Skip to main content

The Role of Largest Connected Components in Collective Motion

  • Conference paper
  • First Online:
Book cover Swarm Intelligence (ANTS 2018)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 11172))

Included in the following conference series:

Abstract

Systems showing collective motion are partially described by a distribution of positions and a distribution of velocities. While models of collective motion often focus on system features governed mostly by velocity distributions, the model presented in this paper also incorporates features influenced by positional distributions. A significant feature, the size of the largest connected component of the graph induced by the particle positions and their perception range, is identified using a 1-d self-propelled particle model (SPP). Based on largest connected components, properties of the system dynamics are found that are time-invariant. A simplified macroscopic model can be defined based on this time-invariance, which may allow for simple, concise, and precise predictions of systems showing collective motion.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://doi.org/10.5281/zenodo.1293372.

References

  1. Chazelle, B.: An algorithmic approach to collective behavior. J. Stat. Phys. 158(3), 514–548 (2015)

    Article  MathSciNet  Google Scholar 

  2. Czirók, A., Barabási, A.L., Vicsek, T.: Collective motion of self-propelled particles: kinetic phase transition in one dimension. Phys. Rev. Lett. 82(1), 209–212 (1999)

    Article  Google Scholar 

  3. Czirók, A., Vicsek, T.: Collective behavior of interacting self-propelled particles. Physica A 281, 17–29 (2000)

    Article  Google Scholar 

  4. Degond, P., Yang, T.: Diffusion in a continuum model of self-propelled particles with alignment interaction. Math. Models Methods Appl. Sci. 20, 1459–1490 (2010)

    Article  MathSciNet  Google Scholar 

  5. Hamann, H.: Space-Time Continuous Models of Swarm Robotics Systems: Supporting Global-to-Local Programming. Springer, Berlin (2010). https://doi.org/10.1007/978-3-642-13377-0

    Book  Google Scholar 

  6. Hamann, H.: Towards swarm calculus: universal properties of swarm performance and collective decisions. In: Dorigo, M., Birattari, M., Blum, C., Christensen, A.L., Engelbrecht, A.P., Groß, R., Stützle, T. (eds.) ANTS 2012. LNCS, vol. 7461, pp. 168–179. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-32650-9_15

    Chapter  Google Scholar 

  7. Hamann, H.: Towards swarm calculus: urn models of collective decisions and universal properties of swarm performance. Swarm Intell. 7(2–3), 145–172 (2013). https://doi.org/10.1007/s11721-013-0080-0

    Article  Google Scholar 

  8. Hamann, H.: Swarm Robotics: A Formal Approach. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-74528-2

    Book  Google Scholar 

  9. Hamann, H., Meyer, B., Schmickl, T., Crailsheim, K.: A model of symmetry breaking in collective decision-making. In: Doncieux, S., Girard, B., Guillot, A., Hallam, J., Meyer, J.-A., Mouret, J.-B. (eds.) SAB 2010. LNCS (LNAI), vol. 6226, pp. 639–648. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15193-4_60

    Chapter  Google Scholar 

  10. Hamann, H., Valentini, G.: Swarm in a fly bottle: feedback-based analysis of self-organizing temporary lock-ins. In: Dorigo, M., Birattari, M., Garnier, S., Hamann, H., Montes de Oca, M., Solnon, C., Stützle, T. (eds.) ANTS 2014. LNCS, vol. 8667, pp. 170–181. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-09952-1_15

    Chapter  Google Scholar 

  11. Hamann, H., Wörn, H.: A framework of space-time continuous models for algorithm design in swarm robotics. Swarm Intell. 2(2–4), 209–239 (2008). https://doi.org/10.1007/s11721-008-0015-3

    Article  Google Scholar 

  12. Helbing, D., Schweitzer, F., Keltsch, J., Molnár, P.: Active walker model for the formation of human and animal trail systems. Physical Review E 56(3), 2527–2539 (1997)

    Article  Google Scholar 

  13. Hillen, T., Painter, K.J.: A user’s guide to PDE models for chemotaxis. Math. Biol. 58, 183–217 (2009). https://doi.org/10.1007/s00285-008-0201-3

    Article  MathSciNet  MATH  Google Scholar 

  14. Khaluf, Y., Pinciroli, C., Valentini, G., Hamann, H.: The impact of agent density on scalability in collective systems: noise-induced versus majority-based bistability. Swarm Intell. 11(2), 155–179 (2017). https://doi.org/10.1007/s11721-017-0137-6

    Article  Google Scholar 

  15. Levine, H., Rappel, W.J., Cohen, I.: Self-organization in systems of self-propelled particles. Phys. Rev. E 63(1), 17101 (2000)

    Article  Google Scholar 

  16. Milutinovic, D., Lima, P.: Cells and Robots: Modeling and Control of Large-Size Agent Populations. Springer, Berlin (2007). https://doi.org/10.1007/978-3-540-71982-3

    Book  MATH  Google Scholar 

  17. Okubo, A.: Dynamical aspects of animal grouping: swarms, schools, flocks, and herds. Adv. Biophys. 22, 1–94 (1986)

    Article  Google Scholar 

  18. Prorok, A., Correll, N., Martinoli, A.: Multi-level spatial models for swarm-robotic systems. Int. J. Robot. Res. 30(5), 574–589 (2011)

    Article  Google Scholar 

  19. Reina, A., Marshall, J.A.R., Trianni, V., Bose, T.: Model of the best-of-\(n\) nest-site selection process in honeybees. Phys. Rev. E: 95, 052411 (2017). https://doi.org/10.1103/PhysRevE.95.052411

    Article  Google Scholar 

  20. Reina, A., Valentini, G., Fernández-Oto, C., Dorigo, M., Trianni, V.: A design pattern for decentralised decision making. PLOS ONE 10(10), 1–18 (2015). https://doi.org/10.1371/journal.pone.0140950

    Article  Google Scholar 

  21. Schimansky-Geier, L., Mieth, M., Rosé, H., Malchow, H.: Structure formation by active Brownian particles. Phys. Lett. A 207, 140–146 (1995)

    Article  MathSciNet  Google Scholar 

  22. Schweitzer, F.: Brownian Agents and Active Particles: On the Emergence of Complex Behavior in the Natural and Social Sciences. Springer, Berlin (2003)

    MATH  Google Scholar 

  23. Valentini, G., Hamann, H.: Time-variant feedback processes in collective decision-making systems: influence and effect of dynamic neighborhood sizes. Swarm Intelligence 9(2–3), 153–176 (2015). https://doi.org/10.1007/s11721-015-0108-8

    Article  Google Scholar 

  24. Vicsek, T., Czirók, A., Ben-Jacob, E., Cohen, I., Shochet, O.: Novel type of phase transition in a system of self-driven particles. Phys. Rev. Lett. 6(75), 1226–1229 (1995)

    Article  MathSciNet  Google Scholar 

  25. Vicsek, T., Zafeiris, A.: Collective motion. Phys. Rep. 517(3–4), 71–140 (2012)

    Article  Google Scholar 

  26. Yates, C.A., et al.: Inherent noise can facilitate coherence in collective swarm motion. Proc. Natl. Acad. Sci. USA 106(14), 5464–5469 (2009). https://doi.org/10.1073/pnas.0811195106. http://www.pnas.org/content/106/14/5464.abstract

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heiko Hamann .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Hamann, H. (2018). The Role of Largest Connected Components in Collective Motion. In: Dorigo, M., Birattari, M., Blum, C., Christensen, A., Reina, A., Trianni, V. (eds) Swarm Intelligence. ANTS 2018. Lecture Notes in Computer Science(), vol 11172. Springer, Cham. https://doi.org/10.1007/978-3-030-00533-7_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-00533-7_23

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-00532-0

  • Online ISBN: 978-3-030-00533-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics