00542-9_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-00542-9_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-00541-2

  • Online ISBN: 978-3-030-00542-9

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics