Skip to main content

The Importance of Component-Wise Stochasticity in Particle Swarm Optimization

  • Conference paper
  • First Online:
Swarm Intelligence (ANTS 2018)

Abstract

This paper illustrates the importance of independent, component-wise stochastic scaling values, from both a theoretical and empirical perspective. It is shown that a swarm employing scalar stochasticity is unable to express every point in the search space if the problem dimensionality is sufficiently large in comparison to the swarm size. The theoretical result is emphasized by an empirical experiment, comparing the performance of a scalar swarm on benchmarks with reachable and unreachable optima. It is shown that a swarm using scalar stochasticity performs significantly worse when the optimum is not in the span of its initial positions. Lastly, it is demonstrated that a scalar swarm performs significantly worse than a swarm with component-wise stochasticity on a large range of benchmark functions, even when the problem dimensionality allows the scalar swarm to reach the optima.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bratton, D., Kennedy, J.: Defining a standard for particle swarm optimization. In: Proceedings of the IEEE Swarm Intelligence Symposium, pp. 120–127. IEEE Computer Society (2007). https://doi.org/10.1109/SIS.2007.368035

  2. Cleghorn, C.W., Engelbrecht, A.P.: Particle swarm stability: a theoretical extension using the non-stagnate distribution assumption. Swarm Intell. 12, 1–22 (2017). https://doi.org/10.1007/s11721-017-0141-x

    Article  Google Scholar 

  3. Clerc, M., Kennedy, J.: The particle swarm - explosion, stability, and convergence in a multidimensional complex space. IEEE Trans. Evol. Comput. 6(1), 58–73 (2002). https://doi.org/10.1109/4235.985692

    Article  Google Scholar 

  4. Eberhart, R., Kennedy, J.: A new optimizer using particle swarm theory. In: Proceedings of the Sixth International Symposium on Micro Machine and Human Science, pp. 39–43, October 1995. https://doi.org/10.1109/MHS.1995.494215

  5. Engelbrecht, A.P.: Fitness function evaluations: a fair stopping condition? In: Proceedings of the IEEE Symposium on Swarm Intelligence, pp. 1–8, December 2014. https://doi.org/10.1109/SIS.2014.7011793

  6. Engelbrecht, A.: Particle swarm optimization: global best or local best? In: Proceedings of the BRICS Congress on Computational Intelligence and 11th Brazilian Congress on Computational Intelligence (BRICS-CCI CBIC), pp. 124–135, September 2013. https://doi.org/10.1109/BRICS-CCI-CBIC.2013.31

  7. Han, F., Liu, Q.: A diversity-guided hybrid particle swarm optimization based on gradient search. Neurocomputing 137, 234–240 (2014). https://doi.org/10.1016/j.neucom.2013.03.074. Advanced Intelligent Computing Theories and Methodologies

    Article  Google Scholar 

  8. Jamil, M., Yang, X.S.: A literature survey of benchmark functions for global optimization problems. Int. J. Math. Model. Numer. Optim. 4(2), 150–194 (2013)

    MATH  Google Scholar 

  9. Malan, K., Engelbrecht, A.P.: Algorithm comparisons and the significance of population size. In: Proceedings of the IEEE Congress on Evolutionary Computation (IEEE World Congress on Computational Intelligence), pp. 914–920 (2008)

    Google Scholar 

  10. Oldewage, E.: The perils of particle swarm optimisation in high dimensional problem spaces. Master’s thesis, University of Pretoria, Pretoria, South Africa (2018)

    Google Scholar 

  11. Olorunda, O., Engelbrecht, A.P.: Measuring exploration/exploitation in particle swarms using swarm diversity. In: Proceedings of the IEEE Congress on Evolutionary Computation, pp. 1128–1134, June 2008. https://doi.org/10.1109/CEC.2008.4630938

  12. Paige, C.C., Rozlozník, M., Strakos, Z.: Modified Gram-Schmidt (MGS), least squares, and backward stability of MGS-GMRES. Soc. Ind. Appl. Math. J. Matrix Anal. Appl. 28(1), 264–284 (2006). https://doi.org/10.1137/050630416

    Article  MathSciNet  MATH  Google Scholar 

  13. Pandey, S., Wu, L., Guru, S.M., Buyya, R.: A particle swarm optimization-based heuristic for scheduling workflow applications in cloud computing environments. In: 2010 24th IEEE International Conference on Advanced Information Networking and Applications, pp. 400–407, April 2010. https://doi.org/10.1109/AINA.2010.31

  14. Paquet, U., Engelbrecht, A.P.: Particle swarms for linearly constrained optimisation. Fundam. Inform. 76(1–2), 147–170 (2007). http://dl.acm.org/citation.cfm?id=1232695.1232705

  15. Poole, D.: Linear Algebra: A Modern Introduction, 3rd edn. Cengage Learning, Canada (2011)

    Google Scholar 

  16. Ramezani, F., Lotfi, S.: The modified differential evolution algorithm (MDEA). In: Pan, J.S., Chen, S.M., Nguyen, N.T. (eds.) ACIIDS 2012. LNCS, vol. 7198, pp. 109–118. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-28493-9_13

    Chapter  Google Scholar 

  17. Shi, Y., Eberhart, R.: A modified particle swarm optimizer. In: Proceedings of the IEEE International Conference on Evolutionary Computation, pp. 69–73, May 1998. https://doi.org/10.1109/ICEC.1998.699146

  18. Yoshida, H., Kawata, K., Fukuyama, Y., Takayama, S., Nakanishi, Y.: A particle swarm optimization for reactive power and voltage control considering voltage security assessment. IEEE Trans. Power Syst. 15(4), 1232–1239 (2000). https://doi.org/10.1109/59.898095

    Article  Google Scholar 

  19. Zahara, E., Kao, Y.T., Su, J.R.: Enhancing particle swarm optimization with gradient information. In: 2009 Fifth International Conference on Natural Computation, vol. 3, pp. 251–254, August 2009. https://doi.org/10.1109/ICNC.2009.711

  20. van Zyl, E., Engelbrecht, A.: Group-based stochastic scaling for PSO velocities. In: Proceedings of the IEEE Congress on Evolutionary Computation (CEC), pp. 1862–1868, July 2016

    Google Scholar 

Download references

Acknowledgments

This work is based on the research supported by the National Research Foundation (NRF) of South Africa (Grant Number 46712). The opinions, findings and conclusions or recommendations expressed in this article is that of the author(s) alone, and not that of the NRF. The NRF accepts no liability whatsoever in this regard.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elre T. Oldewage .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Oldewage, E.T., Engelbrecht, A.P., Cleghorn, C.W. (2018). The Importance of Component-Wise Stochasticity in Particle Swarm Optimization. In: Dorigo, M., Birattari, M., Blum, C., Christensen, A., Reina, A., Trianni, V. (eds) Swarm Intelligence. ANTS 2018. Lecture Notes in Computer Science(), vol 11172. Springer, Cham. https://doi.org/10.1007/978-3-030-00533-7_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-00533-7_21

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-00532-0

  • Online ISBN: 978-3-030-00533-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics