Skip to main content

Experimental Characterization Techniques

  • Chapter
  • First Online:
Ion-Irradiation-Induced Damage in Nuclear Materials

Part of the book series: Springer Theses ((Springer Theses))

  • 290 Accesses

Abstract

This chapter describes the three main analysis techniques used in this work: ion beam induced luminescence (ionoluminescence, IL or IBIL), Rutherford Backscattering Spectrometry (RBS), and X-Ray Diffraction (XRD). The three techniques have been used to study the changes and the damage produced in MgO and a-SiO\(_{2}\) by ion irradiation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. J.R. Tesmer, M. Nastasi (eds.), Handbook of Modern Ion Beam Materials Analysis (Materials Research Society, Pittsburgh, Pennsylvania, USA, 1995)

    Google Scholar 

  2. W.K. Chu, J.W. Mayer, M.A. Nicolet, Backscattering Spectrometry (Academic, New York, 1978)

    Google Scholar 

  3. M. Mayer, in Rutherford Backscattering Spectrometry (RBS). Lectures given at the Workshop on Nuclear Data for Science and Technology: Materials Analysis (2003)

    Google Scholar 

  4. A. Redondo-Cubero, Structural and compositional characterization of wide bandgap semiconductor heterostructures by ion beam analysis, Ph.D. thesis, Universidad Autónoma de Madrid, 2010

    Google Scholar 

  5. B.N. Dev, Surface and near-surface modification and analysis by mev ions. Curr. Sci. 80(12), 1550–1559 (2001)

    CAS  Google Scholar 

  6. A. Debelle, On the Use of X-ray Diffraction for the Study of Irradiated Materials - Application to Oxide and Carbides (Université Paris-Sud, Habilitation à Diriger des Recherches, 2013)

    Google Scholar 

  7. A. Debelle, High-Resolution X-ray Diffraction for the Study of Irradiated Single-crystalline Materials (University of Tennessee, Tennessee, 2015)

    Google Scholar 

  8. B.E. Warren, X-ray Diffraction, 2nd edn. (Dover Publications, Mineola, 1990)

    Google Scholar 

  9. M.A. Krivoglaz, Theory of X-ray and Thermal-Neutron Scattering by Real Crystals (Plenum, USA, 1969)

    Google Scholar 

  10. C. Kittel, Introduction to Solid State Physics, 8th edn. (Wiley, USA, 2005)

    Google Scholar 

  11. R. Sahl, in Crystalline Silicon-Properties and Uses, Defect related luminescence in silicon dioxide network: a review (InTech, Rijeka, Croatia, 2011), pp. 135–172

    Google Scholar 

  12. A.F. Lubchenko, On the shapes of bands of light absorption and emission by impurities. Ukrains’kii Fizichnii Zhurnal 1(3), 265–280 (1956)

    Google Scholar 

  13. R.C. Ropp, Luminescence and the Solid State (Elsevier, Amsterdam, 2004)

    Google Scholar 

  14. P.D. Townsend, Y. Wang, Defect studies using advances with ion beam excited luminescence. Energy Procedia 41, 64–79 (2013). International Workshop Energy 2012

    Article  CAS  Google Scholar 

  15. CMAM, Center for Micro-Analysis of Materials, Madrid, Spain. http://www.cmam.uam.es

  16. Ocean Optics, Inc, Dunedin, FL, USA, in SpectraSuite Spectrometer Operating Software: Installation and Operation Manual

    Google Scholar 

  17. Ocean Optics, Inc, Dunedin, FL, USA, in QE65000 Scientific-grade Spectrometer: Installation and Operation Manual

    Google Scholar 

  18. Y. Wang, P.D. Townsend, Common mistakes in luminescence analysis. J. Phys. Conf. Ser. 398(1), 012003 (2012)

    Article  Google Scholar 

  19. E. Kótai, RBX: Simulation of RBS and ERD Spectra (Research Institute for Particle and Nuclear Physics, Hungary, 1985)

    Google Scholar 

  20. M. Mayer, SIMNRA (Max-Planck-Institute for Plasma Physics, Germany, 1996)

    Google Scholar 

  21. M. Thompson, RUMP: Rutherford Backscattering Spectroscopy Analysis Package (Cornell University, USA, 1983). http://www.genplot.com

  22. N.P. Barradas, C. Jeynes, R.P. Webb, Simulated annealing analysis of Rutherford backscattering data. Appl. Phys. Lett. 71, 291–293 (1997)

    Article  CAS  Google Scholar 

  23. N. Barradas, C. Jeynes, R. Webb, NDF (Ion Beam Analysis DataFurnace) (1997). http://www.surrey.ac.uk/ati/ibc/research/ion_beam_analysis/ndf.htm

  24. C. Jeynes, N.P. Barradas, P.K. Marriott, G. Boudreault, M. Jenkin, E. Wendler, R.P. Webb, Elemental thin film depth profiles by ion beam analysis using simulated annealing - a new tool. J. Phys. D Appl. Phys. 36(7), R97–R126 (2003)

    Article  CAS  Google Scholar 

  25. C. Jeynes, M.J. Bailey, N.J. Bright, M.E. Christopher, G.W. Grime, B.N. Jones, V.V. Palitsin, R.P. Webb, “Total IBA” - where are we? Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms 271, 107–118 (2012)

    Article  CAS  Google Scholar 

  26. T.L. Alford, L.C. Feldman, J.W. Mayer, Fundamentals of Nanoscale Film Analysis (Springer, New York, 2007)

    Google Scholar 

  27. CSNSM, Centre de Sciences Nucléaires et de Sciences de la Matière, Orsay, France. http://www.csnsm.in2p3.fr/

  28. L. Nowicki, A. Turos, R. Ratajczak, A. Stonert, F. Garrido, Modern analysis of ion channeling data by Monte Carlo simulations. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms 240(1–2), 277–282 (2005)

    Article  CAS  Google Scholar 

  29. L. Nowicki, McChasy - Monte Carlo Channeling Simulations (The Andrzej Soltan Insitute for Nuclear Studies, Warsaw, Poland, 2006)

    Google Scholar 

  30. J.H. Barrett, Monte carlo channeling calculations. Phys. Rev. B Condens. Matter Mater. Phys. 3, 1527–1547 (1971)

    Article  Google Scholar 

  31. P. Jozwik, Analysis of crystal lattice deformation by ion channeling (2011). http://www.itme.edu.pl/tl_files/Zaklady/Z-2/Seminaria/PJozwik.pdf

  32. P. Jozwik, N. Sathish, L. Nowicki, J. Jagielski, A. Turos, L. Kovarik, B. Arey, S. Shutthanandan, W. Jiang, J. Dyczewski, A. Barcz, Analysis of crystal lattice deformation by ion channeling. Acta Phys. Pol. A 123(5), 828–830 (2013)

    Article  CAS  Google Scholar 

  33. V.S. Speriosu, Kinematical x-ray diffraction in nonuniform crystalline films: strain and damage distributions in ion-implanted garnets. J. Appl. Phys. 52, 6094–6103 (1981)

    Article  CAS  Google Scholar 

  34. S. Rao, B. He, C.R. Houska, X-ray diffraction analysis of concentration and residual stress gradients in nitrogen-implanted niobium and molybdenum. J. Appl. Phys. 69(12), 8111–8118 (1991)

    Article  CAS  Google Scholar 

  35. A. Debelle, A. Declémy, XRD investigation of the strain/stress state of ion-irradiated crystals. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms 268(9), 1460–1465 (2010)

    Article  CAS  Google Scholar 

  36. A. Boulle, A. Debelle, Strain-profile determination in ion-implanted single crystals using generalized simulated annealing. J. Appl. Crystallogr. 43, 1046–1052 (2010)

    Article  CAS  Google Scholar 

  37. F.R. Elder, A.M. Gurewitsch, R.V. Langmuir, H.C. Pollock, Radiation from electrons in a synchrotron. Phys. Rev. 71, 829–830 (1947)

    Article  CAS  Google Scholar 

  38. D. Iwanenko, I. Pomeranchuk, On the maximal energy attainable in a betatron. Phys. Rev. 65, 343–343 (1944)

    Article  Google Scholar 

  39. V. Veksler, A new method of the acceleration of relativistic particles. Proc. USSR Acad. Sci. 43, 346 (1944)

    Google Scholar 

  40. PANalytical. http://www.panalytical.com/XPert3-MRD-XL.htm

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Diana Bachiller Perea .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bachiller Perea, D. (2018). Experimental Characterization Techniques. In: Ion-Irradiation-Induced Damage in Nuclear Materials. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-030-00407-1_5

Download citation

Publish with us

Policies and ethics