Skip to main content

Discerning a Progression in Conceptions of Magnitude During Children’s Construction of Number

  • Chapter
  • First Online:
Constructing Number

Part of the book series: Research in Mathematics Education ((RME))

Abstract

Psychological studies of early numerical development fill a void in mathematics education research. However, conflations between magnitude awareness and number, and over-attributions of researcher conceptions to children, have led to psychological models that are at odds with findings from mathematics educators on later numerical development. In this chapter, we use the approximate number system as an example of a psychological construct that would benefit the mathematics education community if reframed to account for distinctions between number and magnitude. We provide such a reframing that also accounts for the role of children’s sensorimotor activity in the construction of number.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ansari, D. (2008). Effects of development and enculturation on number representation in the brain. Nature Reviews. Neuroscience, 9(4), 278.

    Article  Google Scholar 

  • Baroody, A. J., Lai, M. L., & Mix, K. S. (2006). The development of young children’s early number and operation sense and its implications for early childhood education. Handbook of Research on the Education of Young Children, 2, 187–221.

    Google Scholar 

  • Barth, H., La Mont, K., Lipton, J., Dehaene, S., Kanwisher, N., & Spelke, E. (2006). Non-symbolic arithmetic in adults and young children. Cognition, 98(3), 199–222.

    Article  Google Scholar 

  • Brouwer, L. E. J. (1998). The structure of the continuum. From Brouwer to Hilbert (pp. 54–63).

    Google Scholar 

  • Church, R. M. (1984). The numerical attribute of stimuli. In Animal cognition (pp. 445–464). Hillsdale, NJ: Lawrence Erlbaum.

    Google Scholar 

  • Clements, D. H. (2000). Concrete manipulatives, concrete ideas. Contemporary Issues in Early Childhood, 1(1), 45–60.

    Article  Google Scholar 

  • Cutini, S., Scatturin, P., Moro, S. B., & Zorzi, M. (2014). Are the neural correlates of subitizing and estimation dissociable? An fNIRS investigation. NeuroImage, 85, 391–399.

    Article  Google Scholar 

  • De Smedt, B., Noël, M. P., Gilmore, C., & Ansari, D. (2013). How do symbolic and non-symbolic numerical magnitude processing skills relate to individual differences in children’s mathematical skills? A review of evidence from brain and behavior. Trends in Neuroscience and Education, 2(2), 48–55.

    Article  Google Scholar 

  • Dehaene, S. (1992). Varieties of numerical abilities. Cognition, 44(1–2), 1–42.

    Google Scholar 

  • Dehaene, S. (1997). The number sense. New York: Oxford University Press.

    Google Scholar 

  • Dehaene, S. (2003). The neural basis of the Weber–Fechner law: A logarithmic mental number line. Trends in Cognitive Sciences, 7(4), 145–147.

    Article  Google Scholar 

  • Dehaene, S., & Changeux, J. P. (1993). Development of elementary numerical abilities: A neuronal model. Journal of Cognitive Neuroscience, 5, 390–407. https://doi.org/10.1162/jocn.1993.5.4.390

    Article  Google Scholar 

  • Dehaene, S., Molko, N., Cohen, L., & Wilson, A. J. (2004). Arithmetic and the brain. Current Opinion in Neurobiology, 14(2), 218–224.

    Article  Google Scholar 

  • Dehaene, S., Spelke, E., Pinel, P., Stanescu, R., & Tsivkin, S. (1999). Sources of mathematical thinking: Behavioral and brain-imaging evidence. Science, 284(5416), 970–974.

    Article  Google Scholar 

  • Fischer, U., Moeller, K., Bientzle, M., Cress, U., & Nuerk, H. C. (2011). Sensori-motor spatial training of number magnitude representation. Psychonomic Bulletin & Review, 18(1), 177–183.

    Article  Google Scholar 

  • Gallistel, C. R., & Gelman, R. (2000). Non-verbal numerical cognition: From reals to integers. Trends in Cognitive Science, 4, 59–65.

    Article  Google Scholar 

  • Gibbon, J. (1977). Scalar expectancy theory and Weber’s law in animal timing. Psychological Review, 84(3), 279.

    Article  Google Scholar 

  • Gravemeijer, K. P., Lehrer, R., van Oers, H. J., & Verschaffel, L. (Eds.). (2013). Symbolizing, modeling and tool use in mathematics education (Vol. 30). Dordrecht: Springer Science & Business Media.

    Google Scholar 

  • Hackenberg, A. J. (2005). A model of mathematical learning and caring relations. For the Learning of Mathematics, 25(1), 45–51.

    Google Scholar 

  • Hiebert, J., & Lefevre, P. (1986). Conceptual and procedural knowledge in mathematics: An introductory analysis. Conceptual and procedural knowledge: The case of mathematics (Vol. 2, pp. 1–27).

    Google Scholar 

  • Howard, S. R., Avarguès-Weber, A., Garcia, J. E., Greentree, A. D., & Dyer, A. G. (2018). Numerical ordering of zero in honey bees. Science, 360(6393), 1124–1126.

    Article  Google Scholar 

  • Inglis, M., & Gilmore, C. (2013). Sampling from the mental number line: How are approximate number system representations formed? Cognition, 129(1), 63–69.

    Article  Google Scholar 

  • Inglis, M., & Gilmore, C. (2014). Indexing the approximate number system. Acta Psychologica, 145, 147–155.

    Article  Google Scholar 

  • Joyce, D. E. (1996). Euclid’s elements. Retrieved from http://aleph0.clarku.edu/~djoyce/java/elements/elements.html

  • Laski, E. V., & Siegler, R. S. (2007). Is 27 a big number? Correlational and causal connections among numerical categorization, number line estimation, and numerical magnitude comparison. Child Development, 78(6), 1723–1743.

    Article  Google Scholar 

  • Libertus, M. E., Feigenson, L., & Halberda, J. (2011). Preschool acuity of the approximate number system correlates with school math ability. Developmental Science, 14(6), 1292–1300.

    Article  Google Scholar 

  • Lyons, I. M., Ansari, D., & Beilock, S. L. (2012). Symbolic estrangement: Evidence against a strong association between numerical symbols and the quantities they represent. Journal of Experimental Psychology: General, 141(4), 635.

    Article  Google Scholar 

  • Maturana, H. R. (1988). Reality: The search for objectivity or the quest for a compelling argument. The Irish Journal of Psychology, 9(1), 25–82.

    Article  Google Scholar 

  • McBeath, M. K., Shaffer, D. M., & Kaiser, M. K. (1995). How baseball outfielders determine where to run to catch fly balls. Science, 68(5201), 569–573.

    Article  Google Scholar 

  • McLellan, J. A., & Dewey, J. (1895). The psychology of number and its applications to methods of teaching arithmetic. New York: Appleton.

    Google Scholar 

  • Mechner, F. (1958). Probability relations within response sequences under ratio reinforcement. Journal of the Experimental Analysis of Behavior, 1(2), 109–121.

    Article  Google Scholar 

  • Meck, W. H., & Church, R. M. (1983). A mode control model of counting and timing processes. Journal of Experimental Psychology: Animal Behavior Processes, 9, 320–334.

    Google Scholar 

  • Noël, M. E. (2005). Finger gnosia: A predictor of numerical abilities in children? Child Neuropsychology, 11, 413–430. https://doi.org/10.1080/09297040590951550

    Article  Google Scholar 

  • Norton, A., Ulrich, C., Bell, M. A., & Cate, A. (2018). Mathematics at hand. The Mathematics Educator.

    Google Scholar 

  • Núñez, R. E. (2011). No innate number line in the human brain. Journal of Cross-Cultural Psychology, 42(4), 651–668.

    Article  Google Scholar 

  • Penner-Wilger, M., & Anderson, M. L. (2013). The relation between finger gnosis and mathematical ability: Why redeployment of neural circuits best explains the finding. Frontiers in Psychology, 4, 877. https://doi.org/10.3389/fpsyg.2013.00877

    Article  Google Scholar 

  • Piaget, J. (1970). Structuralism (C. Maschler, Trans.). New York: Basic Books.

    Google Scholar 

  • Piaget, J., Inhelder, B., & Szeminksa, A. (1960). The child’s conception of geometry (E. A. Lunzer, Trans.). New York: Norton. (Original work published 1948).

    Google Scholar 

  • Piaget, J., & Szeminska, A. (1952). The child’s conception of number. New York: Norton.

    Google Scholar 

  • Piazza, M., Izard, V., Pinel, P., Le Bihan, D., & Dehaene, S. (2004). Tuning curves for approximate numerosity in the human intraparietal sulcus. Neuron, 44, 547–555.

    Article  Google Scholar 

  • Rousselle, L., Palmers, E., & Noël, M. P. (2004). Magnitude comparison in preschoolers: What counts? Influence of perceptual variables. Journal of Experimental Child Psychology, 87(1), 57–84.

    Article  Google Scholar 

  • Rusconi, E., Walsh, V., & Butterworth, B. (2005). Dexterity with numbers: rTMS over left angular gyrus disrupts finger gnosis and number processing. Neuropsychologia, 43(11), 1609–1624. https://doi.org/10.1016/j.neuropsychologia.2005.01.009

    Article  Google Scholar 

  • Rushton, S. K., & Wann, J. P. (1999). Weighted combination of size and disparity: A computational model for timing a ball catch. Nature Neuroscience, 2(2), 186–190.

    Article  Google Scholar 

  • Sarama, J., & Clements, D. H. (2009). Building blocks and cognitive building blocks: Playing to know the world mathematically. American Journal of Play, 1(3), 313–337.

    Google Scholar 

  • Sarnecka, B. W., Goldman, M. C., & Slusser, E. B. (2015). How counting leads to children’s first representations of exact, large numbers. In R. Cohen Kadosh & A. Dowker (Eds.), Oxford handbook of numerical cognition (pp. 291–309). New York: Oxford University Press ISBN: 978-0199642342.

    Google Scholar 

  • Sato, M., Cattaneo, L., Rizzolatti, G., & Gallese, V. (2007). Numbers within our hands: Modulation of corticospinal excitability of hand muscles during numerical judgment. Journal of Cognitive Neuroscience, 19(4), 684–693. https://doi.org/10.1162/jocn.2007.19.4.684

    Article  Google Scholar 

  • Sekuler, R., & Mierkiewicz, D. (1977). Children’s judgments of numerical inequality. Child Development, 48, 630–633.

    Article  Google Scholar 

  • Simon, M. A., Placa, N., & Avitzur, A. (2016). Participatory and anticipatory stages of mathematical concept learning: Further empirical and theoretical development. Journal for Research in Mathematics Education, 47(1), 63–93.

    Article  Google Scholar 

  • Soltész, F., Szűcs, D., & Szűcs, L. (2010). Relationships between magnitude representation, counting and memory in 4-to 7-year-old children: A developmental study. Behavioral and Brain Functions, 6(1), 6–13.

    Article  Google Scholar 

  • Sophian, C. (2007). The origins of mathematical knowledge in childhood. London: Routledge.

    Google Scholar 

  • Soylu, F., Lester, F. K., & Newman, S. D. (2018). You can count on your fingers: The role of fingers in early mathematical development. Journal of Numerical Cognition, 4(1), 107–135. https://doi.org/10.5964/jnc.v4i1.85

    Article  Google Scholar 

  • Steffe, L. P. (1991). Operations that generate quantity. Learning and Individual Differences, 3(1), 61–82.

    Article  Google Scholar 

  • Steffe, L. P. (2010). Operations that produce numerical counting schemes. In L. P. Steffe & J. Olive (Eds.), Children’s fractional knowledge (pp. 27–47). New York: Springer. https://doi.org/10.1007/978-1-4419-0591-8_3

    Chapter  Google Scholar 

  • Steffe, L. P., Glasersfeld, E., von Richards, J., & Cobb, P. (1983). Children’s counting types: Philosophy, theory, and application. In J. Richards (Ed.), The creation of units as a prerequisite for number: A philosophical review. New York: Praeger.

    Google Scholar 

  • Steffe, L. P., & Olive, J. (2010). Children’s fractional knowledge. New York: Springer. https://doi.org/10.1007/978-1-4419-0591-8

    Book  Google Scholar 

  • Steffe, L. P., & Tzur, R. (1994). Interaction and children’s mathematics. Journal of Research in Childhood Education, 8(2), 99–116.

    Article  Google Scholar 

  • Tall, D. (2004). Building theories: The three worlds of mathematics. For the Learning of Mathematics, 24(1), 29–32.

    Google Scholar 

  • Thompson, P. W., Carlson, M. P., Byerley, C., & Hatfield, N. (2014). Schemes for thinking with magnitudes: A hypothesis about foundational reasoning abilities in algebra. In K. C. Moore, L. P. Steffe, & L. L. Hatfield (Eds.), Epistemic algebra students: Emerging models of students’ algebraic knowing (WISDOMemonographs) (Vol. 4, pp. 1–24). Laramie, WY: University of Wyoming.

    Google Scholar 

  • Tzur, R., Johnson, H. L., McClintock, E., Kenney, R. H., Xin, Y. P., Si, L., … Jin, X. (2013). Distinguishing schemes and tasks in children’s development of multiplicative reasoning. PNA, 7(3), 85–101.

    Article  Google Scholar 

  • Ulrich, C. (2015). Stages in constructing and coordinating units additively and multiplicatively (part 1). For the Learning of Mathematics, 35(3), 2–7.

    Google Scholar 

  • Ulrich, C. (2016). Stages in constructing and coordinating units additively and multiplicatively (part 2). For the Learning of Mathematics, 36(1), 34–39.

    Google Scholar 

  • Ulrich, C., Tillema, E. S., Hackenberg, A. J., & Norton, A. (2014). Constructivist model building: Empirical examples from mathematics education. Constructivist Foundations, 9(3), 328–339.

    Google Scholar 

  • von Glasersfeld, E. (1981). An attentional model for the conceptual construction of units and number. Journal for Research in Mathematics Education, 12(2), 83–94.

    Article  Google Scholar 

  • von Glasersfeld, E. (1995). Radical Constructivism: A Way of Knowing and Learning. Studies in Mathematics Education Series: 6. Falmer Press, Taylor & Francis Inc., Bristol, PA.

    Google Scholar 

  • Wood, G., & Fischer, M. H. (2008). Numbers, space, and action–from finger counting to the mental number line and beyond. Cortex, 44(4), 353–358.

    Article  Google Scholar 

  • Wynn, K. (1992). Addition and subtraction by human infants. Nature, 358(6389), 749–750. https://doi.org/10.1038/358749a0

    Article  Google Scholar 

  • Xu, F., & Spelke, E. S. (2000). Large number discrimination in 6-month-old infants. Cognition, 74(1), 1–11.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anderson Norton .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ulrich, C., Norton, A. (2019). Discerning a Progression in Conceptions of Magnitude During Children’s Construction of Number. In: Norton, A., Alibali, M.W. (eds) Constructing Number. Research in Mathematics Education. Springer, Cham. https://doi.org/10.1007/978-3-030-00491-0_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-00491-0_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-00490-3

  • Online ISBN: 978-3-030-00491-0

  • eBook Packages: EducationEducation (R0)

Publish with us

Policies and ethics