Skip to main content

Bone Regeneration: Experiences in Dentistry

  • Chapter
  • First Online:
  • 373 Accesses

Part of the book series: Fundamental Biomedical Technologies ((FBMT))

Abstract

In recent years, there has been an increasing interest in a novel approach to evaluate craniofacial bone sites by means of high-resolution X-ray microtomography (microCT). Conventional histological evaluation and corresponding histomorphometric measurements provide only bidimensional information with the consequent risk that the selected slices do not properly represent the entire bone. Three-dimensional imaging methods, like microCT, are indicated to explore the dynamic and spatial distribution of regenerative phenomena in such complex anatomic structures. However, homogeneous tissues with a low attenuation coefficient or heterogeneous materials with a narrow range of attenuation coefficients produce insufficient contrast for absorption-based imaging. For such structures, the imaging quality can be enhanced through the use of phase-contrast microtomography (PhC-microCT). In addition, whereas PhC-microCT is usually based on a single distance between the detector and the sample, holotomography (HT) involves imaging at several distances and then combining the phase shift information to generate 3D reconstructions. HT is helpful when the material of interest has very small variations in attenuation coefficients, which lead to unsatisfactory imaging results even with phase-contrast techniques.

In the present chapter, the most recent breakthroughs in regenerative dentistry will be shown, demonstrating the unique capabilities of the microCT in offering not only an advanced characterization of biomaterials that are promising scaffold candidates but also to investigate the growth kinetics of regenerated bone in different grafted sites in human jaws.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Laurencin C, Khan Y, El-Amin SF (2006) Bone graft substitutes. Expert Rev Med Devices 3:49–57

    Article  CAS  Google Scholar 

  2. Giannoudis PV, Dinopoulos H, Tsiridis E (2005) Bone substitutes: an update. Injury 36(Suppl 3):S20–S27

    Article  Google Scholar 

  3. Fröhlich M, Grayson L, Wan L, Marolt D, Drobnic M, Vun-jak-Novakovic G (2008) Tissue engineered bone grafts: biological requirements, tissue culture and clinical relevance. Curr Stem Cell Res Ther 3(4):254–264

    Article  Google Scholar 

  4. Wang M (2003) Developing bioactive composite materials for tissue replacement. Biomaterials 24:2133e51

    Google Scholar 

  5. Liu X, Ma PX (2004) Polymeric scaffolds for bone tissue engineering. Ann Biomed Eng 32:477–486

    Article  Google Scholar 

  6. Hench LL (1998) Bioactive materials: the potential for tissue regeneration. J Biomed Mater Res 41:511e8

    Article  Google Scholar 

  7. Klein C, de Groot K, Chen W, Li Y, Zhang X (1994) Osseous substance formation induced in porous calcium phosphate ceramics in soft tissue. Biomaterials 15:31e4

    Article  Google Scholar 

  8. Ripamonti U (1996) Osteoinduction in porous hydroxyapatite implanted in heterotopic sites of different animal models. Biomaterials 17:31e5

    Article  Google Scholar 

  9. Barone A, Aldini NN, Fini M, Giardino R, Calvo Guirado JL, Covani U (2008) Xenograft versus ex-traction alone for ridge preservation after tooth removal: a clinical and histomorphometric study. J Periodontol 79(8):1370e7

    Article  Google Scholar 

  10. Orsini G, Scarano A, Piattelli M, Piccirilli M, Caputi S, Piattelli A (2006) Histologic and ultra-structural analysis of regenerated bone in maxillary sinus augmentation using a porcine bone-derived biomaterial. J Periodontol 77(12):1984e90

    Article  Google Scholar 

  11. Iezzi G, Piattelli A, Giuliani A, Mangano C, Barone A, Manzon L, Degidi M, Scarano A, Filippone A, Perrotti V (2017) Molecular, cellular and pharmaceutical aspects of bone grafting materials and membranes during maxillary sinus-lift procedures. Part 2: detailed characteristics of the materials. Curr Pharm Biotechnol 18(1):33–44. https://doi.org/10.2174/1389201017666161202104002

    Article  CAS  PubMed  Google Scholar 

  12. Haas R, Mailath G, Dörtbudak O, Watzek G (1998) Bovine hydroxyapatite for maxillary sinus augmentation: analysis of interfacial bond strength of dental implants using pull-out tests. Clin Oral Implants Res 9(2):117–122

    Article  CAS  Google Scholar 

  13. Hing KA, Best SM, Tanner KE, Bonfield W, Revell PA (2004) Mediation of bone ingrowth in porous hydroxyapatite bone graft substitutes. J Biomed Mater Res A 68(1):187–200

    Article  Google Scholar 

  14. Alsberg E, Hill EE, Mooney DJ (2001) Craniofacial tissue engineering. Crit Rev Oral Biol Med 12(1):64–75

    Article  CAS  Google Scholar 

  15. Nam SY, Ricles LM, Suggs LJ, Emelianov SY (2015) Imaging strategies for tissue engineering applications. Tissue Eng Part B 21(1):88–102

    Article  Google Scholar 

  16. Zehbe R, Haibel A, Schmidt F, Riesemeier H, Kirkpatrick CJ, Schubert H, Brochhausen C (2010) High resolution x-ray tomography – 3D imaging for tissue engineering applications. In: Eberli D (ed) Tissue engineering. InTech, Rijeka. https://doi.org/10.5772/8577 Available from: http://www.intechopen.com/books/tissue-engineering/high-resolution-x-ray-tomography-3d-imaging-for-tissue-engineering-applications

    Chapter  Google Scholar 

  17. Cancedda R, Cedola A, Giuliani A, Komlev V, Lagomarsino S, Mastrogiacomo M, Peyrin F, Rustichelli F (2007) Bulk and interface investigations of scaffolds and tissue-engineered bones by x-ray microtomography and x-ray microdiffraction. Biomaterials 28:2505e24

    Google Scholar 

  18. Swain MV, Xue J (2009) State of the art of micro-CT applications in dental research. Int J Oral Sci 1(4):177–188

    Article  Google Scholar 

  19. Hedberg EL, Kroese-Deutman HC, Shih CK, Lemoine JJ, Liebschner MA, Miller MJ, Yasko AW, Crowther RS, Carney DH, Mikos AG, Jansen JA (2005) Methods: a comparative analysis of radiography, microcomputed tomography, and histology for bone tissue engineering. Tissue Eng 11(9–10):1356–1367

    Article  Google Scholar 

  20. Meleo D, Bedini R, Pecci R, Mangione F, Pacifici L (2012) Microtomographic and morphometric characterization of a bioceramic bone substitute in dental implantology. Ann Ist Super Sanita 48(1):59–64. https://doi.org/10.4415/ANN_12_01_10

    Article  PubMed  Google Scholar 

  21. Arfelli F, Assante M, Bonvicini V, Bravin A, Cantatore G, Castelli E, Dalla Palma L, Di Michiel M, Longo R, Olivo A, Pani S, Pontoni D, Poropat P, Prest M, Rashevsky A, Tromba G, Vacchi A, Vallazza E, Zanconati F (1998) Low-dose phase contrast x-ray medical imaging. Phys Med Biol 43(10):2845–2852

    Article  CAS  Google Scholar 

  22. Gureyev TE, Pogany A, Paganin DM, Wilkins SW (2004) Linear algorithms for phase retrieval in the Fresnel region. Opt Commun 231(1–6):53–70

    Article  CAS  Google Scholar 

  23. Gureyev TE, Paganin DM, Myers GR (2006) Phase-and-amplitude computer tomography. Appl Phys Lett 89(3):034102

    Article  Google Scholar 

  24. Mangano C, Perrotti V, Shibli JA, Mangano F, Ricci L, Piattelli A, Iezzi G (2013) Maxillary sinus grafting with biphasic calcium phosphate ceramics: clinical and histologic evaluation in man. Int J Oral Maxillofac Implants 28:51–56

    Article  Google Scholar 

  25. Ohayon L (2014) Maxillary sinus floor augmentation using biphasic calcium phosphate: a histologic and histomorphometric study. Int J Oral Maxillofac Implants 29:1143–1148

    Article  Google Scholar 

  26. Barboni B, Mangano C, Valbonetti CL, Marruchella G, Berardinelli P, Martelli A, Muttini A, Mauro A, Bedini R, Turriani M, Pecci R, Nardinocchi D, Zizzari VL, Tetè S, Piattelli A, Mattioli M (2013) Synthetic bone substitute engineered with amniotic epithelial cells enhances bone regeneration after maxillary sinus augmentation. PLoS One 8(5):e63256

    Article  CAS  Google Scholar 

  27. Giuliani A, Manescu A, Mohammadi S, Mazzoni S, Piattelli A, Mangano F, Iezzi G, Mangano C (2016) Quantitative kinetics evaluation of blocks versus granules of biphasic calcium phosphate scaffolds (HA/β-TCP 30/70) by synchrotron radiation x-ray microtomography: a human study. Implant Dent 25(1):6–15

    Article  Google Scholar 

  28. Iezzi G, Piattelli A, Giuliani A, Mangano C, Manzon L, Degidi M, Iaculli F, Scarano A, Filippone A, Perrotti V (2017) Molecular, cellular and pharmaceutical aspects of bone grafting materials and membranes during maxillary sinus-lift procedures. Part 1: a general overview. Curr Pharm Biotechnol 18(1):19–32. https://doi.org/10.2174/138920-1017666161221155237

    Article  CAS  PubMed  Google Scholar 

  29. Giuliani A, Manescu A, Larsson E, Tromba G, Luongo G, Piattelli A, Mangano F, Iezzi G, Mangano C (2014) In vivo regenerative properties of coralline-derived (biocoral) scaffold grafts in human maxillary defects: demonstrative and comparative study with Beta-tricalcium phosphate and biphasic calcium phosphate by synchrotron radiation x-ray microtomography. Clin Implant Dent Relat Res 16(5):736–750. https://doi.org/10.1111/cid.12039

    Article  PubMed  Google Scholar 

  30. Manescu A, Giuliani A, Mohammadi S, Tromba G, Mazzoni S, Diomede F, Zini N, Piattelli A, Trubiani O (2016) Osteogenic potential of dualblocks cultured with human periodontal ligament stem cells: in vitro and synchrotron microtomography study. J Periodontal Res 51(1):112–124. https://doi.org/10.1111/jre.12289

    Article  CAS  PubMed  Google Scholar 

  31. Mazzoni S, Mohammadi S, Tromba G, Diomede F, Piattelli A, Trubiani O, Giuliani A (2017) Role of cortico-cancellous heterologous bone in human periodontal ligament stem cell xeno-free culture studied by synchrotron radiation phase-contrast microtomography. Int J Mol Sci 18(2):E364. https://doi.org/10.3390/ijms18020364

    Article  PubMed  Google Scholar 

  32. Barone A, Aldini NN, Fini M, Giardino R, Calvo Guirado JL, Covani U (2008) Xenograft versus extraction alone for ridge preservation after tooth removal: a clinical and histomorphometric study. J Periodontol 79(8):1370–1377

    Article  Google Scholar 

  33. Iasella JM, Greenwell H, Miller RL, Hill M, Drisko C, Bohra AA, Scheetz JP (2003) Ridge preservation with freeze-dried bone allograft and a collagen membrane compared to extraction alone for implant site development: a clinical and histologic study in humans. J Periodontol 74(7):990–999

    Article  Google Scholar 

  34. Tan WL, Wong TL, Wong MC, Lang NP (2012) A systematic review of post-extractional alveolar hard and soft tissue dimensional changes in humans. Clin Oral Implants Res 23(5):1–21

    Article  Google Scholar 

  35. Giuliani A, Iezzi G, Mazzoni S, Piattelli A, Perrotti V, Barone A (2018) Regenerative properties of collagenated porcine bone grafts in human maxilla: demonstrative study of the kinetics by synchrotron radiation microtomography and light microscopy. Clin Oral Investig 22(1):505–513. https://doi.org/10.1007/s00784-017-2139-6

    Article  PubMed  Google Scholar 

  36. Benhamou CL, Lespessailles E, Royant V (1996) Bone structure and mechanical resistance of the bone tissue. Presse Med 25(6):249–254

    CAS  PubMed  Google Scholar 

  37. Lewis RA, Hall CJ, Hufton AP, Evans S, Menk RH, Arfelli F, Rigon L, Tromba G, Dance DR, Ellis IO, Evans A, Jacobs E, Pinder SE, Rogers KD (2003) X-ray refraction effects: application to the imaging of biological tissues. Brit J Radiol 76(905):301–308

    Article  CAS  Google Scholar 

  38. Connor DM, Benveniste H, Dilmanian FA, Kritzer MF, Miller LM, Zhong Z (2009) Computed tomography of amyloid plaques in a mouse model of Alzheimer's disease using diffraction enhanced imaging. NeuroImage 46(4):908–914. https://doi.org/10.1016/j.neuroimage.2009.03.019

    Article  PubMed  PubMed Central  Google Scholar 

  39. Marinescu M, Langer M, Durand A, Olivier C, Chabrol A, Rositi H, Chauveau F, Cho TH, Nighoghossian N, Berthezène Y, Peyrin F, Wiart M (2013) Synchrotron radiation x-ray phase micro-computed tomography as a new method to detect iron oxide nanoparticles in the brain. Mol Imaging Biol 15(5):552–559. https://doi.org/10.1007/s11307-013-0639-6

    Article  CAS  PubMed  Google Scholar 

  40. Pinzer BR, Cacquevel M, Modregger P, McDonald SA, Bensadoun JC, Thuering T, Aebischer P, Stampanoni M (2012) Imaging brain amyloid deposition using grating-based differential phase contrast tomography. NeuroImage 61(4):1336–1346

    Article  CAS  Google Scholar 

  41. Herzen J, Willner MS, Fingerle AA, Noël PB, Köhler T, Drecoll E, Rummeny EJ, Pfeiffer F (2014) Imaging liver lesions using grating-based phase-contrast computed tomography with bi-lateral filter post-processing. PLoS One 9(1):e83369. https://doi.org/10.1371/journal.pone.0083369

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Velroyen A, Bech M, Zanette I, Schwarz J, Rack A, Tympner C, Herrler T, Staab-Weijnitz C, Braunagel M, Reiser M, Bamberg F, Pfeiffer F, Notohamiprodjo M (2014) X-ray phase-contrast tomography of renal ischemia-reperfusion damage. PLoS One 9(10):e109562. https://doi.org/10.1371/journal.pone.0109562

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Arfelli F, Bonvicini V, Bravin A, Cantatore G, Castelli E, Palma LD, Michiel MD, Fabrizioli M, Longo R, Menk RH, Olivo A, Pani S, Pontoni D, Poropat P, Prest M, Rashevsky A, Ratti M, Rigon L, Tromba G, Vacchi A, Vallazza E, Zanconati F (2000) Mammography with synchrotron radiation: phase-detection techniques. Radiology 215(1):286–293

    Article  CAS  Google Scholar 

  44. Stampanoni M, Wang Z, Thuring T, David C, Roessl E, Trippel M, Kubik-Huch RA, Singer G, Hohl MK, Hauser N (2011) The first analysis and clinical evaluation of native breast tissue using differential phase-contrast mammography. Investig Radiol 46(12):801–806

    Article  CAS  Google Scholar 

  45. Coan P, Bamberg F, Diemoz PC, Bravin A, Timpert K, Mützel E, Raya JG, Adam-Neumair S, Reiser MF, Glaser C (2010) Characterization of osteoarthritic and normal human patella cartilage by computed tomography x-ray phase-contrast imaging: a feasibility study. Investig Radiol 45(7):437–444. https://doi.org/10.1097/RLI.0b013e3181e193bd

    Article  Google Scholar 

  46. Marenzana M, Hagen CK, Das Neves Borges P, Endrizzi M, Szafraniec MB, Ignatyev K, Olivo A (2012) Visualization of small lesions in rat cartilage by means of laboratory-based x-ray phase contrast imaging. Phys Med Biol 57(24):8173–8184

    Article  Google Scholar 

  47. Horng A, Brun E, Mittone A, Gasilov S, Weber L, Geith T, Adam-Neumair S, Auweter SD, Bravin A, Reiser MF, Coan P (2014) Cartilage and soft tissue imaging using x-rays: propagation-based phase contrast computed tomography of the human knee in comparison with clinical imaging techniques and histology. Investig Radiol 49(9):627–634

    Article  Google Scholar 

  48. Giuliani A, Mazzoni S, Mele L, Liccardo D, Tromba G, Langer M (2017) Synchrotron phase tomography: an emerging imaging method for microvessel detection in engineered bone of craniofacial districts. Front Physiol 8:769. https://doi.org/10.3389/fphys.2017.00769

    Article  PubMed  PubMed Central  Google Scholar 

  49. Paino F, La Noce M, Giuliani G, De Rosa A, Mazzoni S, Laino L, Amler E, Papaccio G, Desiderio V, Tirino V (2017) Human DPSCs fabricate vascularized woven bone tissue: a new tool in bone tissue engineering. Clin Sci 131:699–713

    Article  CAS  Google Scholar 

  50. Langer M, Cloetens P, Peyrin F (2010) Regularization of phase retrieval with phase-attenuation duality prior for 3D holotomography. IEEE Trans Image Process 19:2428–2436

    Article  Google Scholar 

  51. Giuliani A, Manescu A, Langer M, Rustichelli F, Desiderio V, Paino F, De Rosa A, Laino L, d'Aquino R, Tirino V, Papaccio G (2013) Three years after transplants in human mandibles, histological and inline HT revealed that stem cells regenerated a com-pact rather than a spongy bone: biological and clinical implications. Stem Cells Transl Med 2:316–324

    Article  CAS  Google Scholar 

  52. Suresh KP, Chandrashekara S (2012) Sample size estimation and power analysis for clinical research studies. J Hum Reprod Sci 5(1):7–13

    Article  Google Scholar 

Download references

Acknowledgments

The majority of the research here reported is the result of collaborations created within the Action COST MP1005 “From nano to macro biomaterials (design, processing, characterization, modeling) and applications to stem cells regenerative orthopedic and dental medicine (NAMABIO)” and the PRIN Project – Prot. 20102ZLNJ5 funded by the Italian Ministry of Education and Research.

The author acknowledges Dr. Alessandra Giuliani, Principal Research Scientist at Polytechnic University of Marche, Department of Clinical Sciences, for her fundamental suggestions during the chapter drafting.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mazzoni, S. (2018). Bone Regeneration: Experiences in Dentistry. In: Giuliani, A., Cedola, A. (eds) Advanced High-Resolution Tomography in Regenerative Medicine. Fundamental Biomedical Technologies. Springer, Cham. https://doi.org/10.1007/978-3-030-00368-5_8

Download citation

Publish with us

Policies and ethics