Skip to main content

Measuring Diversity and Accuracy in ANN Ensembles

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 11160))

Abstract

Performance of classifier ensembles depends on the precision and on the diversity of the members of the ensemble. In this paper we present an experimental study in which the relationship between the accuracy of the ensemble and both the diversity and the accuracy of base learners is analyzed. We conduct experiments on 8 different ANN ensembles and on 5 multiclass data sets. Experimental results show that a high diversity degree among the base learners does not always imply a high accuracy in the ensemble.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    Note than, by definition, BCE is built using a feature selection process. Nevertheless, in this work BCE, as the other classification models, is built using both, the full feature space (removing the feature selection step) and the feature subsets obtained by applying BF + CFS.

  2. 2.

    Enlarged figures are available at [26].

References

  1. Dietterich, T.G.: Ensemble methods in machine learning. In: Kittler, J., Roli, F. (eds.) MCS 2000. LNCS, vol. 1857, pp. 1–15. Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-45014-9_1

    Chapter  Google Scholar 

  2. Dietterich, T.G.: Machine-learning research. AI Mag. 18, 97–137 (1997)

    Google Scholar 

  3. Breiman, L.: Bagging predictors. Mach. Learn. 24, 123–140 (1996)

    MathSciNet  MATH  Google Scholar 

  4. Schapire, R.E.: The strength of weak learnability. Mach. Learn. 5, 197–227 (1990)

    Google Scholar 

  5. Sharkey, A.J.C., Sharkey, N.E.: Combining diverse neural nets. Knowl. Eng. Rev. 12, 231–247 (1997)

    Article  Google Scholar 

  6. Ho, T.K.: The random subspace method for constructing decision forests. IEEE Trans. Pattern Anal. Mach. Intell. 20, 832–844 (1998)

    Article  Google Scholar 

  7. Blum, A.L., Langley, P.: Selection of relevant features and examples in machine learning. Artif. Intell. 97, 245–271 (1997)

    Article  MathSciNet  Google Scholar 

  8. Tsymbal, A., Pechenizkiy, M., Cunningham, P.: Diversity in ensemble feature selection (2003)

    Google Scholar 

  9. Anand, R., Mehrotra, K.G., Mohan, C.K., Ranka, S.: An improved algorithm for neural network classification of imbalanced training sets. IEEE Trans. Neural Netw. 4, 962–969 (1993)

    Article  Google Scholar 

  10. Hastie, T., Tibshirani, R.: Classification by pairwise coupling. Ann. Stat. 26, 451–471 (1998)

    Article  MathSciNet  Google Scholar 

  11. Dietterich, T.G., Bakiri, G.: Solving multiclass learning problems via error-correcting output codes. J. Artif. Intell. Res. 2, 263–286 (1995)

    Article  Google Scholar 

  12. Murphey, Y.L., Wang, H., Ou, G.: OAHO: an effective algorithm for multi-class learning from imbalanced data. In: Proceedings of International Joint Conference on Neural Networks, pp. 406–411 (2007)

    Google Scholar 

  13. Sesmero, M.P., Alonso-Weber, J.M., Gutierrez, G., Ledezma, A., Sanchis, A.: An ensemble approach of dual base learners for multi-class classification problems. Inf. Fusion. 24, 122–136 (2015)

    Article  Google Scholar 

  14. Dietterich, T.G.: An experimental comparison of three methods for constructing ensembles of decision trees: bagging, boosting, and randomization. Mach. Learn. 40, 139–157 (2000)

    Article  Google Scholar 

  15. Kolen, J.F., Pollack, J.B.: Backpropagation is sensitive to initial conditions. Complex Syst. 4, 269–280 (1990)

    MATH  Google Scholar 

  16. Kuncheva, L.I., Whitaker, C.J.: Measures of diversity in classifier ensembles and their relationship with the ensemble accuracy. Mach. Learn. 51, 181–207 (2003)

    Article  Google Scholar 

  17. Tsymbal, A., Pechenizkiy, M., Cunningham, P.: Diversity in search strategies for ensemble feature selection. Inf. Fusion 6, 83–98 (2005)

    Article  Google Scholar 

  18. Zenobi, G., Cunningham, P.: Using diversity in preparing ensembles of classifiers based on different feature subsets to minimize generalization error. In: De Raedt, L., Flach, P. (eds.) ECML 2001. LNCS (LNAI), vol. 2167, pp. 576–587. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44795-4_49

    Chapter  Google Scholar 

  19. Gu, S., Jin, Y.: Generating diverse and accurate classifier ensembles using multi-objective optimization. In: 2014 IEEE Symposium Series on Computational Intelligence in Multi-Criteria Decision-Making, Proceedings, Orlando, pp. 9–15 (2014)

    Google Scholar 

  20. Löfstrüm, T., Johansson, U., Boström, H.: On the use of accuracy and diversity measures for evaluating and selecting ensembles of classifiers. In: Proceedings of the 7th International Conference on Machine Learning and Applications, ICMLA 2008, pp. 127–132 (2008)

    Google Scholar 

  21. Shipp, C.A., Kuncheva, L.I.: Relationships between combination methods and measures of diversity in combining classifiers. Inf. Fusion 3, 135–148 (2002)

    Article  Google Scholar 

  22. Xu, L., Yan, P., Chang, T.: Best first strategy for feature selection. In: 9th International Conference on Pattern Recognition, pp. 706–708 (1988)

    Google Scholar 

  23. Hall, M.A.: Correlation-based feature selection for machine learning (1999). http://www.cs.waikato.ac.nz/~mhall/thesis.pdf

  24. Frank, A., Asuncion, A.: UCI Machine Learning Repository. http://archive.ics.uci.edu/ml/

  25. Sesmero, M.P., Ledezma, A., Alonso-Weber, J.M., Gutierrez, G., Sanchis, A.: Control Learning and Systems Optimization Group. http://www.caos.inf.uc3m.es/datasets/

  26. Sesmero, M.P.: Measures of Diversity and Accuracy. http://www.caos.inf.uc3m.es/diversity-and-accuracy-in-ann-ensembles/

Download references

Acknowledgments

This research was supported by the Spanish MINECO under projects TRA2016-78886-C3-1-R and TRA2015-63708-R, and by CAM under project S2013/MIT-3024.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Paz Sesmero .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Sesmero, M.P., Alonso-Weber, J.M., Giuliani, A., Armano, G., Sanchis, A. (2018). Measuring Diversity and Accuracy in ANN Ensembles. In: Herrera, F., et al. Advances in Artificial Intelligence. CAEPIA 2018. Lecture Notes in Computer Science(), vol 11160. Springer, Cham. https://doi.org/10.1007/978-3-030-00374-6_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-00374-6_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-00373-9

  • Online ISBN: 978-3-030-00374-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics