Skip to main content

Human Immunodeficiency Virus-Related Lymphomas

  • Chapter
  • First Online:
Book cover Aggressive Lymphomas

Part of the book series: Hematologic Malignancies ((HEMATOLOGIC))

  • 838 Accesses

Abstract

The acquired immunodeficiency syndrome (AIDS) was first described in 1981, in individuals with certain opportunistic infections (OI), Kaposi sarcoma, and central nervous system (CNS) lymphomas. Three years later the clinical spectrum of non-Hodgkin lymphomas (NHL) in the populations at risk of AIDS was first described [1, 2]. Since the introduction of combined antiretroviral therapy (cART) in the mid-1990s, the incidence of lymphomas, which formerly accounted for 2–3% of newly diagnosed AIDS patients, has decreased and outcomes have improved [3]. Simultaneously, a shift toward histologies that occur at higher CD4 lymphocyte counts, such as Burkitt lymphoma and classical Hodgkin lymphoma (cHL), was observed [4–6]. The increasing proportion of long-term survivors of lymphoma has raised the possibility of developing certain non-AIDS-defining solid tumors, especially those related to the lifestyle and viral infections in HIV-infected patients.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ziegler JL, Beckstead JA, Volberding PA, et al. Non-Hodgkin’s lymphoma in 90 homosexual men. Relation to generalized lymphadenopathy and the acquired immunodeficiency syndrome. N Engl J Med. 1984;311:565–70.

    Article  CAS  Google Scholar 

  2. Rabkin CS, Yellin F. Cancer incidence in a population with a high prevalence of infection with human immunodeficiency virus type 1. J Natl Cancer Inst. 1994;86:1711–6.

    Article  CAS  Google Scholar 

  3. Dunleavy K, Wilson WH. How I treat HIV-associated lymphoma. Blood. 2012;119:3245–55.

    Article  CAS  Google Scholar 

  4. Little RF, Wilson WH. Update on the pathogenesis, diagnosis, and therapy of AIDS-related lymphoma. Curr Infect Dis Rep. 2003;5:176–84.

    Article  Google Scholar 

  5. Carbone A, Gloghini A. AIDS-related lymphomas: from pathogenesis to pathology. Br J Haematol. 2005;130:662–70.

    Article  CAS  Google Scholar 

  6. Gopal S, Patel MR, Yanik EL, et al. Temporal trends in presentation and survival for HIV-associated lymphoma in the antiretroviral therapy era. J Natl Cancer Inst. 2013;105:1221–9.

    Article  Google Scholar 

  7. Ingle SM, May MT, Gill MJ, et al. Impact of risk factors for specific causes of death in the first and subsequent years of antiretroviral therapy among HIV-infected patients. Clin Infect Dis. 2014;59:287–97.

    Article  CAS  Google Scholar 

  8. Besson C, Goubar A, Gabarre J, et al. Changes in AIDS-related lymphoma since the era of highly active antiretroviral therapy. Blood. 2001;98:2339–44.

    Article  CAS  Google Scholar 

  9. Engels EA, Pfeiffer RM, Goedert JJ, et al. Trends in cancer risk among people with AIDS in the United States 1980-2002. AIDS. 2006;20:1645–54.

    Article  Google Scholar 

  10. Hernandez-Ramirez RU, Shiels MS, Dubrow R, Engels EA. Cancer risk in HIV-infected people in the USA from 1996 to 2012: a population-based, registry-linkage study. Lancet HIV. 2017;4:e495. https://doi.org/10.1016/S2352-3018(17)30125-X.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Gotti D, Danesi M, Calabresi A, et al. Clinical characteristics, incidence, and risk factors of HIV-related Hodgkin lymphoma in the era of combination antiretroviral therapy. AIDS Patient Care STDs. 2013;27:259–65.

    Article  Google Scholar 

  12. Shiels MS, Koritzinsky EH, Clarke CA, Suneja G, Morton LM, Engels EA. Prevalence of HIV infection among U.S. Hodgkin lymphoma cases. Cancer Epidemiol Biomark Prev. 2014;23:274–81.

    Article  CAS  Google Scholar 

  13. Lee JY, Dhakal I, Casper C, et al. Risk of cancer among commercially insured HIV-infected adults on antiretroviral therapy. J Cancer Epidemiol. 2016;2016:2138259.

    Article  Google Scholar 

  14. Serraino D, Dal Maso L. Epidemiology. In: Henrich M, Barta SK, editors. HIV-associated hematological malignancies. New York: Springer; 2016. p. 27–38.

    Chapter  Google Scholar 

  15. Carbone A, Volpi CC, Gualeni AV, Gloghini A. Epstein-Barr virus associated lymphomas in people with HIV. Curr Opin HIV AIDS. 2017;12:39–46.

    Article  CAS  Google Scholar 

  16. Carbone A, Gloghini A, Caruso A, De Paoli P, Dolcetti R. The impact of EBV and HIV infection on the microenvironmental niche underlying Hodgkin lymphoma pathogenesis. Int J Cancer. 2017;140:1233–45.

    Article  CAS  Google Scholar 

  17. Cesarman E, Chang Y, Moore PS, Said JW, Knowles DM. Kaposi’s sarcoma-associated herpesvirus-like DNA sequences in AIDS-related body cavity-based lymphomas. N Engl J Med. 1995;332:1186–91.

    Article  CAS  Google Scholar 

  18. Arora N, Gupta A, Sadeghi N. Primary effusion lymphoma: current concepts and management. Curr Opin Pulm Med. 2017;23:365–70.

    Article  Google Scholar 

  19. Auten M, Kim AS, Bradley KT, Rosado FG. Human herpesvirus 8-related diseases: histopathologic diagnosis and disease mechanisms. Semin Diagn Pathol. 2017;34:371–6.

    Article  Google Scholar 

  20. Swerdlow SH, Campo E, Pileri SA, et al. The 2016 revision of the World Health Organization classification of lymphoid neoplasms. Blood. 2016;127:2375–90.

    Article  CAS  Google Scholar 

  21. Linke-Serinsöz E, Fend F, Quintanilla-Martinez L. Human immunodeficiency virus (HIV) and Epstein-Barr virus (EBV) related lymphomas, pathology view point. Semin Diagn Pathol. 2017;34:352–63.

    Article  Google Scholar 

  22. Dunleavy K, Little RF, Pittaluga S, et al. The role of tumor histogenesis, FDG-PET, and short-course EPOCH with dose-dense rituximab (SC-EPOCH-RR) in HIV-associated diffuse large B-cell lymphoma. Blood. 2010;115:3017–24.

    Article  CAS  Google Scholar 

  23. Xicoy B, Ribera J-M, Mate J-L, et al. Immunohistochemical expression profile and prognosis in patients with diffuse large B-cell lymphoma with or without human immunodeficiency virus infection. Leuk Lymphoma. 2010;51:2063–9.

    Article  Google Scholar 

  24. Yoon N, Ahn S, Yong Yoo H, et al. Cell-of-origin of diffuse large B-cell lymphomas determined by the Lymph2Cx assay: better prognostic indicator than Hans algorithm. Oncotarget. 2017;8:22014–22.

    PubMed  PubMed Central  Google Scholar 

  25. Dunleavy K, Little RF, Wilson WH. Update on Burkitt lymphoma. Hematol Oncol Clin North Am. 2016;30:1333–43.

    Article  Google Scholar 

  26. Staiger AM, Ziepert M, Horn H, et al. Clinical impact of the cell-of-origin classification and the MYC/BCL2 dual expresser status in diffuse large B-cell lymphoma treated within prospective clinical trials of the German high-grade non-Hodgkin’s lymphoma study group. J Clin Oncol. 2017;35(22):2515–26.

    Article  CAS  Google Scholar 

  27. Cinque P, Brytting M, Vago L, et al. Epstein-Barr virus DNA in cerebrospinal fluid from patients with AIDS-related primary lymphoma of the central nervous system. Lancet. 1993;342:398–401.

    Article  CAS  Google Scholar 

  28. Karia SJ, McArdle DJT. AIDS-related primary CNS lymphoma. Lancet. 2017;389(10085):2238. https://doi.org/10.1016/S0140-6736(17)30056-9.

    Article  PubMed  Google Scholar 

  29. El-Fattah MA. Clinical characteristics and survival outcome of primary effusion lymphoma: a review of 105 patients. Hematol Oncol. 2016;35:878. https://doi.org/10.1002/hon.2372.

    Article  PubMed  Google Scholar 

  30. Gonzalez-Farre B, Martinez D, Lopez-Guerra M, et al. HHV8-related lymphoid proliferations: a broad spectrum of lesions from reactive lymphoid hyperplasia to overt lymphoma. Mod Pathol. 2017;30:745–60.

    Article  CAS  Google Scholar 

  31. Hentrich M, Spina M, Montoto S. HIV-associated Hodgkin’s lymphoma. In: Henrich M, Barta SK, editors. HIV-associated hematological malignancies. New York: Springer; 2016. p. 119–32.

    Chapter  Google Scholar 

  32. Brunnberg U, Hentrich M, Hoffmann C, Wolf T, Hübel K. HIV-associated malignant lymphoma. Oncol Res Treat. 2017;40:82–7.

    Article  CAS  Google Scholar 

  33. Cheson BD, Fisher RI, Barrington SF, et al. Recommendations for initial evaluation, staging, and response assessment of Hodgkin and non-Hodgkin lymphoma: the Lugano classification. J Clin Oncol. 2014;32:3059–68.

    Article  Google Scholar 

  34. Cheson BD, Ansell S, Schwartz L, et al. Refinement of the Lugano classification lymphoma response criteria in the era of immunomodulatory therapy. Blood. 2016;128:2489–96.

    Article  CAS  Google Scholar 

  35. Barta SK, Samuel MS, Xue X, et al. Changes in the influence of lymphoma- and HIV-specific factors on outcomes in AIDS-related non-Hodgkin lymphoma. Ann Oncol. 2015;26:958–66.

    Article  CAS  Google Scholar 

  36. International Non-Hodgkin’s Lymphoma Prognostic Factors Project. A predictive model for aggressive non-Hodgkin’s lymphoma. N Engl J Med. 1993;329:987–94.

    Article  Google Scholar 

  37. Hasenclever D, Diehl V. A prognostic score for advanced Hodgkin’s disease. International prognostic factors project on advanced Hodgkin’s disease. N Engl J Med. 1998;339:1506–14.

    Article  CAS  Google Scholar 

  38. Xicoy B, Ribera JM, Miralles P, et al. Limited prognostic value of the international prognostic score in advanced stage human immunodeficiency virus infection-related Hodgkin lymphoma treated with the doxorubicin, bleomycin, vinblastine, and dacarbazine regimen. Leuk Lymphoma. 2009;50:1718–20.

    Article  CAS  Google Scholar 

  39. Barta SK, Xue X, Wang D, et al. A new prognostic score for AIDS-related lymphomas in the rituximab-era. Haematologica. 2014;99:1731–7.

    Article  Google Scholar 

  40. Castillo JJ, Bower M, Brühlmann J, et al. HIV-associated Hodgkin lymphoma in the cART Era Study Group. Prognostic factors for advanced-stage human immunodeficiency virus-associated classical Hodgkin lymphoma treated with doxorubicin, bleomycin, vinblastine, and dacarbazine plus combined antiretroviral therapy: a multi-institutional retrospective study. Cancer. 2015;121:423–31.

    Article  CAS  Google Scholar 

  41. Wang CC, Kaplan LD. Clinical management of HIV-associated hematologic malignancies. Expert Rev Hematol. 2016;9:361–76.

    Article  CAS  Google Scholar 

  42. Ribera JM, Oriol A, Morgades M, et al. Safety and efficacy of cyclophosphamide, adriamycin, vincristine, prednisone and rituximab in patients with human immunodeficiency virus-associated diffuse large B-cell lymphoma: results of a phase II trial. Br J Haematol. 2008;140:411–9.

    Article  CAS  Google Scholar 

  43. Spina M, Jaeger U, Sparano JA, et al. Rituximab plus infusional cyclophosphamide, doxorubicin, and etoposide in HIV-associated non-Hodgkin lymphoma: pooled results from 3 phase 2 trials. Blood. 2005;105:1891–7.

    Article  CAS  Google Scholar 

  44. Sparano JA, Lee JY, Kaplan LD, et al. Rituximab plus concurrent infusional EPOCH chemotherapy is highly effective in HIV-associated B-cell non-Hodgkin lymphoma. Blood. 2010;115:3008–16.

    Article  CAS  Google Scholar 

  45. Kaplan LD, Lee JY, Ambinder RF, et al. Rituximab does not improve clinical outcome in a randomized phase 3 trial of CHOP with or without rituximab in patients with HIV-associated non-Hodgkin lymphoma: AIDS-Malignancies Consortium Trial 010. Blood. 2005;106:1538–43.

    Article  CAS  Google Scholar 

  46. Barta SK, Xue X, Wang D, et al. Treatment factors affecting outcomes in HIV-associated non-Hodgkin lymphomas: a pooled analysis of 1546 patients. Blood. 2013;122:3251–62.

    Article  CAS  Google Scholar 

  47. Barta SK, Lee JY, Kaplan LD, Noy A, Sparano JA. Pooled analysis of AIDS malignancy consortium trials evaluating rituximab plus CHOP or infusional EPOCH chemotherapy in HIV-associated non-Hodgkin lymphoma. Cancer. 2012;118:3977–83.

    Article  CAS  Google Scholar 

  48. Wilson WH, Ho JS, Pitcher BN, et al. Phase III randomized study of R-CHOP versus DA-EPOCH-R and molecular analysis of untreated diffuse large B-cell lymphoma: CALGB/Alliance 50303. Blood. 2016;128:469; [abstract].

    Google Scholar 

  49. Uldrick T, et al. AIDS-associated Primary Central Nervous System Lymphoma (AIDS-PCNSL) treated with HAART and radiation-sparing therapy: The NCI HIV and AIDS Malignancy Branch experience, 2004-2011. CROI 19, 2012: Abstract R-129.

    Google Scholar 

  50. Borges ÁH, Neuhaus J, Babiker AG, et al. Immediate antiretroviral therapy reduces risk of infection-related cancer during early HIV infection. Clin Infect Dis. 2016;63:1668–76.

    Article  CAS  Google Scholar 

  51. Ribera JM, Garcia O, Grande C, et al. Dose-intensive chemotherapy including rituximab in Burkitt’s leukemia or lymphoma regardless of human immunodeficiency virus infection status: final results of a phase 2 study (Burkimab). Cancer. 2013;119:1660–8.

    Article  CAS  Google Scholar 

  52. Noy A, Lee JY, Cesarman E, et al. AMC 048: modified CODOX-M/IVAC-rituximab is safe and effective for HIV-associated Burkitt lymphoma. Blood. 2015;126:160–6.

    Article  CAS  Google Scholar 

  53. Alwan F, He A, Montoto S, et al. Adding rituximab to CODOX-M/IVAC chemotherapy in the treatment of HIV-associated Burkitt lymphoma is safe when used with concurrent combination antiretroviral therapy. AIDS. 2015;29:903–10.

    Article  CAS  Google Scholar 

  54. Xicoy B, Ribera JM, Müller M, et al. Dose-intensive chemotherapy including rituximab is highly effective but toxic in human immunodeficiency virus-infected patients with Burkitt lymphoma/leukemia: parallel study of 81 patients. Leuk Lymphoma. 2014;55:2341–8.

    Article  CAS  Google Scholar 

  55. Dunleavy K, Pittaluga S, Shovlin M, et al. Low-intensity therapy in adults with Burkitt’s lymphoma. N Engl J Med. 2013;369:1915–25.

    Article  CAS  Google Scholar 

  56. Dunleavy K, Noy A, Abramson JS, et al. Risk-adapted therapy in adults with Burkitt lymphoma: preliminary report of a multicenter prospective phase II study of DA-EPOCH-R. Blood. 2015;126:342; [abstract].

    Google Scholar 

  57. Dunleavy K. Aggressive B cell lymphoma: optimal therapy for MYC-positive, double-hit, and triple-hit DLBCL. Curr Treat Options in Oncol. 2015;16:58.

    Article  Google Scholar 

  58. Castillo JJ, Reagan JL, Sikov WM, Winer ES. Bortezomib in combination with infusional dose-adjusted EPOCH for the treatment of plasmablastic lymphoma. Br J Haematol. 2015;169:352–5.

    Article  CAS  Google Scholar 

  59. Castillo JJ, Bibas M, Miranda RN. The biology and treatment of plasmablastic lymphoma. Blood. 2015;125:2323–30.

    Article  CAS  Google Scholar 

  60. Barta SK, Joshi J, Mounier N, et al. Central nervous system involvement in AIDS-related lymphomas. Br J Haematol. 2016;173:857–66.

    Article  Google Scholar 

  61. Gupta NK, Nolan A, Omuro A, et al. Long-term survival in AIDS-related primary central nervous system lymphoma. Neuro-Oncology. 2017;19:99–108.

    Article  CAS  Google Scholar 

  62. Xicoy B, Ribera JM, Miralles P, et al. Results of treatment with doxorubicin, bleomycin, vinblastine and dacarbazine and highly active antiretroviral therapy in advanced stage, human immunodeficiency virus-related Hodgkin’s lymphoma. Haematologica. 2007;92:191–8.

    Article  CAS  Google Scholar 

  63. Montoto S, Shaw K, Okosun J, et al. HIV status does not influence outcome in patients with classical Hodgkin lymphoma treated with chemotherapy using doxorubicin, bleomycin, vinblastine, and dacarbazine in the highly active antiretroviral therapy era. J Clin Oncol. 2012;30:4111–6.

    Article  Google Scholar 

  64. Sorigué M, García O, Tapia G, et al. HIV-infection has no prognostic impact on advanced-stage Hodgkin lymphoma. AIDS. 2017;31:1445–9.

    Article  Google Scholar 

  65. Hentrich M, Berger M, Wyen C, et al. Stage-adapted treatment of HIV-associated Hodgkin lymphoma: results of a prospective multicenter study. J Clin Oncol. 2012;30:4117–23.

    Article  Google Scholar 

  66. Okosun J, Warbey V, Shaw K, et al. Interim fluoro-2-deoxy-D-glucose-PET predicts response and progression-free survival in patients with Hodgkin lymphoma and HIV infection. AIDS. 2012;26:861–5.

    Article  CAS  Google Scholar 

  67. Danilov AV, Li H, Press OW, et al. Feasibility of interim PET-adapted therapy in HIV-positive patients with advanced Hodgkin lymphoma (HL): sub-analysis of SWOG S0816 phase 2 trial. Blood. 2015;126:1498; [abstract].

    Google Scholar 

  68. Pres OW, Li H, Schöder H, et al. US intergroup trial of response-adapted therapy for stage III to IV Hodgkin lymphoma using early interim fluorodeoxyglucose–positron emission tomography imaging: Southwest Oncology Group S0816. J Clin Oncol. 2016;34:2020–7.

    Article  Google Scholar 

  69. Ezzat HM, Cheung MC, Hicks LK, et al. Incidence, predictors and significance of severe toxicity in patients with human immunodeficiency virus-associated Hodgkin lymphoma. Leuk Lymphoma. 2012;53:2390–6.

    Article  CAS  Google Scholar 

  70. Gerard L, Michot JM, Burcheri S, et al. Rituximab decreases the risk of lymphoma in patients with HIV-associated multicentric Castleman disease. Blood. 2012;119:2228–33.

    Article  CAS  Google Scholar 

  71. Diez-Martin JL, Balsalobre P, Re A, et al. Comparable survival between HIV+ and HIV− non-Hodgkin and Hodgkin lymphoma patients undergoing autologous peripheral blood stem cell transplantation. Blood. 2009;113:6011–4.

    Article  CAS  Google Scholar 

  72. Balsalobre P, Diez-Martin JL, Re A, et al. Autologous stem-cell transplantation in patients with HIV-related lymphoma. J Clin Oncol. 2009;27:2192–8.

    Article  Google Scholar 

  73. Johnston C, Harrington R, Jain R, Schiffer J, Kiem HP, Woolfrey A. Safety and efficacy of combination antiretroviral therapy in human immunodeficiency virus-infected adults undergoing autologous or allogeneic hematopoietic cell transplantation for hematologic malignancies. Biol Blood Marrow Transplant. 2016;22:149–56.

    Article  CAS  Google Scholar 

  74. Alvarnas JC, Le Rademacher J, Wang Y, et al. Autologous hematopoietic cell transplantation for HIV-related lymphoma: results of the (BMT CTN) 0803/(AMC) 071 trial. Blood. 2016;128:1050–8.

    Article  CAS  Google Scholar 

  75. Re A, Cattaneo C, Skert C, et al. Cooperative European Group on AIDS and Tumors. Stem cell mobilization in HIV seropositive patients with lymphoma. Haematologica. 2013;98:1762–8.

    Article  Google Scholar 

  76. Re A, Krishnan A, Hentrich M, et al. Autologous stem cell transplantation. In: Henrich M, Barta SK, editors. HIV-associated hematological malignancies. New York: Springer; 2016. p. 153–64.

    Chapter  Google Scholar 

  77. Hutter G, Nowak D, Mossner M, et al. Long-term control of HIV by CCR5 Delta32/Delta32 stem-cell transplantation. N Engl J Med. 2009;360:692–8.

    Article  Google Scholar 

  78. Ambinder RF, Kanakry JA, Durand C. Allogeneic stem cell transplantation. In: Henrich M, Barta SK, editors. HIV-associated hematological malignancies. New York: Springer; 2016. p. 165–72.

    Chapter  Google Scholar 

  79. Rudek MA, Flexner C, Ambinder RF. Use of antineoplastic agents in patients with cancer who have HIV/AIDS. Lancet Oncol. 2011;12:905–12.

    Article  Google Scholar 

  80. Torres HA, Rallapalli V, Saxena A, et al. Efficacy and safety of antiretrovirals in HIV-infected patients with cancer. Clin Microbiol Infect. 2014;20:O672–9.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Funded in part by grants PI10/01417 (FIS), RD12-0036-0029 from RTICC, Instituto Carlos III and RD14-SGR225(GRE), Generalitat de Catalunya.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Josep-Maria Ribera .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ribera, JM., Little, R.F. (2019). Human Immunodeficiency Virus-Related Lymphomas. In: Lenz, G., Salles, G. (eds) Aggressive Lymphomas. Hematologic Malignancies. Springer, Cham. https://doi.org/10.1007/978-3-030-00362-3_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-00362-3_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-00361-6

  • Online ISBN: 978-3-030-00362-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics