Skip to main content

Potential High-Quality Reservoir Sediments in the Gas Hydrate Stability Zone

  • Chapter
  • First Online:
Exploration and Production of Oceanic Natural Gas Hydrate
  • 430 Accesses

Abstract

In addition to sandy turbidite exploration targets that are common along many continental margins, other marine sediments having NGH reservoir potential may also exist. These terrigenous sediments would have been deposited in continental rifts that evolved into oceanic zones. Terrigenous continental margin sediments, known for their high-quality reservoir characteristics, may have subsided along continental flanks where they are now overlain by thick marine sediment sequences. On the contrary, some of these high-quality reservoir sediments might have been lifted to the gas hydrate stability zone (GHSZ) due to tectonism. During re-flooding of continental basins related to the development of passive margins, shorelines progressed up slope. During periodic halts in sea level rise, paralic deposition can take place along temporary shorelines, often interacting with fluviatile sediment supply or reworking older terrigenous sediments depositing upon the flooding terrigenous sediments. Mass flow deposits related to re-flooding may also occur. The majority of the subsided terrigenous and paralic sediments are likely to be deeply buried and be below the GHSZ. Here they comprise exploration targets for conventional hydrocarbons. Younger high-quality reservoir sediments may occur in the GHSZ. Continental margins starved of modern course grained marine sediment may contain these high-quality terrigenous and paralic sediments. Reworking of sediments after deposition has the potential to increase permeability and porosity of dominantly fine-grained sediments by deflation caused by current activity. High-quality reservoirs not formed in marine turbidite systems are liable to be rare, they could provide high-quality reservoir hosts for large and producible NGH concentrations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Boswell, R., Frye, M., Shelander, D., Shedd, W., McConnell, D. R., & Cook, A. (2012). Architecture of gas-hydrate-bearing sands from Walker Ridge 313, Green Canyon 955, and Alaminos Canyon 21: Northern deepwater Gulf of Mexico. Marine and Petroleum Geology, 34, 134–149.

    Article  Google Scholar 

  • Bott, M. H. P. (1995). Mechanisms of rifting: Geodynamic modeling of continental rift systems. In K. H. Olsen (Ed.), Continental rifts: Evolution, structure, tectonics. Developments in Geotectonics (Vol. 25, pp. 27–43). Amsterdam: Elsevier.

    Google Scholar 

  • Bowman, S. A. (2012). A comprehensive review of the MSC facies and their origins in the offshore Sirt Basin, Libya. Petroleum Geosciences, 18, 457–469.

    Article  Google Scholar 

  • Brownfield, M. E., & Charpentier, R. R. (2003). Assessment of the undiscovered oil and gas of the Senegal Province, Mauritania, Senegal, The Gambia, and Guinea-Bissau, Northwest Africa. U.S. Geological Survey Bulletin 2207-A, 29.

    Google Scholar 

  • Bryant, I., Herbst, N., Dailly, P., Dribus, J. R., Fainstein, R., Harvey, N., et al. (2012). Basin to basin: Plate tectonics in exploration. Oilfield Review (Schlumberger) Autumn, 24(3), 38–57.

    Google Scholar 

  • ÇaÄŸatay, M. N., EriÅŸ, K., Ryan, W. B. F., Sancar, Ãœ., Polonia, A., Akçer, S., et al. (2009). Late Pleistocene-Holocene evolution of the northern shelf of the Sea of Marmara. Marine Geology, 265, 87–100. https://doi.org/10.1016/j.margeo.2009.06.011.

    Article  Google Scholar 

  • Cifci, G., Dondurur, D., & Ergun, M. (2003). Deep and shallow structures of large pockmarks in the Turkish shelf, eastern Black Sea. In Contributions from the Combined 7th International Conference on Gas in Marine Sediments and the NATO Advanced Research Workshop on Seafloor Hydrocarbon Seeps. Geo-Marine Letters, 23, 311–322.

    Google Scholar 

  • Condie, K. C. (1997). Plate tectonics and crustal evolution (4th ed., 293 pp). Oxford, New York: Butterworth Heinemann. ISBN 0 7506 3386 7.

    Google Scholar 

  • Crager, B. (2014). An overview of subsea systems. SUT Subsea Awareness—Texas A&M University March 21, 2014 (Endeavor), 48 pp. http://sut.tamu.edu/sites/default/files/Session%206.%2021-Mar-14%20SUT-TAMU%20Subsea%20Overview.pdf. Accessed February 20, 2016.

  • Davison, I., & Steel, I. (2018). Geology and hydrocarbon potential of the East African continental margin: A review. In D. Macgregor, J. Argent & P. Sansom (Eds.), Thematic set: Tectonics and petroleum systems of East Africa—Part 1 (pp. 57–91).

    Google Scholar 

  • Dondurur, D., & Cifci, G. (2007). Acoustic structure and recent sediment transport processes on the continental slope of Yesilirmak River fan, eastern Black Sea. Marine Geology, 237(1–2), 37–53.

    Article  Google Scholar 

  • Dondurur, D., & Cifci, G. (2009). Anomalous strong reflections on high resolution seismic data from the Turkish shelf of the eastern Black Sea: Possible indicators of shallow hydrogen sulphide-rich gas hydrate layers. Turkish Journal of Earth Sciences, 18(2), 299–313.

    Google Scholar 

  • Finetti, I., Bricchi, G., Del Ben, A., Pipan, M., & Zuan, Z. (1988). Geophysical study of the Black Sea. Bolletino di Geofisica Teorica ed Applicata, 30(Plate 2, 117–118), 197–324.

    Google Scholar 

  • Frye, M., Shedd, W., & Schuenemeyer, J. (2013). Gas hydrate resource assessment, Atlantic outer continental shelf (Bureau of Ocean Energy Management (BOEM) Report RED 2013-01, 57 pp).

    Google Scholar 

  • Garcia-Castellanos, D., Estrada, F., Jinénez-Munt, I., Gorini, C., Fernàndez, M., Vergés, J., et al. (2009). Catestrophic flood of the Mediterranean after the Messinian salinity crisis. Nature Letters, 462(10), 778–781.

    Article  Google Scholar 

  • Gautier, F., Clauzon, G., Suc, J. P., Cravatte, J., & Violanti, D. (1994). Age and duration of the Messinian salinity crisis. C.R. Academy of Science Paris (IIA), 318, 1103–1109.

    Google Scholar 

  • Gibson, G. M., Roure, F., & Manatschal, G. (2015). Sedimentary basins and crustal processes at continental margins: From modern hyper-extended margins to deformed ancient analogues (Vol. 413, 338 pp). Geological Society of London Special Publication. ISBN 978-1-86239-720-0.

    Google Scholar 

  • Gillet, H., Lericolais, G., & Rehault, J.-P. (2007). Messinian event in the black sea: Evidence of a Messinian erosional surface. Marine Geology, 244(1–4), 142–165. Publisher’s official version: http://dx.doi.org/10.1016/j.margeo.2007.06.004, Open Access version: http://archimer.ifremer.fr/doc/00000/3324/. Accessed August 6, 2015.

    Article  Google Scholar 

  • Graham, I. J. (2008). A continent on the move: New Zealand geoscience into the 21st century (386 pp). Geological Society of New Zealand. ISBN 978-1-877480-00-3.

    Google Scholar 

  • Grothe, A., Sangiorgi, F., Mulders, Y. R., Vasiliev, I., Feichart, G.-J., Brinkhuis, H., et al. (2014). Black Sea dessication during the messinian salinity crisis: Fact or fiction? Geology, 42, 5.

    Google Scholar 

  • Groves, R. (2009). Choking the Mediterranean to dehydration: The Messinian salinity crisis. Geology, 37(2), 167–170. https://doi.org/10.1130/G25141A.1.

    Article  Google Scholar 

  • Hillman, J. I. T., Cook, A. E., Sawyer, D. E., Küçük, H. M., & Goldberg, D. S. (2017). The character and amplitude of ‘discontinuous’ bottom-simulating reflections in marine seismic data. Earth and Planetary Science Letters, 459, 157–169.

    Article  Google Scholar 

  • Hsü, K. J. (1983). The Mediterranean was a desert: A voyage of the glomar challenger. Princeton, New Jersey: Princeton University Press.

    Google Scholar 

  • Hsü, K. J., & Grovanoli, F. (1979). Messinian event in the Black Sea. Palaeogeography, Paleoclimatology, Palaeocology, 29, 75–93.

    Article  Google Scholar 

  • Inagaki, F., & 45 others. (2015). Exploring deep microbial life in coal-bearing sediment down to ~2.5 km below the ocean floor. Science, 349, 420–424.

    Google Scholar 

  • Intawong, A., & Nodgson, N. (2017). Deepwater turbidites offshore Namibia shown to provide high-quality reservoir sands. Offshore Magazine, 6 pp. http://www.offshore-mag.com/articles/print/volume-77/issue-4/geology-geophysics/deepwater-turbidites-offshore-namibia-shown-to-provide-high-quality-reservoir-sands.html. Accessed May 16, 2017.

  • Johannessen, P. N., Nielsen, L. H., Nielsen, L., Møller, I. M., Pejrup, M., Fruergaard, M., et al. (2015). How can a 15 m thick, 14 km long and 5 km wide marine barrier island reservoir sandstone be developed?—A case study from the holocene to recent Rømø Barrier Island, Danish Wadden Sea. Sedimentology of paralic reservoirs. In Proceedings on Recent Advances and their Applications, May 18–19, 2015. Geological Society of London, 62.

    Google Scholar 

  • Kelly, M. (2012, November). Transforming East Africa’s exploration successes into value. Offshore Magazine, 40, 42.

    Google Scholar 

  • Konerding, C., Dinu, C., & Wong, H. K. (2010). Seismic sequence stratigraphy, structure and subsidence history of the Romanian Black Sea shelf. In M. Kaymakci, R. A. Stephenson, F. Bergerat & V. Stabostenko (Eds.), Sedimentary basin tectonics from the Black Sea and Caucasus to the Arabian platform (Vol. 340, pp. 159–180). Geological Society of London Special Publication.

    Article  Google Scholar 

  • Krezsek, C., Schleder, Z., Bega, Z., Ionescu, G., & Tari, G. (2016). The Messinian sea-level fall in the western Black Sea: Small or large? Insights from offshore Romania. Petroleum Geoscience, 22(4), 392–399.

    Article  Google Scholar 

  • Krijgsman, W., Hilgen, F. J., Raffi, I., Sierro, F. J., & Wilson, D. S. (1999). Chronology, causes and progression of the Messinian salinity crisis. Nature, 400, 652–655.

    Article  Google Scholar 

  • Leever, K. A., Matenco, L., Rabagia, T., Cloetingh, S., Krijgsman, W., & Stoica, M. (2009). Messinian sea level fall in the Dacic Basin (Eastern Paratethys): Palaeogeographical implications from seismic sequence stratigraphy. Terra Nova, 22(1), 12–17. https://doi.org/10.1111/j.1365-3121.2009.00910.x.

    Article  Google Scholar 

  • Lundin, E. R., & Dorè, A. G. (2016). The Gulf of Mexico and Canada Basin: Genetic siblings on either side of North America. GSA Today, 27(1), 8.

    Google Scholar 

  • Mahmoudi, A. El., & Gabr, A. (2009). Geophysical surveys to investigate the relation between the quaternary Nile channels and the Messinian Nile canyon at east Nile delta, Egypt. Arab Journal of Geoscience, 2, 53–67. https://doi.org/10.1007/s12517-008-0018-9.

    Article  Google Scholar 

  • Maldonado, A., Barnolas, A., Bohoyo, F., Galindo-Zaldivar, J., Hernâândez-Molina, J., Lobo, F., et al. (2003). Contourite deposits in the central Scotia Sea: The importance of the Antarctic circumpolar current and the Weddell Gyre flows. Palaeogeography, Palaeoclimatology, Palaeocology, 198, 187–221.

    Article  Google Scholar 

  • Max, M. D., & Johnson, A. H. (2014). Hydrate petroleum system approach to hydrate natural gas exploration. Petroleum Geoscience, 20(2), 187–199. Geological Society of London (Published in Online First March 21, 2014). https://doi.org/10.1144/petgeo2012-049.

    Article  Google Scholar 

  • Max, M. D., & Johnson, A. H. (2015). A fresh look at the Mediterranean and Black Sea potential for high quality natural gas hydrate sand reservoirs. U.S. Department of Energy, National Energy Technology Laboratory, Morgantown WV. Fire in the Ice, 15(1), 15–18.

    Google Scholar 

  • Max, M. D., Johnson, A., & Dillon, W. P. (2006). Economic geology of natural gas hydrate (p. 341). Berlin, Dordrecht: Springer.

    Google Scholar 

  • Max, M. D., Johnson, A. H., & Dillon, W. P. (2013). Natural gas hydrate Arctic Ocean deepwater resource potential (113 pp). SpringerBriefs in Energy.

    Google Scholar 

  • Mohriak, W. U., & Leroy, S. (2012). Architecture of rifted continental margins and break- up evolution: Insights from the South Atlantic, North Atlantic and Red Sea-Gulf of Aden conjugate margins (Vol. 369, pp. 1–40). Special Publication—Geological Society of London. https://doi.org/10.1144/sp369.17. hal-00730844.

    Article  Google Scholar 

  • NAS. (1989). Margins: A research initiative for interdisciplinary studies of the processes attending lithospheric extension and convergence (289 pp). Continental Margins Committee, Ocean Studies Board, National Research Council. ISBN 0-309-54327-4.

    Google Scholar 

  • Nixon, M. F., & Grozic, J. L. (2007). Submarine slope failure due to gas hydrate dissociation: A preliminary quantification. Canadian Geotechnical Journal, 44(3), 314–325. https://doi.org/10.1139/t06-121.

    Article  Google Scholar 

  • Offshore 1/12/16. (2016). Seismic review highlights AGC Profond play potential offshore northwest Africa. Offshore http://www.offshore-mag.com/articles/2016/01/seismic-review-highlights-agc-profond-play-potential-offshore-northwest-africa.html. Accessed April 23, 2016.

  • Offshore 2/9/16. (2016). CGG to survey offshore South Africa. Offshore http://www.offshore-mag.com/articles/2016/01/cgg-to-survey-offshore-south-africa.html. Accessed April 23, 2016.

  • Offshore 2/12/16. (2016). Woodside discovers more deepwater gas offshore Myanmar. Offshore http://www.offshore-mag.com/articles/2016/02/woodside-discovers-more-deepwater-gas-offshore-myanmar.html. Accessed April 23, 2016.

  • Offshore 10/15/15. (2015). Lukoil discovers potential giant gas field offshore Romania. http://www.offshore-mag.com/articles/2015/10/lukoil-discovers-potential-giant-gas-field-offshore-romania.html. Accessed April 23, 2016.

  • Okay, A. I., Celal Åžengör, A. M., & Görür, N. (1994). Kinematic history of the opening of the Black Sea and its effect on surrounding regions. Geology, 22, 267–270.

    Article  Google Scholar 

  • OUGSME. (2005). The Messinian salinity crisis-Nov 2005. Open University Geological Society Mainland Europe Branch. http://www.ougseurope.org/index.php?id=28. Accessed May 1, 2015.

  • PG. 2014. Reservoir quality of clastic and carbonate rocks: Analysis, modelling and prediction. Meeting of the Petroleum Group of the Geological Society of London May 28–30, 2014, 232 pp. https://www.geolsoc.org.uk/~/media/shared/documents/specialist%20and%20regional%20groups/petroleum/Reservoir%20Quality%20Abstract%20Book.pdf?la=en. Accessed July 13, 2016.

  • Pierre, C., Rouchy, J.-M., & Blanc-Valleron, M.-M. (2002). Gas hydrate dissociation in the Lorca Basin (SE Spain) during the Mediterranean Messinian salinity crisis. Sedimentary Geology, 147, 247–252.

    Article  Google Scholar 

  • Piggott, N., & Pulham, A. (1993). Sedimentation rate as the control on hydrocarbon sourcing, generation, and migration in the deepwater Gulf of Mexico. In Proceedings, Gulf Coast Section SEPM 14th Annual Research Conference (pp. 179–191).

    Chapter  Google Scholar 

  • Plaza-Faverola, A., Bünz, S., Johnson, J. E., Chand, S., Knies, J., Mienert, J., et al. (2015). Role of tectonic stress in seepage evolution along the gas hydrate-charged Vestnesa Ridge, Fram Strait. Geophysical Research Letters, 42, 10. https://doi.org/10.1002/2014gl062474.

    Article  Google Scholar 

  • Popescu, I. (2002). Analyse desprocessusse, dimentairesre, centsdansl’ e ventail profond du Danube (MerNoire) (PhD thesis). Universite de Bretagne Occidentale, 282 pp.

    Google Scholar 

  • Popescu, I., Lericolais, G., Panin, N., Normand, A., Dinu, C., & Drezen, E. (2004). The Danube submarine canyon (Black Sea): Morphology and sedimentary processes. Marine Geology, 206(2004), 249–265. https://doi.org/10.1016/j.margeo.2004.03.003.

    Article  Google Scholar 

  • Praeg, D., Geletti, R., Wardell, N., Unnithan, V., Mascle, J., & Camerlenghi, A. (2011). The Mediterranean Sea: A natural laboratory to study gas hydrate dynamics? In Proceedings of the 7th International Conference on Gas Hydrates (ICGH 2011), Edinburgh, Scotland, United Kingdom, 8 pp, July 17–21, 2011.

    Google Scholar 

  • RavnÃ¥s, R., Nøttvedt, A., Steel, R. J., & Windelstad, J. (2000). Syn-rift sedimentary architectures in the Northern North Sea. In Dynamics of the Norwegian margin (Vol. 167, pp. 133–177). Geological Society of London, Special Publications. ISBN 9781862390560.

    Article  Google Scholar 

  • Rebesco, M., Hernández-Molina, F. J., Van Rooij, D., & WÃ¥hlin, A. (2014). Contourites and associated sediments controlled by deep-water circulation processes: State-of-the-art and future considerations. Marine Geology, 352, 111–154. https://doi.org/10.1016/j.margeo.2014.03.011.

    Article  Google Scholar 

  • Reynolds, A. D. (1999). Dimensions of paralic sandstone bodies. American Association of Petroleum Geologists Bulletin, 83(2), 211–229.

    Google Scholar 

  • Reynolds, T. (2015). Paralic reservoirs. (Abs) Keynote speech: Sedimentology of paralic reservoirs. In Proceedings on Recent Advances and Their Applications, May 18–19, 2015. Geological Society of London.

    Google Scholar 

  • Robertson, A. H. F., Parlak, O., & Ustaömer, T. (2012). Overview of the Palaeozoic-Neogene evolution of Neothethys in the eastern Mediterranean region (southern Turkey, Cyprus, Syria). Petroleum Geoscience, 18, 381–404.

    Article  Google Scholar 

  • Rodriguez, K., Hodgson, N., Saunder, M., & Geiger, L. (2017). Recent survey illuminates possible potsalt Aeolian sandstone play fairway. Offshore, 77(2), 33–34.

    Google Scholar 

  • Roy, S., Moreno, H. M., & Max, M. (2017). Natural gas hydrates and fluid flow: Implications from Irish offshore. In Proceedings of the 9th International Conference on Gas Hydrates, Denver CO, 2 pp, June 25–30.

    Google Scholar 

  • Ryan, W. B. F. (2007). Status of the Black Sea flood hypothesis. In V. Yanko-Hombach, A. S. Gilbert, N. Panin, & P. M. Dolukhanov (Eds.), The Black Sea Flood question: Changes in coastline, climate and human settlement (pp. 63–88). Dordrecht: Springer.

    Chapter  Google Scholar 

  • Ryan, W. B. F., Jamor, C. O., Lericolais, G., & Goldstein, S. L. (2003). Catestrophic flooding of the Black Sea. Annual Review Earth & Planetary Sciences, 31, 525–554. https://doi.org/10.1146/annurev.earth.31.100901.141249.

    Article  Google Scholar 

  • Ryan, W. B. F., Pitman, W. C., Major, C. O., Shimkus, K., Moskalenko, V., Jones, G. A., et al. (1997). An abrupt drowning of the Black Sea shelf. Marine Geology, 138, 119–126.

    Article  Google Scholar 

  • Schwalenberg, K., Wood, W., Pecher, I., Hamdan, L., Henrys, S., Jegen, M., et al. (2010). Prelimary interpretation of electromagnetic, heat flow, seismic, and geochemical data for gas hydrate distribution across the Porangahau Ridge, Nes Zealand. Marine Geology, 272, 89–98.

    Article  Google Scholar 

  • Scrutton, R. A. (Ed.) (1982). Dynamics of passive margins. In Geodynamics series (Vol. 6, pp. 1–200). American Geophysical Union.

    Google Scholar 

  • Åžengör, A. M. C., Tüysüz, O., Ä°mren, C., Sakinç, M., EyidoÄŸan, H., Görür, N., et al. (2005). The north Anatolian fault: A new look. Annual Reviews Earth and Planetary Sciences, 33, 37–112.

    Article  Google Scholar 

  • Skiple, D., Anderson, E., & Fürstenau, J. (2012). Seismic interpretation and attribute analysis of the Herodotus and the Levantine basin, offshore Cyprus and Lebanon. Petroleum Geoscience, 18, 433–552.

    Article  Google Scholar 

  • Smelror, M., Key, R., Daudi, E., & Njange, F. (2006). Frontier with high expectations. GeoExPro. http://assets.geoexpro.com/legacy-files/articles/Mozambique%20Frontier%20with%20High%20Expectations.pdf. Accessed June 31, 2015.

  • Snedden, J. W., Sarg, J. F., & Ying, X. (2003). Exploration play analysis from a sequence stratigraphic perspective. http://www.searchanddiscovery.com/documents/snedden/images/snedden.pdf.

  • Stoica, M., Lazăr, I., Krijgsman, W., Vasiliev, I., Jipa, D., & Floroiu, A. (2013). Paleoenvironmental evolution of the east Carpathian foredeep during the late Miocene–early Pliocene (Dacian basin; Romania). Global and Planetary Change, 103, 135–148.

    Article  Google Scholar 

  • Stoker, M. S., Van Weering, T. C. E., & Svaerdborg, T. (2001). A mid- to late cenozoic tectonostratigraphic framework for the rockall trough (Vol. 188, no. 1, pp. 411–438). Geological Society, London, Special Publications.

    Article  Google Scholar 

  • Sultan, N., Cochonat, P., Foucher, J. P., & Mienert, J. (2004). Effect of gas hydrates melting on seafloor slope instability. Marine Geology, 213(1–4), 379–401. https://doi.org/10.1016/j.margeo.2004.10.015.

    Article  Google Scholar 

  • Tari, E., Sahin, M., Burka, A., Reilinger, R., King, R. W., McClusky, S., et al. (2000). Active tectonids of the Black Sea with GPS. Earth Planetary Space, 52, 747–751.

    Article  Google Scholar 

  • Tari, G., Hussein, H., Novotny, B., Hannke, K., & Kohazy, R. (2012). Play types of the deep-water Matruh and Herodotus basins, NW Egypt. Petroleum Geoscience, 18, 443–455.

    Article  Google Scholar 

  • Tari, G., Fallaha, M., Kosia, W., Floodpageb, J., Baurb, J., Batic, Z., et al. (2015). Is the impact of the Messinian salinity crisis in the Black Sea comparable to that of the Mediterranean? Marine and Petroleum Geology, 66(1), 135–148.

    Article  Google Scholar 

  • Tari, G., Fallash, M., Schell, C., Kosi, W., Bati, Z., SipahioÄ¡lu, N. Ö., et al. (2016). Why are there no Messinian evaporites in the Black Sea? Petroleum Geoscience, 22(4), 381–391.

    Article  Google Scholar 

  • Tew, B. H., Mink, R. M., Mann, S. D., Bearden, B. L., & Mancini, E. A. (1991). Geologic framework of Norphlet and Pre-Norphlet strata of the onshore and offshore eastern Gulf of Mexico area. Gulf Coast Association of Geological Societies Transactions, 41, 590–600.

    Google Scholar 

  • Vasiliev, I., Reichart, G. J., van Roij, L., Sangiorgi, F., & Krijgsman, W. (2012). Drying up of the Black Sea during the Messinian salinity crisis of the Mediterranean. Geophysical Research Abstracts,14, 1. EGU2012-9321, 2012 EGU General Assembly 2012.

    Google Scholar 

  • Vasiliev, I., Gert-Jan Reichart, J., & Krijgsman, W. (2013). Impact of the Messinian salinity crisis on Black Sea hydrology—Insights from hydrogen isotopes analysis on biomarkers. Earth and Planetary Science Letters, 362, 272–282.

    Article  Google Scholar 

  • Viana, A. R., Almeida, W., Nunes, M. C. V., & Bulhões, E. M. (2007). The economic importance of contourites. Geological Society, London, Special Publications, 276(1), 1–23. https://doi.org/10.1144/gsl.sp.2007.276.01.01.

    Article  Google Scholar 

  • White, K. (2013). The Black Sea hots up. GeoExPro, 10(1). http://www.geoexpro.com/articles/2013/06/the-black-sea-hots-up. Accessed July 13, 2016.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael D. Max .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Max, M.D., Johnson, A.H. (2019). Potential High-Quality Reservoir Sediments in the Gas Hydrate Stability Zone. In: Exploration and Production of Oceanic Natural Gas Hydrate. Springer, Cham. https://doi.org/10.1007/978-3-030-00401-9_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-00401-9_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-00400-2

  • Online ISBN: 978-3-030-00401-9

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics