Skip to main content

Synchrotron Radiation X-Ray Phase-Contrast Microtomography: What Opportunities More for Regenerative Medicine?

  • Chapter
  • First Online:
Advanced High-Resolution Tomography in Regenerative Medicine

Abstract

In regenerative medicine 3D X-ray imaging is indispensable for characterizing damaged tissue, for measuring the efficacy of the treatment, and for monitoring adverse reactions.

Among the X-ray imaging techniques, high-resolution X-Ray Phase Contrast Tomography (XRPCT) allows simultaneous three-dimensional visualization of both dense (e.g. bone) and soft objects (e.g. soft tissues) on scale of length ranging from millimeters to hundreds of nanometers, without the use of contrast agent, sectioning or destructive preparation of the sample. XRPCT overcomes the problem of incomplete spatial coverage of conventional 2D imaging (histology or electron microscopy), while reaches a higher resolution and contrast than standard 3D computer tomographic imaging.

It can be used as a prominent tool in regenerative medicine field, where a crucial step after artificial tissue implantation is to monitor its correct functioning and connection with the surrounding tissue.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Naumova AV, Modo M, Moore A, Murry CE, Frank JA (2014) Clinical imaging in regenerative medicine. Nat Biotechnol 32(8):804–818. https://doi.org/10.1038/nbt.2993

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Oryan A, Alidadi S, Moshiri A, Maffulli N (2014) Bone regenerative medicine: classic options, novel strategies, and future directions. J Orthop Surg Res 9:18. https://doi.org/10.1186/1749-799X-9-18

    Article  PubMed  PubMed Central  Google Scholar 

  3. Cedola A, Campi G, Pelliccia D, Bukreeva IN, Fratini M, Burghammer MC, Mastrogiacomo M (2014) Three dimensional visualization of engineered bone and soft tissue by combined x-ray micro-diffraction and phase contrast tomography. Phys Med Biol 59(1):189–201. https://doi.org/10.1088/0031-9155/59/1/189

    Article  PubMed  Google Scholar 

  4. Bukreeva I, Fratini M, Campi G, Pelliccia D, Spanò R, Tromba G, Mastrogiacomo M (2015) High-resolution x-ray techniques as new tool to investigate the 3D vascularization of engineered-bone tissue. Front Bioeng Biotechnol 3:133. https://doi.org/10.3389/fbioe.2015.00133

    Article  PubMed  PubMed Central  Google Scholar 

  5. Upputuri PK, Sivasubramanian K, Mark CSK, Pramanik M (2015) Recent developments in vascular imaging techniques in tissue engineering and regenerative medicine. Biomed Res Int 2015:783983., 9 pages, 2015. https://doi.org/10.1155/2015/783983

    Article  PubMed  PubMed Central  Google Scholar 

  6. Fitzgerald R (2000) Phase-sensitive x-ray imaging. Phys Today 2000(53):23

    Article  Google Scholar 

  7. Lewis RA (2004) Medical phase contrast x-ray imaging: current status and future prospects. Phys Med Biol 2004(49):3573

    Article  Google Scholar 

  8. Momose A (2005) Recent advances in x-ray phase imaging. Jpn J Appl Phys 44:6355

    Article  CAS  Google Scholar 

  9. Betz O, Wegst U, Weide D, Heethoff M, Helfen L, Lee WK, Cloetens, P (2007) Imaging applications of synchrotron X-ray phase-contrast microtomography in biological morphology and biomaterials science. I. General aspects of the technique and its advantages in the analysis of millimetre-sized arthropod structure. J Microsc, 227:51–71. Williams I, Siu K, Runxuan G, He X, Hart S, Styles C, Lewis R (2008) Towards the clinical application of x-ray phase contrast imaging. Eur J Radiol, 68:S73–S77

    Article  PubMed  Google Scholar 

  10. Zhou SA, Brahme A (2008) Development of phase-contrast x-ray imaging techniques and potential medical applications. Phys Med 24:129–148

    Article  PubMed  Google Scholar 

  11. Bravin A, Coan P, Suortti P (2013) X-ray phase-contrast imaging: from pre-clinical applications towards clinics. Phys Med Biol 58:R1

    Article  PubMed  Google Scholar 

  12. Coan P, Bravin A, Tromba G (2013) Phase-contrast x-ray imaging of the breast: recent developments towards clinics. J Phys D 46:494007

    Article  Google Scholar 

  13. Koehler T, Daerr H, Martens G, Kuhn N, Löscher S, van Stevendaal U, Roessl E (2015) Slit-scanning differential x-ray phase-contrast mammography: proof-of-concept experimental studies. Med Phys 42:1959–1965

    Article  PubMed  Google Scholar 

  14. Horn F, Hauke C, Lachner S, Ludwig V, Pelzer G, Rieger J, Schuster M, Seifert M, Wandner J, Wolf A, et al. (2016) High-energy X-ray grating-based phase-contrast radiography of human anatomy. Proc. SPIE, 9783

    Google Scholar 

  15. Momose A, Yashiro W, Kido K, Kiyohara J, Makifuchi C, Ito T, Nagatsuka S, Honda C, Noda D, Hattori T et al (2014) X-ray phase imaging: from synchrotron to hospital. Philos Trans Royal Soc A 372:20130023

    Article  Google Scholar 

  16. Campi G, Bukreeva I, Fratini M, Mastrogiacomo M, Cedola A (2014) Imaging tissue regeneration/degeneration by combined x-ray micro-diffraction and phase contrast micro-tomography. J Tissue Eng Regen Med 8:66–67

    Google Scholar 

  17. Giuliani A, Mazzoni S, Mele L, Liccardo D, Tromba G, Langer M (2017) Synchrotron phase tomography: an emerging imaging method for microvessel detection in engineered bone of craniofacial districts. Front Physiol 8:769. https://doi.org/10.3389/fphys.2017.00769

    Article  PubMed  PubMed Central  Google Scholar 

  18. Núñez JA, Goring A, Hesse E, Thurner PJ, Schneider P, Clarkin CE (2017) Simultaneous visualisation of calcified bone microstructure and intracortical vasculature using synchrotron x-ray phase contrast-enhanced tomography. Sci Rep 7:13289

    Article  PubMed  PubMed Central  Google Scholar 

  19. Henke BL, Gullikson EM, Davis JC (1993) X-ray interactions: Photoabsorption, scattering, transmission, and reflection at e = 50–30,000 ev, z = 1–92. At Data Nucl Data Tables 54:181–342

    Article  CAS  Google Scholar 

  20. Als-Nielsen, J. & McMorrow, D. (2011) Elements of Modern X-Ray Physics. Wiley, 2 edition

    Google Scholar 

  21. Wilkins SW, Nesterets YA, Gureyev TE, Mayo SC, Pogany A, Stevenson AW (2014) On the evolution and relative merits of hard x-ray phase-contrast imaging methods. Phil Trans R Soc A 372:20130021

    Article  CAS  PubMed  Google Scholar 

  22. Bilderback DH, Elleaume P, Weckert E (2005) Review of third and next generation synchrotron light sources. J Phys 38:S773–S797

    CAS  Google Scholar 

  23. Wu X, Liu H (2003) A general formalism for x-ray phase contrast imaging. J Xray Sci Technol 11:33–42 2003

    PubMed  Google Scholar 

  24. Langer M, Cloetens P, Guigay JP, Peyrin F (2008) Quantitative comparison of direct phase retrieval algorithms in in-line phase tomography. Med Phys 35:4556–4566

    Article  PubMed  Google Scholar 

  25. Burvall A, Lundström U, Takman AC, Larsson DH, Hertz HM (2011) Phase retrieval in x-ray phase-contrast imaging suitable for tomography. Opt Express 19:10359–10376

    Article  CAS  PubMed  Google Scholar 

  26. Thibault P (2007) Algorithmic methods in diffraction microscopy. Cornell University, Ithaca

    Google Scholar 

  27. Pogany A, Gao D, Wilkins SW (1997) Contrast and resolution in imaging with a microfocus x-ray source. Rev Sci Instrum 68(7):2774–2782

    Article  CAS  Google Scholar 

  28. Paganin D, Mayo SC, Gureyev TE, Wilkins PR, Wilkins SW (2002) Simultaneous phase and amplitude extraction from a single defocused image of a homogeneous object. J Microsc 206:33–40

    Article  CAS  PubMed  Google Scholar 

  29. Bonse U, Hart M (1965) An x-ray interferometer. Appl Phys Lett 6:155–156

    Article  Google Scholar 

  30. Momose A, Takeda IY, Yoneyama A, Hirano K (1998) Phase-contrast tomographic imaging using an x-ray interferometer. J Synchrotron Radiat 5:309–314

    Article  CAS  PubMed  Google Scholar 

  31. Chapman D, Thomlinson W, Johnston RE, Washburn D, Pisano E, Gmür N, Zhong Z, Menk R, Arfelli F, Sayers D (1997) Diffraction enhanced x-ray imaging. Phys Med Biol 42:2015–2025

    Article  CAS  PubMed  Google Scholar 

  32. David C, Nöhammer B, Solak HH, Ziegler E (2002) Differential x-ray phase contrast imaging using a shearing interferometer. Appl Phys Lett 21:3287–3289

    Article  Google Scholar 

  33. Snigirev A, Snigireva I, Kohn V, Kuznetsov S, Schelokov I (1995) On the possibilities of X-ray phase contrast microimaging by coherent high energy synchrotron radiation. Rev Sci Instrum 66:5486

    Article  CAS  Google Scholar 

  34. Cloetens P, Pateyron-Salome M, Buffiere JY, Peix G, Baruchel J, Peyrin V, Schlenker M (1997) Observation in microstructure and damage in materials by phase sensitive radiography and tomography. J Appl Phys 81:5878–5886

    Article  CAS  Google Scholar 

  35. Born M, Wolf E (1980) Principles of optics, 6th edn. Pergamon, Oxford

    Google Scholar 

  36. Teague MR (1983) Deterministic phase retrieval: a green’s function. J Opt Soc Am 73:1434–1441

    Article  Google Scholar 

  37. Cowley, J. M. (1975). Diffraction physics. Amsterdam: New York: North-Holland Pub. Co., American Elsevier

    Google Scholar 

  38. Groso A, Abela R, Stampanoni M (2006) Implementation of a fast method for high resolution phase contrast tomography. Opt Express 14:8103–8110

    Article  CAS  PubMed  Google Scholar 

  39. Bronnikov AV (1999) Reconstruction formulas for phase-contrast imaging. Opt Commun 171:239–244

    Article  CAS  Google Scholar 

  40. Hehn L, Morgan K, Bidola P, Noichl W, Gradl R, Dierolf M, Noël PB, Pfeiffer F (2018) Nonlinear statistical iterative reconstruction for propagation-based phase-contrast tomography. APL Bioengineering 2:016105. https://doi.org/10.1063/1.4990387

    Article  PubMed  PubMed Central  Google Scholar 

  41. Wu X, Liu H (2005) X-ray cone-beam phase tomography formulas based on phase-attenuation duality. Opt Express 13:6000–6014

    Article  PubMed  Google Scholar 

  42. Beltran MA, Paganin DM, Uesugi K, Kitchen MJ (2010) 2D and 3D x-ray phase retrieval of multi-material objects using a single defocus distance. Opt Express 18:6423–6436

    Article  CAS  PubMed  Google Scholar 

  43. Gureyev TE, Davis TJ, Pogany A, Mayo SC, Wilkins SW (2004) Optical phase retrieval by use of first born- and Rytov-type approximations. Appl Opt 43:2418–2430

    Article  PubMed  Google Scholar 

  44. Cloetens P, Ludwig W, Baruchel J, Van Dyck D, Van Landuyt J, Guigay JP (1999) Holotomography: quantitative phase tomography with micrometer resolution using hard synchrotron radiation x rays. Appl Phys Lett 75(19):2912–2914

    Article  CAS  Google Scholar 

  45. Noh DY, Kim C, Kim Y, Song C (2016) Enhancing resolution in coherent x-ray diffraction imaging. J Phys Condens Matter 28:493001

    Article  PubMed  Google Scholar 

  46. Mayo SC, Davis TJ, Gureyev TE, Miller PR, Paganin D, Pogany A, Stevenson AW, Wilkins SW (2003) X-ray phase-contrast microscopy and microtomography. Opt Express 11:2289–2302

    Article  CAS  PubMed  Google Scholar 

  47. Paganin D, Gureyev TE, Mayo SC, Stevenson AW, Nesterets YAI, Wilkins SW (2004) X-ray omni microscopy. J Microsc 214:315–327

    Article  CAS  PubMed  Google Scholar 

  48. Turner D, Weber KP, Paganin D, Scholten RE (2004) Off-resonant defocus-contrast imaging of cold atoms. Opt Lett 29:232–234

    Article  CAS  PubMed  Google Scholar 

  49. Irvine SC, Paganin DM, Dubsky W, Lewis RA, Fouras A (2008) Phase retrieval for improved three-dimensional velocimetry of dynamic x-ray blood speckle. Appl Phys Lett 93:153901

    Article  Google Scholar 

  50. Stevenson AW, Mayo SC, Hausermann D, Maksimenko A, Garrett RF, Hall CJ, Wilkins SW, Lewis RA, Myers DE (2010) First experiments on the Australian synchrotron imaging and medical beamline, including investigations of the effective source size in respect of x-ray imaging. J Synchrotron Radiat 17:75–80

    Article  CAS  PubMed  Google Scholar 

  51. Herman GT (1980) Image reconstruction from projections: the fundamentals of computerized tomography. Academic Press, 2 edition

    Google Scholar 

  52. Atala A, Allickson J (2014) Translational regenerative medicine. Academic Press, 1 edition

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Begani Provinciali, G., Pieroni, N., Bukreeva, I. (2018). Synchrotron Radiation X-Ray Phase-Contrast Microtomography: What Opportunities More for Regenerative Medicine?. In: Giuliani, A., Cedola, A. (eds) Advanced High-Resolution Tomography in Regenerative Medicine. Fundamental Biomedical Technologies. Springer, Cham. https://doi.org/10.1007/978-3-030-00368-5_4

Download citation

Publish with us

Policies and ethics