Skip to main content

On Mimicking the Effects of the Reality Gap with Simulation-Only Experiments

  • Conference paper
  • First Online:
Swarm Intelligence (ANTS 2018)

Abstract

One issue in the automatic design of control software for robot swarms is the so-called reality gap—the difference between reality and the simulation models used in the automatic design process. It is commonly understood that the reality gap manifests itself as a drop in performance when control software developed in simulation is used to control physical robots. Yet, often disregarded is the relative nature of this performance drop: the reality gap does not affect equally all instances of control software. Indeed, one might observe a rank inversion: control software A might perform better than control software B in simulation, but perform worse on robots. The possibility of rank inversion undermines any performance comparison made in simulation. It would thus seem the only way to assess control software is in robot experiments, which are costly and time consuming. We argue it is unnecessary to assume reality is more complex than simulation models for the effects of the reality gap to occur. Indeed, we show that performance drop and rank inversion can occur if one automatically designs control software in simulation using a model and then assesses it in simulation on another model—what we call a pseudo-reality. Our results suggest that an appropriately conceived pseudo-reality could be used to test automatically-generated control software for performance drop and rank inversion, without performing robot experiments.

All experiments were performed by AL. The paper was drafted by AL and revised by the two authors. The research was directed by MB.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Confidence intervals are computed based on the statistic of the paired Wilcoxon signed rank test. The normal approximation is adopted as the sample size is larger than 50. The implementation used is the one of R’s stats package [37].

References

  1. Beni, G.: From swarm intelligence to swarm robotics. In: Şahin, E., Spears, W.M. (eds.) SR 2004. LNCS, vol. 3342, pp. 1–9. Springer, Heidelberg (2005). https://doi.org/10.1007/978-3-540-30552-1_1

    Chapter  Google Scholar 

  2. Berman, S., Kumar, V., Nagpal, R.: Design of control policies for spatially inhomogeneous robot swarms with application to commercial pollination. In: Zexiang, L. (ed.) IEEE International Conference Robotics and Automation, ICRA, pp. 378–385. IEEE Press, Piscataway NJ (2011)

    Google Scholar 

  3. Birattari, M.: Tuning Metaheuristics: A Machine Learning Perspective. Springer, Berlin Heidelberg, Germany (2009). https://doi.org/10.1007/978-3-642-00483-4

    Book  MATH  Google Scholar 

  4. Birattari, M., Delhaisse, B., Francesca, G., Kerdoncuff, Y.: Observing the effects of overdesign in the automatic design of control software for robot swarms. In: Dorigo, M., Birattari, M., Li, X., López-Ibáñez, M., Ohkura, K., Pinciroli, C., Stützle, T. (eds.) ANTS 2016. LNCS, vol. 9882, pp. 149–160. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-44427-7_13

    Chapter  Google Scholar 

  5. Birattari, M., Stützle, T., Paquete, L., Varrentrapp, K.: A racing algorithm for configuring metaheuristics. In: Langdon, W., et al. (eds.) Proceedings of the Genetic and Evolutionary Computation Conference, GECCO, pp. 11–18. Morgan Kaufmann, San Francisco (2002)

    Google Scholar 

  6. Bongard, J., Lipson, H.: Once more unto the breach: co-evolving a robot and its simulator. In: Pollack, J., et al. (eds.) Artificial Life IX: Proceedings of the Conference on the Simulation and Synthesis of Living Systems, pp. 57–62 (2004)

    Google Scholar 

  7. Bozhinoski, D., Birattari, M.: Designing control software for robot swarms: software engineering for the development of automatic design methods. In: ACM/IEEE 1st International Workshop on Robotics Software Engineering, RoSE, pp. 33–35. ACM, New York (2018)

    Google Scholar 

  8. Brambilla, M., Brutschy, A., Dorigo, M., Birattari, M.: Property-driven design for swarm robotics: a design method based on prescriptive modeling and model checking. ACM Trans. Auton. Adapt. Syst. 9(4), 17.1–17.28 (2015)

    Google Scholar 

  9. Bredeche, N., Montanier, J.M., Liu, W., Winfield, A.F.: Environment-driven distributed evolutionary adaptation in a population of autonomous robotic agents. Math. Comput. Model. Dyn. Syst. 18(1), 101–129 (2012)

    Article  Google Scholar 

  10. Brooks, R.: Artificial life and real robots. In: Varela, F.J., Bourgine, P. (eds.) Towards a Practice of Autonomous Systems. In: Proceedings of the First European Conference on Artificial Life, pp. 3–10. MIT Press, Cambridge (1992)

    Google Scholar 

  11. Chambers, J., Cleveland, W., Kleiner, B., Tukey, P.: Graphical Methods For Data Analysis. Wadsworth, Belmont (1983)

    MATH  Google Scholar 

  12. Di Mario, E., Martinoli, A.: Distributed particle swarm optimization for limited-time adaptation with real robots. Robotica 32(02), 193–208 (2014)

    Article  Google Scholar 

  13. Dorigo, M., Birattari, M., Brambilla, M.: Swarm robotics. Scholarpedia 9(1), 1463 (2014)

    Article  Google Scholar 

  14. Floreano, D., Urzelai, J.: Evolution of plastic control networks. Auton. Robot. 11(3), 311–317 (2001)

    Article  Google Scholar 

  15. Floreano, D., Husbands, P., Nolfi, S.: Evolutionary robotics. In: Siciliano, B., Khatib, O. (eds.) Springer Handbook of Robotics. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-30301-5_62

    Chapter  Google Scholar 

  16. Floreano, D., Mondada, F.: Evolution of plastic neurocontrollers for situated agents. In: Maes, P., et al. (eds.) From animals to animats 4: Proceedings of the International Conference on Simulation of Adaptive Behavior, ETH Zurich (1996)

    Google Scholar 

  17. Francesca, G., Birattari, M.: Automatic design of robot swarms: achievements and challenges. Front. Robot. AI 3(29), 1–9 (2016)

    Google Scholar 

  18. Francesca, G., et al.: AutoMoDe-Chocolate: automatic design of control software for robot swarms. Swarm Intell. 9(2/3), 125–152 (2015)

    Article  Google Scholar 

  19. Francesca, G., Brambilla, M., Brutschy, A., Trianni, V., Birattari, M.: AutoMoDe: a novel approach to the automatic design of control software for robot swarms. Swarm Intell. 8(2), 89–112 (2014)

    Article  Google Scholar 

  20. Garattoni, L., Francesca, G., Brutschy, A., Pinciroli, C., Birattari, M.: Software infrastructure for e-puck (and TAM). Technical report TR/IRIDIA/2015-004, IRIDIA, Université libre de Bruxelles, Belgium (2015)

    Google Scholar 

  21. Gutiérrez, Á., Campo, A., Dorigo, M., Donate, J., Monasterio-Huelin, F., Magdalena, L.: Open E-puck range and bearing miniaturized board for local communication in swarm robotics. In: Kosuge, K. (ed.) IEEE Int. Conf. Robot. Autom. ICRA, pp. 3111–3116. IEEE Press, Piscataway NJ (2009)

    Google Scholar 

  22. Haasdijk, E., Bredeche, N., Eiben, A.: Combining environment-driven adaptation and task-driven optimisation in evolutionary robotics. PloS One 9(6), e98466 (2014)

    Article  Google Scholar 

  23. Hamann, H., Wörn, H.: A framework of space-time continuous models for algorithm design in swarm robotics. Swarm Intell. 2(2–4), 209–239 (2008)

    Article  Google Scholar 

  24. Hasselmann, K., Ligot, A., Francesca, G., Birattari, M.: Reference models for AutoMoDe. Technical report TR/IRIDIA/2018-002, IRIDIA, Université libre de Bruxelles, Belgium (2018)

    Google Scholar 

  25. Jakobi, N.: Evolutionary robotics and the radical envelope-of-noise hypothesis. Adapt. Behav. 6(2), 325–368 (1997)

    Article  Google Scholar 

  26. Jakobi, N.: Minimal simulations for evolutionary robotics. Ph.D. thesis, University of Sussex, Falmer, UK (1998)

    Google Scholar 

  27. Jakobi, N., Husbands, P., Harvey, I.: Noise and the reality gap: the use of simulation in evolutionary robotics. In: Morán, F., Moreno, A., Merelo, J.J., Chacón, P. (eds.) ECAL 1995. LNCS, vol. 929, pp. 704–720. Springer, Heidelberg (1995). https://doi.org/10.1007/3-540-59496-5_337

    Chapter  Google Scholar 

  28. König, L., Mostaghim, S.: Decentralized evolution of robotic behavior using finite state machines. Int. J. Intell. Comput. Cybern. 2(4), 695–723 (2009)

    Article  MathSciNet  Google Scholar 

  29. Koos, S., Mouret, J.B., Doncieux, S.: The transferability approach: crossing the reality gap in evolutionary robotics. IEEE Trans. Evol. Comput. 17(1), 122–145 (2013)

    Article  Google Scholar 

  30. Lee, J.B., Arkin, R.C.: Adaptive multi-robot behavior via learning momentum. In: George Lee, C.S. (ed.) IEEE/RSJ International Conference on Intelligent Robots - IROS, pp. 2029–2036. IEEE Press, Piscataway (2003)

    Google Scholar 

  31. Ligot, A., Hasselmann, K., Delhaisse, B., Garattoni, L., Francesca, G., Birattari, M.: AutoMoDe, NEAT, and EvoStick: implementations for the E-puck robot in ARGoS3. Technical report TR/IRIDIA/2017-002, IRIDIA, Université libre de Bruxelles, Belgium (2017)

    Google Scholar 

  32. López-Ibáñez, M., Dubois-Lacoste, J., Pérez Cáceres, L., Birattari, M., Stützle, T.: The irace package: iterated racing for automatic algorithm configuration. Oper. Res. Perspect. 3, 43–58 (2016)

    Article  MathSciNet  Google Scholar 

  33. Miglino, O., Lund, H., Nolfi, S.: Evolving mobile robots in simulated and real environments. Artif. Life 2(4), 417–434 (1995)

    Article  Google Scholar 

  34. Mondada, F., et al.: The E-puck, a robot designed for education in engineering. In: Gonçalves, P., Torres, P., Alves, C. (eds.) Proceedings of the 9th Conference on Autonomous Robot Systems and Competitions, pp. 59–65. Instituto Politécnico de Castelo Branco (2009)

    Google Scholar 

  35. Nolfi, S., Floreano, D., Miglino, G., Mondada, F.: How to evolve autonomous robots: different approaches in evolutionary robotics. In: Brooks, R.A., Maes, P. (eds.) Artificial Life IV: Proceedings of the Workshop on the Synthesis and Simulation of Living Systems, pp. 190–197. MIT Press, Cambridge (1994)

    Google Scholar 

  36. Pinciroli, C., et al.: ARGoS: a modular, parallel, multi-engine simulator for multi-robot systems. Swarm Intell. 6(4), 271–295 (2012)

    Article  Google Scholar 

  37. R Development Core Team: R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria (2008). http://www.R-project.org

  38. Reina, A., Valentini, G., Fernández-Oto, C., Dorigo, M., Trianni, V.: A design pattern for decentralised decision making. PLoS One 10(10), e0140950 (2015)

    Article  Google Scholar 

  39. Şahin, E.: Swarm robotics: from sources of inspiration to domains of application. In: Şahin, E., Spears, W.M. (eds.) SR 2004. LNCS, vol. 3342, pp. 10–20. Springer, Heidelberg (2005). https://doi.org/10.1007/978-3-540-30552-1_2

    Chapter  Google Scholar 

  40. Silva, F., Duarte, M., Correia, L., Oliveira, S., Christensen, A.: Open issues in evolutionary robotics. Evol. Comput. 24(2), 205–236 (2016)

    Article  Google Scholar 

  41. Silva, F., Urbano, P., Correia, L., Christensen, A.L.: odNEAT: an algorithm for decentralised online evolution of robotic controllers. Evol. Comput. 23(3), 421–449 (2015)

    Article  Google Scholar 

  42. Urzelai, J., Floreano, D.: Evolutionary robotics: coping with environmental change. In: Whitney, L.D., et al. (eds.) Proceedings of Conference on the Genetic and Evolutionary Computation Conference, GECCO, pp. 941–948. Morgan Kaufmann, San Francisco (2000)

    Google Scholar 

  43. Watson, R., Ficici, S., Pollack, J.: Embodied evolution: distributing an evolutionary algorithm in a population of robots. Robot. Auton. Syst. 39(1), 1–18 (2002)

    Article  Google Scholar 

  44. Zagal, J.C., Ruiz-Del-Solar, J.: Combining simulation and reality in evolutionary robotics. J. Intell. Robot. Syst. 50(1), 19–39 (2007)

    Article  Google Scholar 

Download references

Acknowledgements

The project has received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement No 681872). Mauro Birattari acknowledges support from the Belgian Fonds de la Recherche Scientifique – FNRS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mauro Birattari .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ligot, A., Birattari, M. (2018). On Mimicking the Effects of the Reality Gap with Simulation-Only Experiments. In: Dorigo, M., Birattari, M., Blum, C., Christensen, A., Reina, A., Trianni, V. (eds) Swarm Intelligence. ANTS 2018. Lecture Notes in Computer Science(), vol 11172. Springer, Cham. https://doi.org/10.1007/978-3-030-00533-7_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-00533-7_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-00532-0

  • Online ISBN: 978-3-030-00533-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics