Skip to main content

Protean Signature Schemes

  • Conference paper
  • First Online:
Book cover Cryptology and Network Security (CANS 2018)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 11124))

Included in the following conference series:

Abstract

We introduce the notion of Protean Signature schemes. This novel type of signature scheme allows to remove and edit signer-chosen parts of signed messages by a semi-trusted third party simultaneously. In existing work, one is either allowed to remove or edit parts of signed messages, but not both at the same time. Which and how parts of the signed messages can be modified is chosen by the signer. Thus, our new primitive generalizes both redactable (Steinfeld et al., ICISC ’01, Johnson et al., CT-RSA ’02 & Brzuska et al., ACNS ’10) and sanitizable signatures schemes (Ateniese et al., ESORICS ’05 & Brzuska et al., PKC ’09). We showcase a scenario where either primitive alone is not sufficient. Our provably secure construction (offering both strong notions of transparency and invisibility) makes only black-box access to sanitizable and redactable signature schemes, which can be considered standard tools nowadays. Finally, we have implemented our scheme; Our evaluation shows that the performance is reasonable.

This research was supported by European Union’s Horizon 2020 research and innovation programme under grant agreement No 644962 prismacloud, No 653454 credential, No 783119 secredas and No 321310 percy.

K. Samelin—Part of this work was done while the third author was also at IBM Research – Zurich.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Strictly speaking, there are approaches with additional secret keys, but they are not required for our construction [37].

References

  1. Ahn, J.H., Boneh, D., Camenisch, J., Hohenberger, S., Shelat, A., Waters, B.: Computing on authenticated data. J. Cryptol. 28(2), 351–395 (2015). https://doi.org/10.1007/s00145-014-9182-0

    Article  MathSciNet  MATH  Google Scholar 

  2. Ateniese, G., Chou, D.H., de Medeiros, B., Tsudik, G.: Sanitizable signatures. In: di Vimercati, S.C., Syverson, P., Gollmann, D. (eds.) ESORICS 2005. LNCS, vol. 3679, pp. 159–177. Springer, Heidelberg (2005). https://doi.org/10.1007/11555827_10

    Chapter  Google Scholar 

  3. Beck, M.T., et al.: Practical strongly invisible and strongly accountable sanitizable signatures. In: Pieprzyk, J., Suriadi, S. (eds.) ACISP 2017. LNCS, vol. 10342, pp. 437–452. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-60055-0_23

    Chapter  Google Scholar 

  4. Bilzhause, A., Pöhls, H.C., Samelin, K.: Position paper: the past, present, and future of sanitizable and redactable signatures. In: Ares, pp. 87:1–87:9 (2017)

    Google Scholar 

  5. Boneh, D., Freeman, D.M.: Homomorphic signatures for polynomial functions. In: Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp. 149–168. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-20465-4_10

    Chapter  Google Scholar 

  6. Boyle, E., Goldwasser, S., Ivan, I.: Functional signatures and pseudorandom functions. In: Krawczyk, H. (ed.) PKC 2014. LNCS, vol. 8383, pp. 501–519. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-54631-0_29

    Chapter  Google Scholar 

  7. Brzuska, C., et al.: Redactable signatures for tree-structured data: definitions and constructions. In: Zhou, J., Yung, M. (eds.) ACNS 2010. LNCS, vol. 6123, pp. 87–104. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13708-2_6

    Chapter  Google Scholar 

  8. Brzuska, C., et al.: Security of sanitizable signatures revisited. In: Jarecki, S., Tsudik, G. (eds.) PKC 2009. LNCS, vol. 5443, pp. 317–336. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-00468-1_18

    Chapter  Google Scholar 

  9. Brzuska, C., Fischlin, M., Lehmann, A., Schröder, D.: Santizable signatures: how to partially delegate control for authenticated data. In: BIOSIG (2009)

    Google Scholar 

  10. Brzuska, C., Fischlin, M., Lehmann, A., Schröder, D.: Unlinkability of sanitizable signatures. In: Nguyen, P.Q., Pointcheval, D. (eds.) PKC 2010. LNCS, vol. 6056, pp. 444–461. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13013-7_26

    Chapter  Google Scholar 

  11. Brzuska, C., Pöhls, H.C., Samelin, K.: Non-interactive public accountability for sanitizable signatures. In: De Capitani di Vimercati, S., Mitchell, C. (eds.) EuroPKI 2012. LNCS, vol. 7868, pp. 178–193. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40012-4_12

    Chapter  MATH  Google Scholar 

  12. Brzuska, C., Pöhls, H.C., Samelin, K.: Efficient and perfectly unlinkable sanitizable signatures without group signatures. In: Katsikas, S., Agudo, I. (eds.) EuroPKI 2013. LNCS, vol. 8341, pp. 12–30. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-53997-8_2

    Chapter  MATH  Google Scholar 

  13. Camenisch, J., Derler, D., Krenn, S., Pöhls, H.C., Samelin, K., Slamanig, D.: Chameleon-hashes with ephemeral trapdoors. In: Fehr, S. (ed.) PKC 2017. LNCS, vol. 10175, pp. 152–182. Springer, Heidelberg (2017). https://doi.org/10.1007/978-3-662-54388-7_6

    Chapter  Google Scholar 

  14. Canard, S., Jambert, A.: On extended sanitizable signature schemes. In: Pieprzyk, J. (ed.) CT-RSA 2010. LNCS, vol. 5985, pp. 179–194. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-11925-5_13

    Chapter  Google Scholar 

  15. Canard, S., Jambert, A., Lescuyer, R.: Sanitizable signatures with several signers and sanitizers. In: Mitrokotsa, A., Vaudenay, S. (eds.) AFRICACRYPT 2012. LNCS, vol. 7374, pp. 35–52. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-31410-0_3

    Chapter  Google Scholar 

  16. Canard, S., Laguillaumie, F., Milhau, M.: Trapdoor sanitizable signatures and their application to content protection. In: Bellovin, S.M., Gennaro, R., Keromytis, A., Yung, M. (eds.) ACNS 2008. LNCS, vol. 5037, pp. 258–276. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-68914-0_16

    Chapter  MATH  Google Scholar 

  17. de Meer, H., Pöhls, H.C., Posegga, J., Samelin, K.: Scope of security properties of sanitizable signatures revisited. In: Ares, pp. 188–197 (2013)

    Google Scholar 

  18. de Meer, H., Pöhls, H.C., Posegga, J., Samelin, K.: On the relation between redactable and sanitizable signature schemes. In: Jürjens, J., Piessens, F., Bielova, N. (eds.) ESSoS 2014. LNCS, vol. 8364, pp. 113–130. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-04897-0_8

    Chapter  Google Scholar 

  19. Demirel, D., Derler, D., Hanser, C., Pöhls, H.C., Slamanig, D., Traverso, G.: PRISMACLOUD D4.4: overview of functional and malleable signature schemes. Technical report, H2020 Prismacloud (2015). www.prismacloud.eu

  20. Derler, D., Pöhls, H.C., Samelin, K., Slamanig, D.: A general framework for redactable signatures and new constructions. In: Kwon, S., Yun, A. (eds.) ICISC 2015. LNCS, vol. 9558, pp. 3–19. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-30840-1_1

    Chapter  MATH  Google Scholar 

  21. Derler, D., Slamanig, D.: Rethinking privacy for extended sanitizable signatures and a black-box construction of strongly private schemes. In: Au, M.-H., Miyaji, A. (eds.) ProvSec 2015. LNCS, vol. 9451, pp. 455–474. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-26059-4_25

    Chapter  Google Scholar 

  22. Fischlin, M., Harasser, P.: Invisible sanitizable signatures and public-key encryption are equivalent. In: Preneel, B., Vercauteren, F. (eds.) ACNS 2018. LNCS, vol. 10892, pp. 202–220. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-93387-0_11

    Chapter  MATH  Google Scholar 

  23. Fleischhacker, N., Krupp, J., Malavolta, G., Schneider, J., Schröder, D., Simkin, M.: Efficient unlinkable sanitizable signatures from signatures with re-randomizable keys. In: Cheng, C.-M., Chung, K.-M., Persiano, G., Yang, B.-Y. (eds.) PKC 2016. LNCS, vol. 9614, pp. 301–330. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49384-7_12

    Chapter  Google Scholar 

  24. Ghosh, E., Goodrich, M.T., Ohrimenko, O., Tamassia, R.: Verifiable zero-knowledge order queries and updates for fully dynamic lists and trees. In: Zikas, V., De Prisco, R. (eds.) SCN 2016. LNCS, vol. 9841, pp. 216–236. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-44618-9_12

    Chapter  MATH  Google Scholar 

  25. Ghosh, E., Ohrimenko, O., Tamassia, R.: Zero-knowledge authenticated order queries and order statistics on a list. In: Malkin, T., Kolesnikov, V., Lewko, A.B., Polychronakis, M. (eds.) ACNS 2015. LNCS, vol. 9092, pp. 149–171. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-28166-7_8

    Chapter  MATH  Google Scholar 

  26. Goldwasser, S., Micali, S., Rivest, R.L.: A digital signature scheme secure against adaptive chosen-message attacks. SIAM J. Comput. 17(2), 281–308 (1988)

    Article  MathSciNet  Google Scholar 

  27. Gong, J., Qian, H., Zhou, Y.: Fully-secure and practical sanitizable signatures. In: Lai, X., Yung, M., Lin, D. (eds.) Inscrypt 2010. LNCS, vol. 6584, pp. 300–317. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-21518-6_21

    Chapter  Google Scholar 

  28. Haber, S., et al.: Efficient signature schemes supporting redaction, pseudonymization, and data deidentification. In: AsiaCCS, pp. 353–362 (2008)

    Google Scholar 

  29. Izu, T., Kunihiro, N., Ohta, K., Sano, M., Takenaka, M.: Sanitizable and deletable signature. In: Chung, K.-I., Sohn, K., Yung, M. (eds.) WISA 2008. LNCS, vol. 5379, pp. 130–144. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-00306-6_10

    Chapter  Google Scholar 

  30. Izu, T., Kunihiro, N., Ohta, K., Sano, M., Takenaka, M.: Yet another sanitizable signature from bilinear maps. In: Ares, pp. 941–946 (2009)

    Google Scholar 

  31. Johnson, R., Molnar, D., Song, D., Wagner, D.: Homomorphic signature schemes. In: Preneel, B. (ed.) CT-RSA 2002. LNCS, vol. 2271, pp. 244–262. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45760-7_17

    Chapter  Google Scholar 

  32. Klonowski, M., Lauks, A.: Extended sanitizable signatures. In: Rhee, M.S., Lee, B. (eds.) ICISC 2006. LNCS, vol. 4296, pp. 343–355. Springer, Heidelberg (2006). https://doi.org/10.1007/11927587_28

    Chapter  Google Scholar 

  33. Krenn, S., Samelin, K., Sommer, D.: Stronger security for sanitizable signatures. In: Garcia-Alfaro, J., Navarro-Arribas, G., Aldini, A., Martinelli, F., Suri, N. (eds.) DPM/QASA -2015. LNCS, vol. 9481, pp. 100–117. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-29883-2_7

    Chapter  Google Scholar 

  34. Kundu, A., Bertino, E.: Privacy-preserving authentication of trees and graphs. Int. J. Inf. Secur. 12(6), 467–494 (2013). https://doi.org/10.1007/s10207-013-0198-5

    Article  Google Scholar 

  35. Lai, R.W.F., Zhang, T., Chow, S.S.M., Schröder, D.: Efficient sanitizable signatures without random oracles. In: Askoxylakis, I., Ioannidis, S., Katsikas, S., Meadows, C. (eds.) ESORICS 2016. LNCS, vol. 9878, pp. 363–380. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-45744-4_18

    Chapter  Google Scholar 

  36. Miyazaki, K.: Digitally signed document sanitizing scheme with disclosure condition control. IEICE Trans. 88–A(1), 239–246 (2005)

    Article  MathSciNet  Google Scholar 

  37. Pöhls, H.C., Samelin, K.: Accountable redactable signatures. In: Ares, pp. 60–69 (2015)

    Google Scholar 

  38. Pöhls, H.C., Samelin, K., Posegga, J.: Sanitizable signatures in XML signature—performance, mixing properties, and revisiting the property of transparency. In: Lopez, J., Tsudik, G. (eds.) ACNS 2011. LNCS, vol. 6715, pp. 166–182. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-21554-4_10

    Chapter  Google Scholar 

  39. Samelin, K., Pöhls, H.C., Bilzhause, A., Posegga, J., de Meer, H.: Redactable signatures for independent removal of structure and content. In: Ryan, M.D., Smyth, B., Wang, G. (eds.) ISPEC 2012. LNCS, vol. 7232, pp. 17–33. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-29101-2_2

    Chapter  MATH  Google Scholar 

  40. Slamanig, D., Rass, S.: Generalizations and extensions of redactable signatures with applications to electronic healthcare. In: De Decker, B., Schaumüller-Bichl, I. (eds.) CMS 2010. LNCS, vol. 6109, pp. 201–213. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13241-4_19

    Chapter  Google Scholar 

  41. Steinfeld, R., Bull, L., Zheng, Y.: Content extraction signatures. In: Kim, K. (ed.) ICISC 2001. LNCS, vol. 2288, pp. 285–304. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45861-1_22

    Chapter  Google Scholar 

  42. Sweeney, L.: k-anonymity: a model for protecting privacy. Int. J. Uncertain. Fuzziness Knowl.-Based Syst. 10(5), 557–570 (2002)

    Article  MathSciNet  Google Scholar 

  43. Traverso, G., Demirel, D., Buchmann, J.A.: Homomorphic Signature Schemes - A Survey. Springer Briefs in Computer Science. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-319-32115-8

    Book  MATH  Google Scholar 

  44. Tsabary, R.: An equivalence between attribute-based signatures and homomorphic signatures, and new constructions for both. In: Kalai, Y., Reyzin, L. (eds.) TCC 2017. LNCS, vol. 10678, pp. 489–518. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-70503-3_16

    Chapter  Google Scholar 

  45. Wu, Z.Y., Hsueh, C.-W., Tsai, C.-Y., Lai, F., Lee, H.-C., Chung, Y.-F.: Redactable signatures for signed CDA documents. J. Med. Syst. 36(3), 1795–1808 (2012). https://doi.org/10.1007/s10916-010-9639-0

    Article  Google Scholar 

  46. Yum, D.H., Seo, J.W., Lee, P.J.: Trapdoor sanitizable signatures made easy. In: Zhou, J., Yung, M. (eds.) ACNS 2010. LNCS, vol. 6123, pp. 53–68. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13708-2_4

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kai Samelin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Krenn, S., Pöhls, H.C., Samelin, K., Slamanig, D. (2018). Protean Signature Schemes. In: Camenisch, J., Papadimitratos, P. (eds) Cryptology and Network Security. CANS 2018. Lecture Notes in Computer Science(), vol 11124. Springer, Cham. https://doi.org/10.1007/978-3-030-00434-7_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-00434-7_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-00433-0

  • Online ISBN: 978-3-030-00434-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics