Skip to main content

Synchrotron X-Ray-Based Functional and Anatomical Lung Imaging Techniques

  • Chapter
  • First Online:
Advanced High-Resolution Tomography in Regenerative Medicine

Part of the book series: Fundamental Biomedical Technologies ((FBMT))

Abstract

Lung diseases are a major burden of public health especially in developed countries and therefore continue to be an active interest in preclinical and clinical research. Due to the complex structure and motion of the lung, an in vivo or in situ analysis would be very beneficial. However, this is very challenging for virtually all imaging technologies in small animal models of lung disease due to the small size of the organ and its rapid breathing motion. To study lung disease in detail, the interaction of molecular events, anatomical alterations, and changes in the lung function need to be assessed in parallel. The use of synchrotron light sources has enabled the development of several lung imaging techniques such as phase-contrast CT, 4D lung imaging, virtual histology of lung tissue, k-edge subtraction imaging for measuring regional lung ventilation and perfusion, as well as speckle-based airflow measurements. The application of these techniques has allowed to gain more insight into anatomical alterations as well as functional parameters in small animal lung disease models, which will be demonstrated in this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Albers J, Markus MA, Alves F, Dullin C (2018) X-ray based virtual histology allows guided sectioning of heavy ion stained murine lungs for histological analysis. Sci Rep 8:7712

    Article  Google Scholar 

  2. Bayat S, Le Duc G, Porra L, Berruyer G, Nemoz C, Monfraix S, Fiedler S, Thomlinson W, Suortti P, Standertskjöld-Nordenstam C-G (2001) Quantitative functional lung imaging with synchrotron radiation using inhaled xenon as contrast agent. Phys Med Biol 46:3287

    Article  CAS  Google Scholar 

  3. Bayat S, Porra L, Albu G, Suhonen H, Strengell S, Suortti P, Sovijärvi A, Peták F, Habre W (2013) Effect of positive end-expiratory pressure on regional ventilation distribution during mechanical ventilation after surfactant depletion. Anesthesiol J Am Soc Anesthesiol 119:89–100

    Google Scholar 

  4. Bayat S, Porra L, Broche L, Albu G, Malaspinas I, Doras C, Strengell S, Peták F, Habre W (2015) Effect of surfactant on regional lung function in an experimental model of respiratory distress syndrome in rabbit. J Appl Physiol 119:290–298. https://doi.org/10.1152/japplphysiol.00047.2015

    Article  CAS  PubMed  Google Scholar 

  5. Bayat S, Porra L, Suhonen H, Nemoz C, Suortti P, Sovijärvi ARA (2006) Differences in the time course of proximal and distal airway response to inhaled histamine studied by synchrotron radiation CT. J Appl Physiol Bethesda Md 1985 100:1964–1973. https://doi.org/10.1152/japplphysiol.00594.2005

    Article  CAS  Google Scholar 

  6. Bayat S, Porra L, Suhonen H, Suortti P, Sovijärvi ARA (2009) Paradoxical conducting airway responses and heterogeneous regional ventilation after histamine inhalation in rabbit studied by synchrotron radiation CT. J Appl Physiol 106:1949–1958. https://doi.org/10.1152/japplphysiol.90550.2008

    Article  CAS  PubMed  Google Scholar 

  7. Bayat S, Strengell S, Porra L, Janosi TZ, Petak F, Suhonen H, Suortti P, Hantos Z, Sovijärvi ARA, Habre W (2009) Methacholine and ovalbumin challenges assessed by forced oscillations and synchrotron lung imaging. Am J Respir Crit Care Med 180:296–303. https://doi.org/10.1164/rccm.200808-1211OC

    Article  CAS  PubMed  Google Scholar 

  8. Boistel R, Pollet N, Tinevez J-Y, Cloetens P, Schlenker M (2009) Irradiation damage to frog inner ear during synchrotron radiation tomographic investigation. J Electron Spectrosc Relat Phenom 170:37–41

    Article  CAS  Google Scholar 

  9. Carnibella R, Fouras A, Kitchen M (2012) Single-exposure dual-energy-subtraction X-ray imaging using a synchrotron source. J Synchrotron Radiat 19:954–959

    Article  CAS  Google Scholar 

  10. Cloetens P, Barrett R, Baruchel J, Guigay J-P, Schlenker M (1996) Phase objects in synchrotron radiation hard x-ray imaging. J Phys Appl Phys 29:133

    Article  CAS  Google Scholar 

  11. Crystal RG, Fulmer JD, Roberts WC, Moss ML, Line BR, Reynolds HY (1976) Idiopathic pulmonary fibrosis: clinical, histologic, radiographic, physiologic, scintigraphic, cytologic, and biochemical aspects. Ann Intern Med 85:769–788

    Article  CAS  Google Scholar 

  12. Dreyfuss D, Soler P, Basset G, Saumon G (1988) High inflation pressure pulmonary edema. Respective effects of high airway pressure, high tidal volume, and positive end-expiratory pressure. Am Rev Respir Dis 137:1159–1164. https://doi.org/10.1164/ajrccm/137.5.1159

    Article  CAS  PubMed  Google Scholar 

  13. Dullin C, dal Monego S, Larsson E, Mohammadi S, Krenkel M, Garrovo C, Biffi S, Lorenzon A, Markus A, Napp J, Salditt T, Accardo A, Alves F, Tromba G (2015) Functionalized synchrotron in-line phase-contrast computed tomography: a novel approach for simultaneous quantification of structural alterations and localization of barium-labelled alveolar macrophages within mouse lung samples. J Synchrotron Radiat 22:143–155. https://doi.org/10.1107/S1600577514021730

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Dullin C, Larsson E, Tromba G, Markus AM, Alves F (2015) Phase-contrast computed tomography for quantification of structural changes in lungs of asthma mouse models of different severity. J Synchrotron Radiat 22:1106–1111. https://doi.org/10.1107/S1600577515006177

    Article  PubMed  PubMed Central  Google Scholar 

  15. Ferkol T, Schraufnagel D (2014) The global burden of respiratory disease. Ann Am Thorac Soc 11:404–406. https://doi.org/10.1513/AnnalsATS.201311-405PS

    Article  PubMed  Google Scholar 

  16. Hong Z-Y, Eun SH, Park K, Choi WH, Lee JI, Lee E-J, Lee JM, Story MD, Cho J (2014) Development of a small animal model to simulate clinical stereotactic body radiotherapy-induced central and peripheral lung injuries. J Radiat Res (Tokyo) 55:648–657

    Article  CAS  Google Scholar 

  17. Hooper SB, Kitchen MJ, Polglase GR, Roehr CC, te Pas AB (2018) The physiology of neonatal resuscitation. Curr Opin Pediatr 30:187–191. https://doi.org/10.1097/MOP.0000000000000590

    Article  PubMed  Google Scholar 

  18. Hooper SB, Kitchen MJ, Siew ML, Lewis RA, Fouras A, te Pas AB, Siu KK, Yagi N, Uesugi K, Wallace MJ (2009) Imaging lung aeration and lung liquid clearance at birth using phase contrast X-ray imaging. Clin Exp Pharmacol Physiol 36:117–125. https://doi.org/10.1111/j.1440-1681.2008.05109.x

    Article  CAS  PubMed  Google Scholar 

  19. Hooper SB, Kitchen MJ, Wallace MJ, Yagi N, Uesugi K, Morgan MJ, Hall C, Siu KK, Williams IM, Siew M (2007) Imaging lung aeration and lung liquid clearance at birth. FASEB J 21:3329–3337

    Article  CAS  Google Scholar 

  20. Hooper SB, Siew ML, Kitchen MJ, te Pas AB (2013) Establishing functional residual capacity in the non-breathing infant. Semin Fetal Neonatal Med 18:336–343. https://doi.org/10.1016/j.siny.2013.08.011

    Article  PubMed  Google Scholar 

  21. Hooper SB, te Pas AB, Kitchen MJ (2016) Respiratory transition in the newborn: a three-phase process. Arch Dis Child Fetal Neonatal Ed 101:F266–F271. https://doi.org/10.1136/archdischild-2013-305704

    Article  PubMed  Google Scholar 

  22. Kitchen MJ, Buckley GA, Gureyev TE, Wallace MJ, Andres-Thio N, Uesugi K, Yagi N, Hooper SB (2017) CT dose reduction factors in the thousands using X-ray phase contrast. Sci Rep 7:15953

    Article  Google Scholar 

  23. Kitchen MJ, Buckley GA, Leong AFT, Carnibella RP, Fouras A, Wallace MJ, Hooper SB (2015) X-ray specks: low dose in vivo imaging of lung structure and function. Phys Med Biol 60:7259–7276. https://doi.org/10.1088/0031-9155/60/18/7259

    Article  PubMed  Google Scholar 

  24. Kitchen MJ, Lewis RA, Morgan MJ, Wallace MJ, Siew ML, Siu KKW, Habib A, Fouras A, Yagi N, Uesugi K, Hooper SB (2008) Dynamic measures of regional lung air volume using phase contrast x-ray imaging. Phys Med Biol 53:6065–6077. https://doi.org/10.1088/0031-9155/53/21/012

    Article  CAS  PubMed  Google Scholar 

  25. Kitchen MJ, Lewis RA, Yagi N, Uesugi K, Paganin D, Hooper SB, Adams G, Jureczek S, Singh J, Christensen CR, Hufton AP, Hall CJ, Cheung KC, PAvlov KM (2005) Phase contrast X-ray imaging of mice and rabbit lungs: a comparative study. Br J Radiol 78:1018–1027. https://doi.org/10.1259/bjr/13024611

    Article  CAS  PubMed  Google Scholar 

  26. Kitchen MJ, Paganin D, Lewis RA, Yagi N, Uesugi K (2005) Analysis of speckle patterns in phase-contrast images of lung tissue. Nucl Instrum Methods Phys Res Sect Accel Spectrometers Detect Assoc Equip 548:240–246. https://doi.org/10.1016/j.nima.2005.03.096

    Article  CAS  Google Scholar 

  27. Kitchen MJ, Paganin D, Lewis RA, Yagi N, Uesugi K, Mudie ST (2004) On the origin of speckle in x-ray phase contrast images of lung tissue. Phys Med Biol 49:4335–4348. https://doi.org/10.1088/0031-9155/49/18/010

    Article  CAS  PubMed  Google Scholar 

  28. Krenkel M, Markus A, Bartels M, Dullin C, Alves F, Salditt T (2015) Phase-contrast zoom tomography reveals precise locations of macrophages in mouse lungs. Sci Rep 5:09973

    Article  CAS  Google Scholar 

  29. Krenkel M, Töpperwien M, Dullin C, Alves F, Salditt T (2016) Propagation-based phase-contrast tomography for high-resolution lung imaging with laboratory sources. AIP Adv 6:035007. https://doi.org/10.1063/1.4943898

    Article  CAS  Google Scholar 

  30. Layachi S, Porra L, Albu G, Trouillet N, Suhonen H, Peták F, Sevestre H, Suortti P, Sovijärvi A, Habre W, Bayat S (2013) Role of cellular effectors in the emergence of ventilation defects during allergic bronchoconstriction. J Appl Physiol Bethesda Md 1985 115:1057–1064. https://doi.org/10.1152/japplphysiol.00844.2012

    Article  Google Scholar 

  31. Leong AF, Buckley GA, Paganin DM, Hooper SB, Wallace MJ, Kitchen MJ (2014) Real-time measurement of alveolar size and population using phase contrast x-ray imaging. Biomed Opt Express 5:4024–4038

    Article  Google Scholar 

  32. Leong AF, Fouras A, Islam MS, Wallace MJ, Hooper SB, Kitchen MJ (2013) High spatiotemporal resolution measurement of regional lung air volumes from 2D phase contrast x-ray images. Med Phys 40:041909

    Article  Google Scholar 

  33. Leong AFT, Paganin DM, Hooper SB, Siew ML, Kitchen MJ (2013) Measurement of absolute regional lung air volumes from near-field x-ray speckles. Opt Express 21:27905. https://doi.org/10.1364/OE.21.027905

    Article  PubMed  Google Scholar 

  34. Lewis RA, Yagi N, Kitchen MJ, Morgan MJ, Paganin D, Siu KKW, Pavlov K, Williams I, Uesugi K, Wallace MJ, Hall CJ, Whitley J, Hooper SB (2005) Dynamic imaging of the lungs using x-ray phase contrast. Phys Med Biol 50:5031–5040. https://doi.org/10.1088/0031-9155/50/21/006

    Article  CAS  PubMed  Google Scholar 

  35. Lovric G, Barré SF, Schittny JC, Roth-Kleiner M, Stampanoni M, Mokso R (2013) Dose optimization approach to fast X-ray microtomography of the lung alveoli. J Appl Crystallogr 46:856–860

    Article  CAS  Google Scholar 

  36. Lovric G, Mokso R, Arcadu F, Oikonomidis IV, Schittny JC, Roth-Kleiner M, Stampanoni M (2017) Tomographic in vivo microscopy for the study of lung physiology at the alveolar level. Sci Rep 7:12545

    Article  Google Scholar 

  37. Lovric G, Mokso R, Schlepütz CM, Stampanoni M (2016) A multi-purpose imaging endstation for high-resolution micrometer-scaled sub-second tomography. Phys Med Eur J Med Phys 32:1771–1778

    Google Scholar 

  38. Mead J, Takishima T, Leith D (1970) Stress distribution in lungs: a model of pulmonary elasticity. J Appl Physiol 28:596–608

    Article  CAS  Google Scholar 

  39. Mizue Y, Ghani S, Leng L, McDonald C, Kong P, Baugh J, Lane S, Craft J, Nishihira J, Donnelly S (2005) Role for macrophage migration inhibitory factor in asthma. Proc Natl Acad Sci U S A 102:14410–14415

    Article  CAS  Google Scholar 

  40. Mokso R, Marone F, Irvine S, Nyvlt M, Schwyn D, Mader K, Taylor G, Krapp H, Skeren M, Stampanoni M (2013) Advantages of phase retrieval for fast x-ray tomographic microscopy. J Phys Appl Phys 46:494–504

    Article  Google Scholar 

  41. Mokso R, Schlepütz CM, Theidel G, Billich H, Schmid E, Celcer T, Mikuljan G, Sala L, Marone F, Schlumpf N (2017) GigaFRoST: the gigabit fast readout system for tomography. J Synchrotron Radiat 24:1250–1259

    Article  Google Scholar 

  42. Momose A, Takeda T, Itai Y, Hirano K (1996) Phase–contrast X–ray computed tomography for observing biological soft tissues. Nat Med 2:473–475

    Article  CAS  Google Scholar 

  43. Muscedere JG, Mullen JB, Gan K, Slutsky AS (1994) Tidal ventilation at low airway pressures can augment lung injury. Am J Respir Crit Care Med 149:1327–1334. https://doi.org/10.1164/ajrccm.149.5.8173774

    Article  CAS  PubMed  Google Scholar 

  44. Paganin D, Mayo SC, Gureyev TE, Miller PR, Wilkins SW (2002) Simultaneous phase and amplitude extraction from a single defocused image of a homogeneous object. J Microsc 206:33–40. https://doi.org/10.1046/j.1365-2818.2002.01010.x

    Article  CAS  Google Scholar 

  45. Parsons DW, Morgan K, Donnelley M, Fouras A, Crosbie J, Williams I, Boucher RC, Uesugi K, Yagi N, Siu KK (2008) High-resolution visualization of airspace structures in intact mice via synchrotron phase-contrast X-ray imaging (PCXI). J Anat 213:217–227

    Article  Google Scholar 

  46. Porra L, Bayat S, Malaspinas I, Albu G, Doras C, Broche L, Strengell S, Peták F, Habre W (2016) Pressure-regulated volume control vs. volume control ventilation in healthy and injured rabbit lung: an experimental study. Eur J Anaesthesiol 33:767–775. https://doi.org/10.1097/EJA.0000000000000485

    Article  PubMed  Google Scholar 

  47. Porra L, Dégrugilliers L, Broche L, Albu G, Strengell S, Suhonen H, Fodor GH, Peták F, Suortti P, Habre W, Sovijärvi ARA, Bayat S (2018) Quantitative imaging of regional aerosol deposition, lung ventilation and morphology by synchrotron radiation CT. Sci Rep 8:3519. https://doi.org/10.1038/s41598-018-20986-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Porra L, Peták F, Strengell S, Neitola K, Janosi TZ, Suhonen H, Suortti P, Sovijärvi AR, Habre W, Bayat S (2010) Acute cigarette smoke inhalation blunts lung responsiveness to methacholine and allergen in rabbit: differentiation of central and peripheral effects. Am J Physiol Lung Cell Mol Physiol 299:L242–L251

    Article  CAS  Google Scholar 

  49. Saccomano M, Albers J, Tromba G, Dobrivojević M, Gajović S, Alves F, Dullin C (in press) Synchrotron inline phase contrast μCT enables detailed virtual histology of embedded soft-tissue samples with and without staining. J Synchrotron Radiat

    Google Scholar 

  50. Semenenko VA, Molthen RC, Li C, Morrow NV, Li R, Ghosh SN, Medhora MM, Li XA (2008) Irradiation of varying volumes of rat lung to same mean lung dose: a little to a lot or a lot to a little? Int J Radiat Oncol Biol Phys 71:838–847

    Article  Google Scholar 

  51. Seppenwoolde Y, Lebesque JV (2001) Partial irradiation of the lung. Elsevier. pp 247–258

    Google Scholar 

  52. Siew ML, Kitchen MJ, te Pas AB, Hooper SB (2015) Pulmonary transition at birth. In: The lung: development, aging and the environment. Academic, Oxford, pp 251–264

    Google Scholar 

  53. Slutsky AS (1999) Lung injury caused by mechanical ventilation. Chest 116:S9

    Article  Google Scholar 

  54. Slutsky AS, Ranieri VM (2013) Ventilator-induced lung injury. N Engl J Med 369:2126–2136. https://doi.org/10.1056/NEJMra1208707

    Article  CAS  PubMed  Google Scholar 

  55. Snigirev A, Snigireva I, Kohn V, Kuznetsov S, Schelokov I (1995) On the possibilities of x-ray phase contrast microimaging by coherent high-energy synchrotron radiation. Rev Sci Instrum 66:5486–5492. https://doi.org/10.1063/1.1146073

    Article  CAS  Google Scholar 

  56. Suhonen H, Porra L, Bayat S, Sovijärvi A, Suortti P (2008) Simultaneous in vivo synchrotron radiation computed tomography of regional ventilation and blood volume in rabbit lung using combined K-edge and temporal subtraction. Phys Med Biol 53:775

    Article  CAS  Google Scholar 

  57. Thomlinson W, Elleaume H, Porra L, Suortti P (2018) K-edge subtraction synchrotron X-ray imaging in bio-medical research. Phys Med 49:58–76

    Article  CAS  Google Scholar 

  58. Tromba G, Longo R, Abrami A, Arfelli F, Astolfo A, Bregant P, Brun F, Casarin K, Chenda V, Dreossi D (2010) The SYRMEP beamline of elettra: clinical mammography and bio-medical applications. AIP. pp 18–23

    Google Scholar 

  59. Winkler T, Venegas JG (2007) Complex airway behavior and paradoxical responses to bronchoprovocation. J Appl Physiol 103:655–663. https://doi.org/10.1152/japplphysiol.00041.2007

    Article  PubMed  Google Scholar 

  60. Zhu Y, Samadi N, Martinson M, Bassey B, Wei Z, Belev G, Chapman D (2014) Spectral K-edge subtraction imaging. Phys Med Biol 59:2485

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Dullin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bayat, S., Dullin, C., Kitchen, M.J., Lovric, G. (2018). Synchrotron X-Ray-Based Functional and Anatomical Lung Imaging Techniques. In: Giuliani, A., Cedola, A. (eds) Advanced High-Resolution Tomography in Regenerative Medicine. Fundamental Biomedical Technologies. Springer, Cham. https://doi.org/10.1007/978-3-030-00368-5_10

Download citation

Publish with us

Policies and ethics