Skip to main content

Block Palindromes: A New Generalization of Palindromes

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 11147))

Abstract

We study a new generalization of palindromes and gapped palindromes called block palindromes. A block palindrome is a string that becomes a palindrome when identical substrings are replaced with a distinct character. We investigate several properties of block palindromes and in particular, study substrings of a string which are block palindromes. In so doing, we introduce the notion of a maximal block palindrome, which leads to a compact representation of all block palindromes that occur in a string. We also propose an algorithm which enumerates all maximal block palindromes that appear in a given string \(T\) in \(O(|T| + \Vert MBP (T)\Vert )\) time, where \(\Vert MBP (T)\Vert \) is the output size, which is optimal unless all the maximal block palindromes can be represented in a more compact way.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    Block palindromes were firstly introduced in a problem of 2015 British Informatics Olympiad [1], but we did not know the existence at the first version of this paper.

References

  1. The 2015 British Informatics Olympiad (2015). http://olympiad.org.uk/2015/index.html. Accessed 13 June 2018

  2. Alatabbi, A., Iliopoulos, C.S., Rahman, M.S.: Maximal palindromic factorization. In: Holub, J., Žďárek, J. (eds.) Proceedings of the Prague Stringology Conference 2013, pp. 70–77. Czech Technical University in Prague, Czech Republic (2013)

    Google Scholar 

  3. Borozdin, K., Kosolobov, D., Rubinchik, M., Shur, A.M.: Palindromic length in linear time. In: CPM. LIPIcs, vol. 78, pp. 23:1–23:12. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik (2017)

    Google Scholar 

  4. Fici, G., Gagie, T., Kärkkäinen, J., Kempa, D.: A subquadratic algorithm for minimum palindromic factorization. J. Discret. Algorithms 28, 41–48 (2014)

    Article  MathSciNet  Google Scholar 

  5. Gupta, S., Prasad, R.: Searching gapped palindromes in DNA sequences using Burrows Wheeler type transformation. J. Inf. Optim. Sci. 37(1), 51–74 (2016). https://doi.org/10.1080/02522667.2015.1103044

    Article  MathSciNet  Google Scholar 

  6. Gusfield, D.: Algorithms on Strings, Trees, and Sequences - Computer Science and Computational Biology. Cambridge University Press, Cambridge (1997)

    Book  Google Scholar 

  7. Hsu, P., Chen, K., Chao, K.: Finding all approximate gapped palindromes. Int. J. Found. Comput. Sci. 21(6), 925–939 (2010)

    Article  MathSciNet  Google Scholar 

  8. I, T., Inenaga, S., Takeda, M.: Palindrome pattern matching. Theor. Comput. Sci. 483, 162–170 (2013). https://doi.org/10.1016/J.TCS.2012.01.047

    Article  MathSciNet  MATH  Google Scholar 

  9. I, T., Sugimoto, S., Inenaga, S., Bannai, H., Takeda, M.: Computing palindromic factorizations and palindromic covers on-line. In: Kulikov, A.S., Kuznetsov, S.O., Pevzner, P. (eds.) CPM 2014. LNCS, vol. 8486, pp. 150–161. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-07566-2_16

    Chapter  Google Scholar 

  10. Kolpakov, R., Kucherov, G.: Searching for gapped palindromes. Theor. Comput. Sci. 410(51), 5365–5373 (2009). https://doi.org/10.1016/j.tcs.2009.09.013

    Article  MathSciNet  MATH  Google Scholar 

  11. Kosolobov, D., Rubinchik, M., Shur, A.M.: Pa\(^{k}\) is linear recognizable online. In: Italiano, G.F., Margaria-Steffen, T., Pokorný, J., Quisquater, J.-J., Wattenhofer, R. (eds.) SOFSEM 2015. LNCS, vol. 8939, pp. 289–301. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46078-8_24

    Chapter  Google Scholar 

  12. Manacher, G.K.: A new linear-time “on-line” algorithm for finding the smallest initial palindrome of a string. J. ACM 22(3), 346–351 (1975)

    Article  Google Scholar 

  13. Narisada, S., Diptarama, Narisawa, K., Inenaga, S., Shinohara, A.: Computing longest single-arm-gapped palindromes in a string. In: Steffen, B., Baier, C., van den Brand, M., Eder, J., Hinchey, M., Margaria, T. (eds.) SOFSEM 2017. LNCS, vol. 10139, pp. 375–386. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-51963-0_29

    Chapter  Google Scholar 

  14. Smith, G.R.: Meeting DNA palindromes head-to-head. Genes Dev. 22, 2612–2620 (2008)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Keisuke Goto .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Goto, K., Tomohiro, I., Bannai, H., Inenaga, S. (2018). Block Palindromes: A New Generalization of Palindromes. In: Gagie, T., Moffat, A., Navarro, G., Cuadros-Vargas, E. (eds) String Processing and Information Retrieval. SPIRE 2018. Lecture Notes in Computer Science(), vol 11147. Springer, Cham. https://doi.org/10.1007/978-3-030-00479-8_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-00479-8_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-00478-1

  • Online ISBN: 978-3-030-00479-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics