Skip to main content

The Complexity of Basic Number Processing: A Commentary from a Neurocognitive Perspective

  • Chapter
  • First Online:

Part of the book series: Research in Mathematics Education ((RME))

Abstract

In this commentary, I reflect from a neurocognitive perspective on the four chapters on natural number development included in this section. These chapters show that the development of seemingly basic number processing is much more complex than is often portrayed in neurocognitive research. The chapters collectively illustrate that children’s development of natural number cannot be reduced to one basic neurocognitive factor, but instead requires a multitude of skills with different developmental trajectories. Specifically, these contributions highlight that there is much more than the processing of magnitude, or the so-called Approximate Number System, and they elaborate on the roles of subitizing, place value understanding, and children’s spontaneous attention to number and relations. They also point out that number is something that needs to be constructed and that number processing is in essence a symbolic activity, which requires the integration of multiple symbolic representations, a focus that has been increasingly emphasized in more recent neurocognitive research. The contributions in this volume provide fresh perspectives that will help to further our understanding of children’s natural number development and how it should be fostered. They also offer novel avenues for investigating the origins of atypical mathematical development or dyscalculia.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • American Psychiatric Association. (2013). Diagnostic and statistical manual of mental disorders (5th ed.). Washington, DC: American Psychiatric Association.

    Book  Google Scholar 

  • Ansari, D. (2016). Number symbols in the brain. In D. B. Berch, D. C. Geary, & K. Mann-Koepke (Eds.), Development of mathematical cognition: Neural substrates and genetic influences (pp. 27–50). San Diego, CA: Elsevier.

    Chapter  Google Scholar 

  • Arsalidou, M., Pawliw-Levac, M., Sadeghi, M., & Pascual-Leone, J. (2018). Brain areas associated with numbers and calculations in children: Meta-analyses of fMRI studies. Developmental Cognitive Neuroscience, 30, 239–250. https://doi.org/10.1016/j.dcn.2017.08.002

    Article  Google Scholar 

  • Berch, D. B., Geary, D. C., & Mann-Koepke, K. M. (2016). Development of mathematical cognition: Neural substrates and genetic influences. San Diego, CA: Elsevier.

    Google Scholar 

  • Clements, D. C., Sarama, J., & MacDonald, B. L. (this volume). Subitizing the neglected quantifier. In A. Norton & M. W. Alibali (Eds.), Constructing number: Merging perspectives from psychology and mathematics education. Berlin: Springer.

    Google Scholar 

  • De Smedt, B., Noel, M. P., Gilmore, C., & Ansari, D. (2013). The relationship between symbolic and non-symbolic numerical magnitude processing and the typical and atypical development of mathematics: A review of evidence from brain and behavior. Trends in Neuroscience and Education, 2, 48–55. https://doi.org/10.1016/j.tine.2013.06.001

    Article  Google Scholar 

  • De Smedt, B., Peters, L., & Ghesquiere, P. (in press). Neurobiological origins of mathematical learning disabilities or dyscalculia: A review of brain imaging data. In A. Fritz-Stratmann, V. Haase, & P. Räsänen (Eds.), The international handbook of mathematical learning difficulties. New York: Springer. https://www.springer.com/us/book/9783319971476

  • Dehaene, S. (1997). The number sense. Oxford: Oxford University Press.

    Google Scholar 

  • Dowker, A. (2005). Individual differences in arithmetic: Implications for psychology, neuroscience, and education. Hove: Psychology Press.

    Book  Google Scholar 

  • Evans, T. M., & Ullman, M. T. (2016). An extension of the procedural deficit hypothesis from developmental language disorders to mathematical disability. Frontiers in Psychology, 7, 1318. https://doi.org/10.3389/fpsyg.2016.01318

    Article  Google Scholar 

  • Feigenson, L., Dehaene, S., & Spelke, E. (2004). Core systems of number. Trends in Cognitive Sciences, 8(7), 307–314. https://doi.org/10.1016/j.tics.2004.05.002

    Article  Google Scholar 

  • Fias, W. (2016). Neurocognitive components of mathematical skills and dyscalculia. In D. B. Berch, D. C. Geary, & K. M. Koepke (Eds.), Development of mathematical cognition: Neural substrates and genetic influences (pp. 195–218). San Diego, CA: Elsevier.

    Chapter  Google Scholar 

  • Gebuis, T., Kadosh, R. C., & Gevers, W. (2016). Sensory-integration system rather than approximate number system underlies numerosity processing: A critical review. Acta Psychologica, 171, 17–35. https://doi.org/10.1016/j.actpsy.2016.09.003

    Article  Google Scholar 

  • Halberda, J., Mazzocco, M. M. M., & Feigenson, L. (2008). Individual differences in non-verbal number acuity correlate with maths achievement. Nature, 455(7213), 665–U662. https://doi.org/10.1038/nature07246

    Article  Google Scholar 

  • Hulme, C., & Snowling, M. J. (2009). Developmental disorders of language learning and cognition. Malden, MA: Wiley-Blackwell.

    Google Scholar 

  • LeFevre, J. A., Fast, L., Skwarchuk, S. L., Smith-Chant, B. L., Bisanz, J., Kamawar, D., & Penner-Wilger, M. (2010). Pathways to mathematics: Longitudinal predictors of performance. Child Development, 81(6), 1753–1767. https://doi.org/10.1111/j.1467-8624.2010.01508.x

    Article  Google Scholar 

  • Leibovich, T., & Ansari, D. (2016). The symbol-grounding problem in numerical cognition: A review of theory, evidence, and outstanding questions. Canadian Journal of Experimental Psychology-Revue Canadienne De Psychologie Experimentale, 70(1), 12–23. https://doi.org/10.1037/cep0000070

    Article  Google Scholar 

  • Leibovich, T., Katzin, N., Harel, M., & Henik, A. (2017). From “sense of number” to “sense of magnitude”: The role of continuous magnitudes in numerical cognition. Behavioral and Brain Sciences, 40, 1–16. https://doi.org/10.1017/s0140525x16000960

    Article  Google Scholar 

  • Lyons, I. M., Bugden, S., Zheng, S., De Jesus, S., & Ansari, D. (2018). Symbolic number skills predict growth in nonsymbolic number skills in kindergarteners. Developmental Psychology, 54(3), 440–457.

    Article  Google Scholar 

  • McMullen, J., Chan, J. Y., Mazzocco, M. M. M., & Hannula-Sormunen, M. M. (this volume). Spontaneous mathematical focusing tendencies in mathematical development and education. In A. Norton & M. W. Alibali (Eds.), Constructing number: Merging perspectives from psychology and mathematics education. Berlin: Springer.

    Google Scholar 

  • Merkley, R., & Ansari, D. (2016). Why numerical symbols count in the development of mathematical skills: Evidence from brain and behavior. Current Opinion in Behavioral Sciences, 10, 14–20. https://doi.org/10.1016/j.cobeha.2016.04.006

    Article  Google Scholar 

  • Mix, K. S., Smith, L. B., & Crespo, S. (this volume). Leveraging relational learning mechanisms to improve the understanding of place value. In A. Norton & M. W. Alibali (Eds.), Constructing number: Merging perspectives from psychology and mathematics education. Berlin: Springer.

    Google Scholar 

  • Nieder, A., & Dehaene, S. (2009). Representation of number in the brain. Annual Review of Neuroscience, 32, 185–208.

    Article  Google Scholar 

  • Peng, P., Namkung, J., Barnes, M., & Sun, C. Y. (2016). A meta-analysis of mathematics and working memory: Moderating effects of working memory domain, type of mathematics skill, and sample characteristics. Journal of Educational Psychology, 108(4), 455–473. https://doi.org/10.1037/edu0000079

    Article  Google Scholar 

  • Peters, L., & De Smedt, B. (2018). Arithmetic in the developing brain: A review of brain imaging studies. Developmental Cognitive Neuroscience, 30, 265–279. https://doi.org/10.1016/j.dcn.2017.05.002

    Article  Google Scholar 

  • Peterson, R. L., & Pennington, B. F. (2015). Developmental dyslexia. In T. D. Cannon & T. Widiger (Eds.), Annual review of clinical psychology (Vol. 11, pp. 283–307).

    Google Scholar 

  • Piazza, M. (2010). Neurocognitive start-up tools for symbolic number representations. Trends in Cognitive Sciences, 14(12), 542–551. https://doi.org/10.1016/j.tics.2010.09.008

    Article  Google Scholar 

  • Piazza, M., Facoetti, A., Trussardi, A. N., Berteletti, I., Conte, S., Lucangeli, D., … Zorzi, M. (2010). Developmental trajectory of number acuity reveals a severe impairment in developmental dyscalculia. Cognition, 116(1), 33–41. https://doi.org/10.1016/j.cognition.2010.03.012

    Article  Google Scholar 

  • Schneider, M., Beeres, K., Coban, L., Merz, S., Schmidt, S., Stricker, J., & De Smedt, B. (2017). Associations of non-symbolic and symbolic numerical magnitude processing with mathematical competence: A meta-analysis. Developmental Science, 20, e12372. https://doi.org/10.1111/desc.12372

    Article  Google Scholar 

  • Ullman, M. T. (2004). Contributions of memory circuits to language: The declarative/procedural model. Cognition, 92(1–2), 231–270. https://doi.org/10.1016/j.cognition.2003.10.008

    Article  Google Scholar 

  • Ulrich, C., & Norton, A. (this volume). Discerning a progression of magnitude in children’s construction of number. In A. Norton & M. W. Alibali (Eds.), Constructing number: Merging perspectives from psychology and mathematics education. Berlin: Springer.

    Google Scholar 

  • Vanbinst, K., & De Smedt, B. (2016). Individual differences in children’s mathematics achievement: The roles of symbolic numerical magnitude processing and domain-general cognitive functions. In M. Cappelletti & W. Fias (Eds.), Mathematical brain across the lifespan (Vol. 227, pp. 105–130).

    Google Scholar 

  • Wilson, A. J., & Dehaene, S. (2007). Number sense and developmental dyscalculia. In D. Coch, G. Dawson, & K. W. Fischer (Eds.), Human behavior, learning, and the developing brain: Atypical development (pp. 212–238). New York: Guilford Press.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bert De Smedt .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

De Smedt, B. (2019). The Complexity of Basic Number Processing: A Commentary from a Neurocognitive Perspective. In: Norton, A., Alibali, M.W. (eds) Constructing Number. Research in Mathematics Education. Springer, Cham. https://doi.org/10.1007/978-3-030-00491-0_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-00491-0_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-00490-3

  • Online ISBN: 978-3-030-00491-0

  • eBook Packages: EducationEducation (R0)

Publish with us

Policies and ethics