Skip to main content

A Fuel-Efficient Route Plan App Based on Game Theory

  • Conference paper
  • First Online:
IoT as a Service (IoTaaS 2017)

Abstract

This study adopts a fuel consumption estimation method to measure the consumed fuel quantity of each vehicle speed interval (i.e., a cost function) in accordance with individual behaviors. Furthermore, a mobile app is designed to consider the best responses of other route plan apps (e.g., the shortest route plan app and the fast route plan app) and plan the most fuel-efficient route according to the consumed fuel quantity. The numerical analysis results show that the proposed fuel-efficient route plan app can effectively support fuel- saving for logistics industries.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Petroleum Price Information Management and Analysis System: Bureau of Energy, Ministry of Economic Affairs, Taiwan (2017). https://www2.moeaboe.gov.tw/oil102/oil1022010/english.htm. Accessed 2 July 2017

  2. Chan, S.Y.: The basic information of truck freight transportation. Taiwan Institute of Economic Research (2016). https://goo.gl/7zZ9ZY. Accessed 2 July 2017

  3. Lo, C.L., Chen, C.H., Kuan, T.S., Lo, K.R., Cho, H.J.: Fuel consumption estimation system and method with lower cost. Symmetry 9(7), 1–15 (2017). Article ID 105

    Article  Google Scholar 

  4. Bertolazzi, E., Biral, F., Lio, M.D., Saroldi, A., Tango, F.: Supporting drivers in keeping safe speed and safe distance: the SASPENCE subproject within the European framework programme 6 integrating project PReVENT. IEEE Trans. Intell. Transp. Syst. 11(3), 525–538 (2010)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chi-Hua Chen .

Editor information

Editors and Affiliations

Appendices

Appendix A: Partial Differential Equation Proof

The partial differential equation proof of Eq. (10) is expressed as Eq. A(1).

$$ \begin{aligned} \frac{\partial \pi }{\partial r} & = \frac{\partial }{\partial r}\left( {\frac{{d_{ 1} }}{{\frac{{2 0 0 0d_{ 1} }}{{p_{2} \times Q \times r}} - 2l}} + \frac{{d_{ 2} }}{{\frac{{2 0 0 0d_{ 2} }}{{p_{2} \times Q \times \left( {1 - r} \right) + \left( {1 - p_{2} } \right) \times Q}} - 2l}}} \right) \\ & = \frac{\partial }{\partial r}\left( {\frac{{d_{ 1} }}{{\frac{{2 0 0 0d_{ 1} }}{{p_{2} Qr}} - 2l}}} \right) + \frac{\partial }{\partial r}\left( {\frac{{d_{ 2} }}{{\frac{{2 0 0 0d_{ 2} }}{{p_{2} Q\left( {1 - r} \right) + \left( {1 - p_{2} } \right)Q}} - 2l}}} \right) \\ & = d_{ 1} \frac{\partial }{\partial r}\left( {\frac{ 1}{{\frac{{2 0 0 0d_{ 1} }}{{p_{2} Qr}} - 2l}}} \right) + d_{ 2} \frac{\partial }{\partial r}\left( {\frac{ 1}{{\frac{{2 0 0 0d_{ 2} }}{{p_{2} Q\left( {1 - r} \right) + \left( {1 - p_{2} } \right)Q}} - 2l}}} \right) \\ & = \left[ {{ - }\frac{{d_{ 1} }}{{\left( {\frac{{2 0 0 0d_{ 1} }}{{p_{2} Qr}} - 2l} \right)^{ 2} }}\frac{\partial }{\partial r}\left( {\frac{{2 0 0 0d_{ 1} }}{{p_{2} Qr}} - 2l} \right)} \right] + \\ & \left[ {{ - }\frac{{d_{ 2} }}{{\left( {\frac{{2 0 0 0d_{ 2} }}{{p_{2} Q\left( {1 - r} \right) + \left( {1 - p_{2} } \right)Q}} - 2l} \right)^{ 2} }}\frac{\partial }{\partial r}\left( {\frac{{2 0 0 0d_{ 2} }}{{p_{2} Q\left( {1 - r} \right) + \left( {1 - p_{2} } \right)Q}} - 2l} \right)} \right] \\ & = \left[ {{ - }\frac{{2 0 0 0d_{1}^{2} }}{{p_{2} Q\left( {\frac{{2 0 0 0d_{ 1} }}{{p_{2} Qr}} - 2l} \right)^{ 2} }}\frac{\partial }{\partial r}\left( {\frac{ 1}{r}} \right)} \right] + \left[ {{ - }\frac{{2 0 0 0d_{2}^{2} }}{{\left( {\frac{{2 0 0 0d_{ 2} }}{{p_{2} Q\left( {1 - r} \right) + \left( {1 - p_{2} } \right)Q}} - 2l} \right)^{ 2} }}\frac{\partial }{\partial r}\left( {\frac{ 1}{{p_{2} Q\left( {1 - r} \right) + \left( {1 - p_{2} } \right)Q}}} \right)} \right] \\ & = \left[ {\frac{{2 0 0 0d_{1}^{2} }}{{p_{2} Qr^{ 2} \left( {\frac{{2 0 0 0d_{ 1} }}{{p_{2} Qr}} - 2l} \right)^{ 2} }}} \right] + \left[ {\frac{{2 0 0 0d_{2}^{2} \left( {\frac{\partial }{\partial r}\left( {p_{2} Q\left( {1 - r} \right)} \right) + \frac{\partial }{\partial r}\left( {\left( {1 - p_{2} } \right)Q} \right)} \right)}}{{\left( {p_{2} Q\left( {1 - r} \right) + \left( {1 - p_{2} } \right)Q} \right)^{ 2} \left( {\frac{{2 0 0 0d_{ 2} }}{{p_{2} Q\left( {1 - r} \right) + \left( {1 - p_{2} } \right)Q}} - 2l} \right)^{ 2} }}} \right] \\ & = \left[ {\frac{{2 0 0 0d_{1}^{2} }}{{p_{2} Qr^{ 2} \left( {\frac{{2 0 0 0d_{ 1} }}{{p_{2} Qr}} - 2l} \right)^{ 2} }}} \right] + \left[ {\frac{{2 0 0 0p_{2} Qd_{2}^{2} \frac{\partial }{\partial r}\left( {1 - r} \right)}}{{\left( {p_{2} Q\left( {1 - r} \right) + \left( {1 - p_{2} } \right)Q} \right)^{ 2} \left( {\frac{{2 0 0 0d_{ 2} }}{{p_{2} Q\left( {1 - r} \right) + \left( {1 - p_{2} } \right)Q}} - 2l} \right)^{ 2} }}} \right] \\ & = \left[ {\frac{{2 0 0 0d_{1}^{2} }}{{p_{2} Qr^{ 2} \left( {\frac{{2 0 0 0d_{ 1} }}{{p_{2} Qr}} - 2l} \right)^{ 2} }}} \right]{ - }\left[ {\frac{{2 0 0 0p_{2} Qd_{2}^{2} }}{{\left( {p_{2} Q\left( {1 - r} \right) + \left( {1 - p_{2} } \right)Q} \right)^{ 2} \left( {\frac{{2 0 0 0d_{ 2} }}{{p_{2} Q\left( {1 - r} \right) + \left( {1 - p_{2} } \right)Q}} - 2l} \right)^{ 2} }}} \right] \\ & = \frac{{500p_{2} lQ^{ 2} \left[ {d_{1} \left( {p_{2} r - 1} \right) + d_{2} p_{2} r} \right]\left\{ {d_{1} \left[ {2000d_{2} + lQ\left( {p_{2} r - 1} \right)} \right] - d_{2} p_{2} lQr} \right\}}}{{\left( {p_{2} lQr - 1000d_{1} } \right)^{ 2} \left[ { 1 0 0 0d_{2} + lQ\left( {p_{2} r - 1} \right)} \right]^{2} }} \\ \end{aligned} $$
(A(1))

Appendix B: The Proof of Minimum Cost for Player 2

The proof of minimum cost for Player 2 is expressed as Eq. A(2).

$$ \begin{aligned} & \frac{\partial \pi }{\partial r} = \frac{{500p_{2} lQ^{ 2} \left[ {d_{1} \left( {p_{2} r - 1} \right) + d_{2} p_{2} q} \right]\left\{ {d_{1} \left[ {2000d_{2} + lQ\left( {p_{2} r - 1} \right)} \right] - d_{2} p_{2} lQr} \right\}}}{{\left( {p_{2} lQr - 1000d_{1} } \right)^{ 2} \left[ { 1 0 0 0d_{2} + lQ\left( {p_{2} r - 1} \right)} \right]^{2} }} = 0 \\ & \Rightarrow \left\{ {\begin{array}{*{20}l} {\left[ {d_{1} \left( {p_{2} r - 1} \right) + d_{2} p_{2} r} \right] = 0} \hfill \\ {d_{1} \left[ {2000d_{2} + lQ\left( {p_{2} r - 1} \right)} \right] - d_{2} p_{2} lQr = 0} \hfill \\ \end{array} } \right. \\ & \Rightarrow \left\{ {\begin{array}{*{20}l} {d_{1} p_{2} r{ - }d_{1} + d_{2} p_{2} r = 0} \hfill \\ {2000d_{1} d_{2} + d_{1} lQp_{2} r{ - }d_{1} lQ{ - }d_{2} p_{2} lQr = 0} \hfill \\ \end{array} } \right. \\ & \Rightarrow \left\{ {\begin{array}{*{20}l} {d_{1} p_{2} r + d_{2} p_{2} r = d_{1} } \hfill \\ {d_{1} lQp_{2} r{ - }d_{2} p_{2} lQr = - 2000d_{1} d_{2} + d_{1} lQ} \hfill \\ \end{array} } \right. \\ & \Rightarrow \left\{ {\begin{array}{*{20}l} {\left( {d_{1} + d_{2} } \right)r = \frac{{d_{1} }}{{p_{2} }}} \hfill \\ {rlQp_{2} \left( {d_{1} - d_{2} } \right) = d_{1} \left( { - 2000d_{2} + lQ} \right)} \hfill \\ \end{array} } \right. \\ & \Rightarrow \left\{ {\begin{array}{*{20}l} {r = \frac{{d_{1} }}{{p_{2} \left( {d_{1} + d_{2} } \right)}}} \hfill \\ {r = \frac{{d_{1} \left( { - 2000d_{2} + lQ} \right)}}{{lQp_{2} \left( {d_{1} - d_{2} } \right)}}} \hfill \\ \end{array} } \right. \\ & \Rightarrow r \in \left\{ {\frac{{d_{1} }}{{p_{2} \left( {d_{1} + d_{2} } \right)}},\frac{{d_{1} \left( { - 2000d_{2} + lQ} \right)}}{{lQp_{2} \left( {d_{1} - d_{2} } \right)}}} \right\} \\ \end{aligned} $$
(A(2))

Rights and permissions

Reprints and permissions

Copyright information

© 2018 ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Lo, CL., Chen, CH., Hu, JL., Lo, KR., Cho, HJ. (2018). A Fuel-Efficient Route Plan App Based on Game Theory. In: Lin, YB., Deng, DJ., You, I., Lin, CC. (eds) IoT as a Service. IoTaaS 2017. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol 246. Springer, Cham. https://doi.org/10.1007/978-3-030-00410-1_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-00410-1_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-00409-5

  • Online ISBN: 978-3-030-00410-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics