Pathology and Molecular Pathogenesis of T-Cell Lymphoma

  • Javeed IqbalEmail author
  • Laurence de LevalEmail author
Part of the Hematologic Malignancies book series (HEMATOLOGIC)


Peripheral T-cell lymphoma (PTCL) is a complex group of entities with great heterogeneity in morphology, immunophenotype, and clinical features. The World Health Organization has recognized at least 29 PTCL entities, with few additional provisional entities. However, a large subset cannot be classified using current methodology and are designated as PTCL, not otherwise specified (PTCL-NOS). The molecular and genomic landscape of the major PTCL subtypes has been characterized recently, but largely unexplored for the rarer subtypes. In this chapter, the pathological features, concomitant with gene expression profiling (GEP) and acquired genetic lesion will be presented, highlighting molecular diagnosis and pathognomonic mechanisms. Recent genomic technologies have led to identification of recurrent mutation targeting epigenome (TET2, IDH2R172, and DNMTA), T-cell activation, and oncogenic pathways (STAT3, NF-κB) in multiple PTCL entities. In general, cutaneous T-cell lymphomas sow distinct genetic and molecular landscape compared to the nodal diseases. However, there are marked differences in their frequency, with some quite distinct to specific entities (e.g., IDH2R172 mutation in angioimmunoblastic T-cell. We have briefly discussed some of the key findings from genetic studies and correlation with pathological observation where appropriate in this chapter correlating with GEP data and clinical features.


Peripheral T-cell lymphoma Morphological features Gene expression profiling Genetic landscape Pathogenesis Biology Mycosis fungoides Sezary syndrome 



The authors would like to acknowledge Tayla Heavican in preparation of this manuscript. We would also like to thank many esteemed investigators in T-cell lymphoma biology, whose work was cited in this paper.


  1. 1.
    Rudiger T, Weisenburger DD, Anderson JR, et al. Peripheral T-cell lymphoma (excluding anaplastic large-cell lymphoma): results from the Non-Hodgkin’s Lymphoma Classification Project. Ann Oncol. 2002;13(1):140–9.PubMedCrossRefGoogle Scholar
  2. 2.
    Vose J, Armitage J, Weisenburger D, International TCLP. International peripheral T-cell and natural killer/T-cell lymphoma study: pathology findings and clinical outcomes. J Clin Oncol Off J Am Soc Clin Oncol. 2008;26(25):4124–30.CrossRefGoogle Scholar
  3. 3.
    Delabie J, Holte H, Vose JM, et al. Enteropathy-associated T-cell lymphoma: clinical and histological findings from the international peripheral T-cell lymphoma project. Blood. 2011;118(1):148–55.PubMedCrossRefGoogle Scholar
  4. 4.
    Wang SS, Vose JM. Epidemiology and prognosis of T-cell lymphoma. New York: Springer Science; 2013.CrossRefGoogle Scholar
  5. 5.
    Swerdlow SH, Campo E, Harris NL, et al. WHO classification of tumours of haematopoietic and lymphoid tissues, vol. 2. 4th ed. Revised; 2017.Google Scholar
  6. 6.
    Swerdlow SH, Campo E, Harris NL, et al. WHO classification of tumours of haematopoietic and lymphoid tissues. 4th ed; 2008.Google Scholar
  7. 7.
    de Leval L, Gaulard P. Cellular origin of T-cell lymphomas. Blood. 2014;123(19):2909–10.PubMedCrossRefGoogle Scholar
  8. 8.
    de Leval L, Gisselbrecht C, Gaulard P. Advances in the understanding and management of angioimmunoblastic T-cell lymphoma. Br J Haematol. 2010;148(5):673–89.PubMedCrossRefGoogle Scholar
  9. 9.
    Gaulard P, de Leval L. Pathology of peripheral T-cell lymphomas: where do we stand? Semin Hematol. 2014;51(1):5–16.PubMedCrossRefGoogle Scholar
  10. 10.
    Swerdlow SH, Campo E, Pileri SA, et al. The 2016 revision of the World Health Organization classification of lymphoid neoplasms. Blood. 2016;127(20):2375–90.PubMedPubMedCentralCrossRefGoogle Scholar
  11. 11.
    Pileri SA, Piccaluga PP. New molecular insights into peripheral T cell lymphomas. J Clin Invest. 2012;122(10):3448–55.PubMedPubMedCentralCrossRefGoogle Scholar
  12. 12.
    Croziera JA, Shera T, Yangb D, et al. Persistent disparities among patients with T-cell Non-Hodgkin Lymphomas and B-cell Diffuse Large Cell Lymphomas over 40 years: a SEER database review. Clin Lymphoma Myeloma Leuk. 2015;15(10):578–85.CrossRefGoogle Scholar
  13. 13.
    Xu B, Liu P. No survival improvement for patients with angioimmunoblastic T-cell lymphoma over the past two decades: a population-based study of 1207 cases. PLoS One. 2014;9(3):e92585.PubMedPubMedCentralCrossRefGoogle Scholar
  14. 14.
    Iqbal J, Wright G, Wang C, et al. Gene expression signatures delineate biological and prognostic subgroups in peripheral T-cell lymphoma. Blood. 2014;123(19):2915–23.PubMedPubMedCentralCrossRefGoogle Scholar
  15. 15.
    Iqbal J, Weisenburger DD, Greiner TC, et al. Molecular signatures to improve diagnosis in peripheral T-cell lymphoma and prognostication in angioimmunoblastic T-cell lymphoma. Blood. 2010;115(5):1026–36.PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    Iqbal J, Weisenburger DD, Chowdhury A, et al. Natural killer cell lymphoma shares strikingly similar molecular features with a group of non-hepatosplenic gammadelta T-cell lymphoma and is highly sensitive to a novel aurora kinase A inhibitor in vitro. Leukemia. 2011;25(2):348–58.PubMedCrossRefGoogle Scholar
  17. 17.
    d’Amore F, Gaulard P, Trumper L, et al. Peripheral T-cell lymphomas: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann Oncol. 2015;26(Suppl 5):v108–15.PubMedCrossRefGoogle Scholar
  18. 18.
    Laurent C, Baron M, Amara N, et al. Impact of expert pathologic review of lymphoma diagnosis: study of patients from the French lymphopath network. J Clin Oncol. 2017;35(18):2008–17.PubMedCrossRefGoogle Scholar
  19. 19.
    Iqbal J, Wilcox R, Naushad H, et al. Genomic signatures in T-cell lymphoma: how can these improve precision in diagnosis and inform prognosis? Blood Rev. 2016;30(2):89–100.PubMedCrossRefGoogle Scholar
  20. 20.
    Schmitt TM, Zuniga-Pflucker JC. Induction of T cell development from hematopoietic progenitor cells by delta-like-1 in vitro. Immunity. 2002;17(6):749–56.PubMedCrossRefGoogle Scholar
  21. 21.
    Wu L. T lineage progenitors: the earliest steps en route to T lymphocytes. Curr Opin Immunol. 2006;18(2):121–6.PubMedCrossRefGoogle Scholar
  22. 22.
    Ladi E, Yin X, Chtanova T, Robey EA. Thymic microenvironments for T cell differentiation and selection. Nat Immunol. 2006;7(4):338–43.PubMedCrossRefGoogle Scholar
  23. 23.
    Groettrup M, Ungewiss K, Azogui O, et al. A novel disulfide-linked heterodimer on pre-T cells consists of the T cell receptor beta chain and a 33 kd glycoprotein. Cell. 1993;75(2):283–94.PubMedCrossRefGoogle Scholar
  24. 24.
    Abbey JL, O’Neill HC. Expression of T-cell receptor genes during early T-cell development. Immunol Cell Biol. 2008;86(2):166–74.PubMedCrossRefGoogle Scholar
  25. 25.
    Starr TK, Jameson SC, Hogquist KA. Positive and negative selection of T cells. Annu Rev Immunol. 2003;21:139–76.PubMedCrossRefGoogle Scholar
  26. 26.
    Turner SJ, Doherty PC, McCluskey J, Rossjohn J. Structural determinants of T-cell receptor bias in immunity. Nat Rev Immunol. 2006;6(12):883–94.PubMedCrossRefGoogle Scholar
  27. 27.
    Hayes SM, Shores EW, Love PE. An architectural perspective on signaling by the pre-, alphabeta and gammadelta T cell receptors. Immunol Rev. 2003;191:28–37.PubMedCrossRefGoogle Scholar
  28. 28.
    Kreslavsky T, Gleimer M, Garbe AI, von Boehmer H. alphabeta versus gammadelta fate choice: counting the T-cell lineages at the branch point. Immunol Rev. 2010;238(1):169–81.PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    Vantourout P, Hayday A. Six-of-the-best: unique contributions of gammadelta T cells to immunology. Nat Rev Immunol. 2013;13(2):88–100.PubMedPubMedCentralCrossRefGoogle Scholar
  30. 30.
    Silva-Santos B, Serre K, Norell H. gammadelta T cells in cancer. Nat Rev Immunol. 2015;15(11):683–91.PubMedCrossRefGoogle Scholar
  31. 31.
    Smith-Garvin JE, Koretzky GA, Jordan MS. T cell activation. Annu Rev Immunol. 2009;27:591–619.PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    Collins AV, Brodie DW, Gilbert RJ, et al. The interaction properties of costimulatory molecules revisited. Immunity. 2002;17(2):201–10.PubMedCrossRefGoogle Scholar
  33. 33.
    van der Merwe PA, Bodian DL, Daenke S, Linsley P, Davis SJ. CD80 (B7-1) binds both CD28 and CTLA-4 with a low affinity and very fast kinetics. J Exp Med. 1997;185(3):393–403.PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    Linsley PS, Brady W, Grosmaire L, Aruffo A, Damle NK, Ledbetter JA. Binding of the B cell activation antigen B7 to CD28 costimulates T cell proliferation and interleukin 2 mRNA accumulation. J Exp Med. 1991;173(3):721–30.PubMedCrossRefGoogle Scholar
  35. 35.
    Linsley PS, Brady W, Urnes M, Grosmaire LS, Damle NK, Ledbetter JA. CTLA-4 is a second receptor for the B cell activation antigen B7. J Exp Med. 1991;174(3):561–9.PubMedCrossRefGoogle Scholar
  36. 36.
    Linsley PS, Greene JL, Brady W, Bajorath J, Ledbetter JA, Peach R. Human B7-1 (CD80) and B7-2 (CD86) bind with similar avidities but distinct kinetics to CD28 and CTLA-4 receptors. Immunity. 1994;1(9):793–801.PubMedCrossRefGoogle Scholar
  37. 37.
    Hu H, Rudd CE, Schneider H. Src kinases Fyn and Lck facilitate the accumulation of phosphorylated CTLA-4 and its association with PI-3 kinase in intracellular compartments of T-cells. Biochem Biophys Res Commun. 2001;288(3):573–8.PubMedCrossRefGoogle Scholar
  38. 38.
    Berg M, Zavazava N. Regulation of CD28 expression on CD8+ T cells by CTLA-4. J Leukoc Biol. 2008;83(4):853–63.PubMedCrossRefGoogle Scholar
  39. 39.
    O’Shea JJ, Paul WE. Mechanisms underlying lineage commitment and plasticity of helper CD4+ T cells. Science. 2010;327(5969):1098–102.PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    de Leval L, Parrens M, Le Bras F, et al. Angioimmunoblastic T-cell lymphoma is the most common T-cell lymphoma in two distinct French information data sets. Haematologica. 2015;100(9):e361–4.PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    Ellin F, Landstrom J, Jerkeman M, Relander T. Real-world data on prognostic factors and treatment in peripheral T-cell lymphomas: a study from the Swedish Lymphoma Registry. Blood. 2014;124(10):1570–7.PubMedCrossRefGoogle Scholar
  42. 42.
    Petrich AM, Helenowski IB, Bryan LJ, Rozell SA, Galamaga R, Nabhan C. Factors predicting survival in peripheral T-cell lymphoma in the USA: a population-based analysis of 8802 patients in the modern era. Br J Haematol. 2015;168(5):708–18.PubMedCrossRefGoogle Scholar
  43. 43.
    de Leval L, Savilo E, Longtine J, Ferry JA, Harris NL. Peripheral T-cell lymphoma with follicular involvement and a CD4+/bcl-6+ phenotype. Am J Surg Pathol. 2001;25(3):395–400.PubMedCrossRefGoogle Scholar
  44. 44.
    Huang Y, Moreau A, Dupuis J, et al. Peripheral T-cell lymphomas with a follicular growth pattern are derived from follicular helper T cells (TFH) and may show overlapping features with angioimmunoblastic T-cell lymphomas. Am J Surg Pathol. 2009;33(5):682–90.PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    de Leval L, Rickman DS, Thielen C, et al. The gene expression profile of nodal peripheral T-cell lymphoma demonstrates a molecular link between angioimmunoblastic T-cell lymphoma (AITL) and follicular helper T (TFH) cells. Blood. 2007;109(11):4952–63.PubMedCrossRefGoogle Scholar
  46. 46.
    Nicolae A, Pittaluga S, Venkataraman G, et al. Peripheral T-cell lymphomas of follicular T-helper cell derivation with Hodgkin/Reed-Sternberg cells of B-cell lineage: both EBV-positive and EBV-negative variants exist. Am J Surg Pathol. 2013;37(6):816–26.PubMedPubMedCentralCrossRefGoogle Scholar
  47. 47.
    Bossard C, Dobay MP, Parrens M, et al. Immunohistochemistry as a valuable tool to assess CD30 expression in peripheral T-cell lymphomas: high correlation with mRNA levels. Blood. 2014;124(19):2983–6.PubMedCrossRefGoogle Scholar
  48. 48.
    Gaulard P, de Leval L. Follicular helper T cells: implications in neoplastic hematopathology. Semin Diagn Pathol. 2011;28(3):202–13.PubMedPubMedCentralCrossRefGoogle Scholar
  49. 49.
    Gaulard P, de Leval L. The microenvironment in T-cell lymphomas: emerging themes. Semin Cancer Biol. 2014;24:49–60.PubMedCrossRefGoogle Scholar
  50. 50.
    Piccaluga PP, Agostinelli C, Califano A, et al. Gene expression analysis of angioimmunoblastic lymphoma indicates derivation from T follicular helper cells and vascular endothelial growth factor deregulation. Cancer Res. 2007;67(22):10703–10.PubMedCrossRefGoogle Scholar
  51. 51.
    Grogg KL, Attygalle AD, Macon WR, Remstein ED, Kurtin PJ, Dogan A. Angioimmunoblastic T-cell lymphoma: a neoplasm of germinal-center T-helper cells? Blood. 2005;106(4):1501–2.PubMedPubMedCentralCrossRefGoogle Scholar
  52. 52.
    Cairns RA, Iqbal J, Lemonnier F, et al. IDH2 mutations are frequent in angioimmunoblastic T-cell lymphoma. Blood. 2012;119(8):1901–3.PubMedPubMedCentralCrossRefGoogle Scholar
  53. 53.
    Johnston RJ, Poholek AC, DiToro D, et al. Bcl6 and Blimp-1 are reciprocal and antagonistic regulators of T follicular helper cell differentiation. Science. 2009;325(5943):1006–10.PubMedPubMedCentralCrossRefGoogle Scholar
  54. 54.
    Nurieva RI, Chung Y, Martinez GJ, et al. Bcl6 mediates the development of T follicular helper cells. Science. 2009;325(5943):1001–5.PubMedPubMedCentralCrossRefGoogle Scholar
  55. 55.
    Yu D, Rao S, Tsai LM, et al. The transcriptional repressor Bcl-6 directs T follicular helper cell lineage commitment. Immunity. 2009;31(3):457–68.PubMedCrossRefGoogle Scholar
  56. 56.
    Nurieva RI, Chung Y, Hwang D, et al. Generation of T follicular helper cells is mediated by interleukin-21 but independent of T helper 1, 2, or 17 cell lineages. Immunity. 2008;29(1):138–49.PubMedPubMedCentralCrossRefGoogle Scholar
  57. 57.
    Fazilleau N, McHeyzer-Williams LJ, Rosen H, McHeyzer-Williams MG. The function of follicular helper T cells is regulated by the strength of T cell antigen receptor binding. Nat Immunol. 2009;10(4):375–84.PubMedPubMedCentralCrossRefGoogle Scholar
  58. 58.
    Yu H, Shahsafaei A, Dorfman DM. Germinal-center T-helper-cell markers PD-1 and CXCL13 are both expressed by neoplastic cells in angioimmunoblastic T-cell lymphoma. Am J Clin Pathol. 2009;131(1):33–41.PubMedCrossRefGoogle Scholar
  59. 59.
    Sakata-Yanagimoto M, Enami T, Yoshida K, et al. Somatic RHOA mutation in angioimmunoblastic T cell lymphoma. Nat Genet. 2014;46(2):171–5.PubMedCrossRefGoogle Scholar
  60. 60.
    Palomero T, Couronne L, Khiabanian H, et al. Recurrent mutations in epigenetic regulators, RHOA and FYN kinase in peripheral T cell lymphomas. Nat Genet. 2014;46(2):166–70.PubMedPubMedCentralCrossRefGoogle Scholar
  61. 61.
    Yoo HY, Sung MK, Lee SH, et al. A recurrent inactivating mutation in RHOA GTPase in angioimmunoblastic T cell lymphoma. Nat Genet. 2014;46(4):371–5.PubMedCrossRefGoogle Scholar
  62. 62.
    Vallois D, Dobay MP, Morin RD, et al. Activating mutations in genes related to TCR signaling in angioimmunoblastic and other follicular helper T-cell-derived lymphomas. Blood. 2016;128(11):1490–502.PubMedCrossRefGoogle Scholar
  63. 63.
    Kataoka K, Nagata Y, Kitanaka A, et al. Integrated molecular analysis of adult T cell leukemia/lymphoma. Nat Genet. 2015;47(11):1304–15.PubMedCrossRefGoogle Scholar
  64. 64.
    Cleverley SC, Costello PS, Henning SW, Cantrell DA. Loss of Rho function in the thymus is accompanied by the development of thymic lymphoma. Oncogene. 2000;19(1):13–20.PubMedCrossRefGoogle Scholar
  65. 65.
    Fujisawa M, Sakata-Yanagimoto M, Nishizawa S, et al. Activation of RHOA-VAV1 signaling in angioimmunoblastic T-cell lymphoma. Leukemia. 2018;32(3):694–702.PubMedCrossRefGoogle Scholar
  66. 66.
    Lemonnier F, Couronne L, Parrens M, et al. Recurrent TET2 mutations in peripheral T-cell lymphomas correlate with TFH-like features and adverse clinical parameters. Blood. 2012;120(7):1466–9.CrossRefPubMedGoogle Scholar
  67. 67.
    Couronne L, Bastard C, Bernard OA. TET2 and DNMT3A mutations in human T-cell lymphoma. N Engl J Med. 2012;366(1):95–6.PubMedCrossRefGoogle Scholar
  68. 68.
    Odejide O, Weigert O, Lane AA, et al. A targeted mutational landscape of angioimmunoblastic T-cell lymphoma. Blood. 2014;123(9):1293–6.PubMedPubMedCentralCrossRefGoogle Scholar
  69. 69.
    Wang C, McKeithan TW, Gong Q, et al. IDH2R172 mutations define a unique subgroup of patients with angioimmunoblastic T-cell lymphoma. Blood. 2015;126(15):1741–52.PubMedPubMedCentralCrossRefGoogle Scholar
  70. 70.
    Quivoron C, Couronne L, Della Valle V, et al. TET2 inactivation results in pleiotropic hematopoietic abnormalities in mouse and is a recurrent event during human lymphomagenesis. Cancer Cell. 2011;20(1):25–38.PubMedCrossRefGoogle Scholar
  71. 71.
    Schwartz FH, Cai Q, Fellmann E, et al. TET2 mutations in B cells of patients affected by angioimmunoblastic T-cell lymphoma. J Pathol. 2017;242(2):129–33.PubMedCrossRefGoogle Scholar
  72. 72.
    Nguyen TB, Sakata-Yanagimoto M, Asabe Y, et al. Identification of cell-type-specific mutations in nodal T-cell lymphomas. Blood Cancer J. 2017;7(1):e516.PubMedPubMedCentralCrossRefGoogle Scholar
  73. 73.
    Zang S, Li J, Yang H, et al. Mutations in 5-methylcytosine oxidase TET2 and RhoA cooperatively disrupt T cell homeostasis. J Clin Invest. 2017;127(8):2998–3012.PubMedPubMedCentralCrossRefGoogle Scholar
  74. 74.
    Manso R, Sanchez-Beato M, Monsalvo S, et al. The RHOA G17V gene mutation occurs frequently in peripheral T-cell lymphoma and is associated with a characteristic molecular signature. Blood. 2014;123(18):2893–4.PubMedCrossRefGoogle Scholar
  75. 75.
    Lee SH, Kim JS, Kim J, et al. A highly recurrent novel missense mutation in CD28 among angioimmunoblastic T-cell lymphoma patients. Haematologica. 2015;100(12):e505–7.PubMedPubMedCentralCrossRefGoogle Scholar
  76. 76.
    Rohr J, Guo S, Huo J, et al. Recurrent activating mutations of CD28 in peripheral T-cell lymphomas. Leukemia. 2016;30(5):1062–70.PubMedCrossRefGoogle Scholar
  77. 77.
    Streubel B, Vinatzer U, Willheim M, Raderer M, Chott A. Novel t(5;9)(q33;q22) fuses ITK to SYK in unspecified peripheral T-cell lymphoma. Leukemia. 2006;20(2):313–8.PubMedCrossRefGoogle Scholar
  78. 78.
    Attygalle AD, Feldman AL, Dogan A. ITK/SYK translocation in angioimmunoblastic T-cell lymphoma. Am J Surg Pathol. 2013;37(9):1456–7.PubMedCrossRefGoogle Scholar
  79. 79.
    Pechloff K, Holch J, Ferch U, et al. The fusion kinase ITK-SYK mimics a T cell receptor signal and drives oncogenesis in conditional mouse models of peripheral T cell lymphoma. J Exp Med. 2010;207(5):1031–44.PubMedPubMedCentralCrossRefGoogle Scholar
  80. 80.
    Dierks C, Adrian F, Fisch P, et al. The ITK-SYK fusion oncogene induces a T-cell lymphoproliferative disease in mice mimicking human disease. Cancer Res. 2010;70(15):6193–204.PubMedCrossRefGoogle Scholar
  81. 81.
    Yoo HY, Kim P, Kim WS, et al. Frequent CTLA4-CD28 gene fusion in diverse types of T-cell lymphoma. Haematologica. 2016;101(6):757–63.PubMedPubMedCentralCrossRefGoogle Scholar
  82. 82.
    Gong Q, Wang C, Rohr J, Feldman AL, Chan WC, McKeithan TW. Comment on: frequent CTLA4-CD28 gene fusion in diverse types of T-cell lymphoma, by Yoo et al. Haematologica. 2016;101(6):e269–70.PubMedPubMedCentralCrossRefGoogle Scholar
  83. 83.
    D Vallois AD, Lemonnier F, Fataccioli V, Ortonne N, Allen G, Tournilhac O, Delarue R, Rousselet-Chapeau M, Fabiani B, Llamas-Gutierrez F, Ko YH, Kataoka K, Gaulard P, de Leval L. Tanslocations involving CD28 are rare in peripheral T-cell lymphomas. Hematol Oncol. 2017;35(S2):164–5.CrossRefGoogle Scholar
  84. 84.
    Boddicker RL, Razidlo GL, Dasari S, et al. Integrated mate-pair and RNA sequencing identifies novel, targetable gene fusions in peripheral T-cell lymphoma. Blood. 2016;128(9):1234–45.PubMedPubMedCentralCrossRefGoogle Scholar
  85. 85.
    Vose J, Armitage J, Weisenburger D, International T-Cell Lymphoma Project. International peripheral T-cell and natural killer/t-cell lymphoma study: pathology findings and clinical outcomes. J Clin Oncol. 2008;26(25):4124–30.CrossRefPubMedGoogle Scholar
  86. 86.
    Stein H, Foss HD, Durkop H, et al. CD30(+) anaplastic large cell lymphoma: a review of its histopathologic, genetic, and clinical features. Blood. 2000;96(12):3681–95.PubMedGoogle Scholar
  87. 87.
    Vassallo J, Lamant L, Brugieres L, et al. ALK-positive anaplastic large cell lymphoma mimicking nodular sclerosis Hodgkin’s lymphoma: report of 10 cases. Am J Surg Pathol. 2006;30(2):223–9.PubMedCrossRefGoogle Scholar
  88. 88.
    Lamant L, de Reynies A, Duplantier MM, et al. Gene-expression profiling of systemic anaplastic large-cell lymphoma reveals differences based on ALK status and two distinct morphologic ALK+ subtypes. Blood. 2007;109(5):2156–64.PubMedCrossRefGoogle Scholar
  89. 89.
    Lamant L, McCarthy K, d’Amore E, et al. Prognostic impact of morphologic and phenotypic features of childhood ALK-positive anaplastic large-cell lymphoma: results of the ALCL99 study. J Clin Oncol. 2011;29(35):4669–76.PubMedCrossRefGoogle Scholar
  90. 90.
    Bonzheim I, Geissinger E, Roth S, et al. Anaplastic large cell lymphomas lack the expression of T-cell receptor molecules or molecules of proximal T-cell receptor signaling. Blood. 2004;104(10):3358–60.PubMedCrossRefGoogle Scholar
  91. 91.
    Geissinger E, Sadler P, Roth S, et al. Disturbed expression of the T-cell receptor/CD3 complex and associated signaling molecules in CD30+ T-cell lymphoproliferations. Haematologica. 2010;95(10):1697–704.PubMedPubMedCentralCrossRefGoogle Scholar
  92. 92.
    Malcolm TI, Villarese P, Fairbairn CJ, et al. Anaplastic large cell lymphoma arises in thymocytes and requires transient TCR expression for thymic egress. Nat Commun. 2016;7:10087.PubMedPubMedCentralCrossRefGoogle Scholar
  93. 93.
    Piva R, Agnelli L, Pellegrino E, et al. Gene expression profiling uncovers molecular classifiers for the recognition of anaplastic large-cell lymphoma within peripheral T-cell neoplasms. J Clin Oncol. 2010;28(9):1583–90.PubMedCrossRefGoogle Scholar
  94. 94.
    Agnelli L, Mereu E, Pellegrino E, et al. Identification of a 3-gene model as a powerful diagnostic tool for the recognition of ALK-negative anaplastic large-cell lymphoma. Blood. 2012;120(6):1274–81.PubMedCrossRefGoogle Scholar
  95. 95.
    Matsuyama H, Suzuki HI, Nishimori H, et al. miR-135b mediates NPM-ALK-driven oncogenicity and renders IL-17-producing immunophenotype to anaplastic large cell lymphoma. Blood. 2011;118(26):6881–92.PubMedCrossRefGoogle Scholar
  96. 96.
    de Leval L, Gaulard P. Tricky and terrible T-cell tumors: these are thrilling times for testing: molecular pathology of peripheral T-cell lymphomas. Hematology Am Soc Hematol Educ Program. 2011;2011:336–43.PubMedCrossRefGoogle Scholar
  97. 97.
    Amin HM, Lai R. Pathobiology of ALK+ anaplastic large-cell lymphoma. Blood. 2007;110(7):2259–67.PubMedPubMedCentralCrossRefGoogle Scholar
  98. 98.
    Ambrogio C, Martinengo C, Voena C, et al. NPM-ALK oncogenic tyrosine kinase controls T-cell identity by transcriptional regulation and epigenetic silencing in lymphoma cells. Cancer Res. 2009;69(22):8611–9.PubMedPubMedCentralCrossRefGoogle Scholar
  99. 99.
    Piva R, Pellegrino E, Mattioli M, et al. Functional validation of the anaplastic lymphoma kinase signature identifies CEBPB and BCL2A1 as critical target genes. J Clin Invest. 2006;116(12):3171–82.PubMedPubMedCentralCrossRefGoogle Scholar
  100. 100.
    Richly H, Kim TM, Schuler M, et al. Ceritinib in patients with advanced anaplastic lymphoma kinase-rearranged anaplastic large-cell lymphoma. Blood. 2015;126(10):1257–8.PubMedPubMedCentralCrossRefGoogle Scholar
  101. 101.
    Chiarle R, Voena C, Ambrogio C, Piva R, Inghirami G. The anaplastic lymphoma kinase in the pathogenesis of cancer. Nat Rev Cancer. 2008;8(1):11–23.PubMedCrossRefGoogle Scholar
  102. 102.
    Maes B, Vanhentenrijk V, Wlodarska I, et al. The NPM-ALK and the ATIC-ALK fusion genes can be detected in non-neoplastic cells. Am J Pathol. 2001;158(6):2185–93.PubMedPubMedCentralCrossRefGoogle Scholar
  103. 103.
    Liu C, Iqbal J, Teruya-Feldstein J, et al. MicroRNA expression profiling identifies molecular signatures associated with anaplastic large cell lymphoma. Blood. 2013;122(12):2083–92.PubMedPubMedCentralCrossRefGoogle Scholar
  104. 104.
    Spaccarotella E, Pellegrino E, Ferracin M, et al. STAT3-mediated activation of microRNA cluster 17~92 promotes proliferation and survival of ALK-positive anaplastic large cell lymphoma. Haematologica. 2014;99(1):116–24.PubMedPubMedCentralCrossRefGoogle Scholar
  105. 105.
    Lamant L, Pileri S, Sabattini E, Brugieres L, Jaffe ES, Delsol G. Cutaneous presentation of ALK-positive anaplastic large cell lymphoma following insect bites: evidence for an association in five cases. Haematologica. 2010;95(3):449–55.PubMedCrossRefGoogle Scholar
  106. 106.
    Savage KJ, Harris NL, Vose JM, et al. ALK- anaplastic large-cell lymphoma is clinically and immunophenotypically different from both ALK+ALCL and peripheral T-cell lymphoma, not otherwise specified: report from the International Peripheral T-Cell Lymphoma Project. Blood. 2008;111(12):5496–504.Google Scholar
  107. 107.
    Sibon D, Fournier M, Briere J, et al. Long-term outcome of adults with systemic anaplastic large-cell lymphoma treated within the Groupe d’Etude des Lymphomes de l’Adulte trials. J Clin Oncol. 2012;30(32):3939–46.PubMedCrossRefGoogle Scholar
  108. 108.
    Attygalle AD, Cabecadas J, Gaulard P, et al. Peripheral T-cell and NK-cell lymphomas and their mimics; taking a step forward—report on the lymphoma workshop of the XVIth meeting of the European Association for Haematopathology and the Society for Hematopathology. Histopathology. 2014;64(2):171–99.PubMedCrossRefGoogle Scholar
  109. 109.
    Feldman AL, Law ME, Inwards DJ, Dogan A, McClure RF, Macon WR. PAX5-positive T-cell anaplastic large cell lymphomas associated with extra copies of the PAX5 gene locus. Mod Path. 2010;23(4):593–602.CrossRefGoogle Scholar
  110. 110.
    Bisig B, de Reynies A, Bonnet C, et al. CD30-positive peripheral T-cell lymphomas share molecular and phenotypic features. Haematologica. 2013;98(8):1250–8.PubMedPubMedCentralCrossRefGoogle Scholar
  111. 111.
    Abate F, Todaro M, van der Krogt JA, et al. A novel patient-derived tumorgraft model with TRAF1-ALK anaplastic large-cell lymphoma translocation. Leukemia. 2015;29(6):1390–401.PubMedCrossRefGoogle Scholar
  112. 112.
    Feldman AL, Dogan A, Smith DI, et al. Discovery of recurrent t(6;7)(p25.3;q32.3) translocations in ALK-negative anaplastic large cell lymphomas by massively parallel genomic sequencing. Blood. 2011;117(3):915–9.PubMedPubMedCentralCrossRefGoogle Scholar
  113. 113.
    Vasmatzis G, Johnson SH, Knudson RA, et al. Genome-wide analysis reveals recurrent structural abnormalities of TP63 and other p53-related genes in peripheral T-cell lymphomas. Blood. 2012;120(11):2280–9.PubMedPubMedCentralCrossRefGoogle Scholar
  114. 114.
    Pedersen MB, Hamilton-Dutoit SJ, Bendix K, et al. DUSP22 and TP63 rearrangements predict outcome of ALK-negative anaplastic large cell lymphoma: a Danish cohort study. Blood. 2017;130(4):554–7.PubMedPubMedCentralCrossRefGoogle Scholar
  115. 115.
    Parrilla Castellar ER, Jaffe ES, Said JW, et al. ALK-negative anaplastic large cell lymphoma is a genetically heterogeneous disease with widely disparate clinical outcomes. Blood. 2014;124(9):1473–80.PubMedPubMedCentralCrossRefGoogle Scholar
  116. 116.
    King RL, Dao LN, McPhail ED, et al. Morphologic features of ALK-negative anaplastic large cell lymphomas with DUSP22 rearrangements. Am J Surg Pathol. 2016;40(1):36–43.PubMedPubMedCentralCrossRefGoogle Scholar
  117. 117.
    Xing X, Flotte TJ, Law ME, et al. Expression of the chemokine receptor gene, CCR8, is associated with DUSP22 rearrangements in anaplastic large cell lymphoma. Appl Immunohistochem Mol Morphol. 2015;23(8):580–9.PubMedPubMedCentralCrossRefGoogle Scholar
  118. 118.
    Scarfo I, Pellegrino E, Mereu E, et al. Identification of a new subclass of ALK-negative ALCL expressing aberrant levels of ERBB4 transcripts. Blood. 2016;127(2):221–32.PubMedCrossRefGoogle Scholar
  119. 119.
    Crescenzo R, Abate F, Lasorsa E, et al. Convergent mutations and kinase fusions lead to oncogenic STAT3 activation in anaplastic large cell lymphoma. Cancer Cell. 2015;27(4):516–32.PubMedPubMedCentralCrossRefGoogle Scholar
  120. 120.
    Boi M, Rinaldi A, Kwee I, et al. PRDM1/BLIMP1 is commonly inactivated in anaplastic large T-cell lymphoma. Blood. 2013;122(15):2683–93.PubMedCrossRefGoogle Scholar
  121. 121.
    Wada DA, Law ME, Hsi ED, et al. Specificity of IRF4 translocations for primary cutaneous anaplastic large cell lymphoma: a multicenter study of 204 skin biopsies. Mod Path. 2011;24(4):596–605.CrossRefGoogle Scholar
  122. 122.
    Onaindia A, Montes-Moreno S, Rodriguez-Pinilla SM, et al. Primary cutaneous anaplastic large cell lymphomas with 6p25.3 rearrangement exhibit particular histological features. Histopathology. 2015;66(6):846–55.PubMedCrossRefGoogle Scholar
  123. 123.
    Velusamy T, Kiel MJ, Sahasrabuddhe AA, et al. A novel recurrent NPM1-TYK2 gene fusion in cutaneous CD30-positive lymphoproliferative disorders. Blood. 2014;124(25):3768–71.PubMedCrossRefGoogle Scholar
  124. 124.
    Oschlies I, Lisfeld J, Lamant L, et al. ALK-positive anaplastic large cell lymphoma limited to the skin: clinical, histopathological and molecular analysis of 6 pediatric cases. A report from the ALCL99 study. Haematologica. 2013;98(1):50–6.PubMedPubMedCentralCrossRefGoogle Scholar
  125. 125.
    Brody GS, Deapen D, Taylor CR, et al. Anaplastic large cell lymphoma occurring in women with breast implants: analysis of 173 cases. Plast Reconstr Surg. 2015;135(3):695–705.PubMedCrossRefGoogle Scholar
  126. 126.
    Clemens MW, Medeiros LJ, Butler CE, et al. Complete surgical excision is essential for the management of patients with breast implant-associated anaplastic large-cell lymphoma. J Clin Oncol. 2016;34(2):160–8.PubMedPubMedCentralCrossRefGoogle Scholar
  127. 127.
    Laurent C, Delas A, Gaulard P, et al. Breast implant-associated anaplastic large cell lymphoma: two distinct clinicopathological variants with different outcomes. Ann Oncol. 2016;27(2):306–14.PubMedCrossRefGoogle Scholar
  128. 128.
    Miranda RN, Aladily TN, Prince HM, et al. Breast implant-associated anaplastic large-cell lymphoma: long-term follow-up of 60 patients. J Clin Oncol. 2014;32(2):114–20.PubMedPubMedCentralCrossRefGoogle Scholar
  129. 129.
    Clemens MW, Horwitz SM. NCCN consensus guidelines for the diagnosis and management of breast implant-associated anaplastic large cell lymphoma. Aesthet Surg J. 2017;37(3):285–9.PubMedCrossRefGoogle Scholar
  130. 130.
    Lechner MG, Megiel C, Church CH, et al. Survival signals and targets for therapy in breast implant-associated ALK—anaplastic large cell lymphoma. Clin Cancer Res. 2012;18(17):4549–59.PubMedCrossRefGoogle Scholar
  131. 131.
    Di Napoli A, Jain P, Duranti E, et al. Targeted next generation sequencing of breast implant-associated anaplastic large cell lymphoma reveals mutations in JAK/STAT signalling pathway genes, TP53 and DNMT3A. Br J Haematol. 2018;180(5):741–4.PubMedCrossRefGoogle Scholar
  132. 132.
    Oliveira PD, Kachimarek AC, Bittencourt AL. Early onset of HTLV-1 Associated Myelopathy/Tropical Spastic Paraparesis (HAM/TSP) and Adult T-Cell Leukemia/Lymphoma (ATL): systematic search and review. J Trop Pediatr. 2018;64(2):151–61.PubMedCrossRefGoogle Scholar
  133. 133.
    Shimoyama M. Diagnostic criteria and classification of clinical subtypes of adult T-cell leukaemia-lymphoma. A report from the Lymphoma Study Group (1984-87). Br J Haematol. 1991;79(3):428–37.PubMedCrossRefGoogle Scholar
  134. 134.
    Karube K, Ohshima K, Tsuchiya T, et al. Expression of FoxP3, a key molecule in CD4CD25 regulatory T cells, in adult T-cell leukaemia/lymphoma cells. Br J Haematol. 2004;126(1):81–4.PubMedCrossRefGoogle Scholar
  135. 135.
    Roncador G, Garcia JF, Garcia JF, et al. FOXP3, a selective marker for a subset of adult T-cell leukaemia/lymphoma. Leukemia. 2005;19(12):2247–53.PubMedCrossRefGoogle Scholar
  136. 136.
    Kohno T, Yamada Y, Akamatsu N, et al. Possible origin of adult T-cell leukemia/lymphoma cells from human T lymphotropic virus type-1-infected regulatory T cells. Cancer Sci. 2005;96(8):527–33.PubMedCrossRefGoogle Scholar
  137. 137.
    Nagai Y, Kawahara M, Hishizawa M, et al. T memory stem cells are the hierarchical apex of adult T-cell leukemia. Blood. 2015;125(23):3527–35.PubMedCrossRefGoogle Scholar
  138. 138.
    Jeang KT, Giam CZ, Majone F, Aboud M. Life, death, and tax: role of HTLV-I oncoprotein in genetic instability and cellular transformation. J Biol Chem. 2004;279(31):31991–4.PubMedCrossRefGoogle Scholar
  139. 139.
    Alizadeh AA, Bohen SP, Lossos C, et al. Expression profiles of adult T-cell leukemia-lymphoma and associations with clinical responses to zidovudine and interferon alpha. Leuk Lymphoma. 2010;51(7):1200–16.PubMedPubMedCentralCrossRefGoogle Scholar
  140. 140.
    Sasaki H, Nishikata I, Shiraga T, et al. Overexpression of a cell adhesion molecule, TSLC1, as a possible molecular marker for acute-type adult T-cell leukemia. Blood. 2005;105(3):1204–13.PubMedCrossRefGoogle Scholar
  141. 141.
    Pise-Masison CA, Radonovich M, Dohoney K, et al. Gene expression profiling of ATL patients: compilation of disease related genes and evidence for TCF-4 involvement in BIRC5 gene expression and cell viability. Blood. 2009;113(17):4016–26.PubMedPubMedCentralCrossRefGoogle Scholar
  142. 142.
    Gaudray G, Gachon F, Basbous J, Biard-Piechaczyk M, Devaux C, Mesnard JM. The complementary strand of the human T-cell leukemia virus type 1 RNA genome encodes a bZIP transcription factor that down-regulates viral transcription. J Virol. 2002;76(24):12813–22.PubMedPubMedCentralCrossRefGoogle Scholar
  143. 143.
    Yamagishi M, Watanabe T. Molecular hallmarks of adult T cell leukemia. Front Microbiol. 2012;3:334.PubMedPubMedCentralCrossRefGoogle Scholar
  144. 144.
    Nakagawa M, Schmitz R, Xiao W, et al. Gain-of-function CCR4 mutations in adult T cell leukemia/lymphoma. J Exp Med. 2014;211(13):2497–505.PubMedPubMedCentralCrossRefGoogle Scholar
  145. 145.
    Yoshie O, Fujisawa R, Nakayama T, et al. Frequent expression of CCR4 in adult T-cell leukemia and human T-cell leukemia virus type 1-transformed T cells. Blood. 2002;99(5):1505–11.PubMedCrossRefGoogle Scholar
  146. 146.
    Harasawa H, Yamada Y, Hieshima K, et al. Survey of chemokine receptor expression reveals frequent co-expression of skin-homing CCR4 and CCR10 in adult T-cell leukemia/lymphoma. Leuk Lymphoma. 2006;47(10):2163–73.PubMedCrossRefGoogle Scholar
  147. 147.
    Ishida T, Joh T, Uike N, et al. Defucosylated anti-CCR4 monoclonal antibody (KW-0761) for relapsed adult T-cell leukemia-lymphoma: a multicenter phase II study. J Clin Oncol. 2012;30(8):837–42.PubMedCrossRefGoogle Scholar
  148. 148.
    Iyama S, Sato T, Ohnishi H, et al. A multicenter retrospective study of mogamulizumab efficacy in adult T-cell leukemia/lymphoma. Clin Lymphoma Myeloma Leuk. 2017;17(1):23–30 e22.PubMedCrossRefGoogle Scholar
  149. 149.
    Briski R, Feldman AL, Bailey NG, et al. The role of front-line anthracycline-containing chemotherapy regimens in peripheral T-cell lymphomas. Blood Cancer J. 2014;4:e214.PubMedPubMedCentralCrossRefGoogle Scholar
  150. 150.
    Li J, Lu E, Yi T, Cyster JG. EBI2 augments Tfh cell fate by promoting interaction with IL-2-quenching dendritic cells. Nature. 2016;533(7601):110–4.PubMedPubMedCentralCrossRefGoogle Scholar
  151. 151.
    Willemze R, Jaffe ES, Burg G, et al. WHO-EORTC classification for cutaneous lymphomas. Blood. 2005;105(10):3768–85.PubMedCrossRefGoogle Scholar
  152. 152.
    Bradford PT, Devesa SS, Anderson WF, Toro JR. Cutaneous lymphoma incidence patterns in the United States: a population-based study of 3884 cases. Blood. 2009;113(21):5064–73.PubMedPubMedCentralCrossRefGoogle Scholar
  153. 153.
    Campbell JJ, Clark RA, Watanabe R, Kupper TS. Sezary syndrome and mycosis fungoides arise from distinct T-cell subsets: a biologic rationale for their distinct clinical behaviors. Blood. 2010;116(5):767–71.PubMedPubMedCentralCrossRefGoogle Scholar
  154. 154.
    Dulmage BO, Geskin LJ. Lessons learned from gene expression profiling of cutaneous T-cell lymphoma. Br J Dermatol. 2013;169(6):1188–97.PubMedPubMedCentralCrossRefGoogle Scholar
  155. 155.
    Michel L, Jean-Louis F, Begue E, Bensussan A, Bagot M. Use of PLS3, Twist, CD158k/KIR3DL2, and NKp46 gene expression combination for reliable Sezary syndrome diagnosis. Blood. 2013;121(8):1477–8.PubMedCrossRefGoogle Scholar
  156. 156.
    Lee CS, Ungewickell A, Bhaduri A, et al. Transcriptome sequencing in Sezary syndrome identifies Sezary cell and mycosis fungoides-associated lncRNAs and novel transcripts. Blood. 2012;120(16):3288–97.PubMedPubMedCentralCrossRefGoogle Scholar
  157. 157.
    Huang Y, Su MW, Jiang X, Zhou Y. Evidence of an oncogenic role of aberrant TOX activation in cutaneous T-cell lymphoma. Blood. 2015;125(9):1435–43.PubMedCrossRefGoogle Scholar
  158. 158.
    Dulmage BO, Akilov O, Vu JR, Falo LD, Geskin LJ. Dysregulation of the TOX-RUNX3 pathway in cutaneous T-cell lymphoma. Oncotarget. 2015.Google Scholar
  159. 159.
    Haider A, Steininger A, Ullmann R, et al. Inactivation of RUNX3/p46 promotes cutaneous T-cell lymphoma. J Invest Dermatol. 2016;136(11):2287–96.PubMedCrossRefGoogle Scholar
  160. 160.
    Choi J, Goh G, Walradt T, et al. Genomic landscape of cutaneous T cell lymphoma. Nat Genet. 2015;47(9):1011–9.PubMedPubMedCentralCrossRefGoogle Scholar
  161. 161.
    da Silva Almeida AC, Abate F, Khiabanian H, et al. The mutational landscape of cutaneous T cell lymphoma and Sezary syndrome. Nat Genet. 2015;47(12):1465–70.PubMedPubMedCentralCrossRefGoogle Scholar
  162. 162.
    Kiel MJ, Sahasrabuddhe AA, Rolland DC, et al. Genomic analyses reveal recurrent mutations in epigenetic modifiers and the JAK-STAT pathway in Sezary syndrome. Nat Commun. 2015;6:8470.PubMedPubMedCentralCrossRefGoogle Scholar
  163. 163.
    Ichiyama K, Chen T, Wang X, et al. The methylcytosine dioxygenase Tet2 promotes DNA demethylation and activation of cytokine gene expression in T cells. Immunity. 2015;42(4):613–26.PubMedPubMedCentralCrossRefGoogle Scholar
  164. 164.
    Travert M, Huang Y, de Leval L, et al. Molecular features of hepatosplenic T-cell lymphoma unravels potential novel therapeutic targets. Blood. 2012;119(24):5795–806.PubMedPubMedCentralCrossRefGoogle Scholar
  165. 165.
    Belhadj K, Reyes F, Farcet JP, et al. Hepatosplenic gammadelta T-cell lymphoma is a rare clinicopathologic entity with poor outcome: report on a series of 21 patients. Blood. 2003;102(13):4261–9.PubMedCrossRefGoogle Scholar
  166. 166.
    Yabe M, Medeiros LJ, Tang G, et al. Prognostic factors of hepatosplenic T-cell lymphoma: clinicopathologic study of 28 cases. Am J Surg Pathol. 2016;40(5):676–88.PubMedCrossRefGoogle Scholar
  167. 167.
    Thai A, Prindiville T. Hepatosplenic T-cell lymphoma and inflammatory bowel disease. J Crohns Colitis. 2010;4(5):511–22.PubMedCrossRefGoogle Scholar
  168. 168.
    Farcet JP, Gaulard P, Marolleau JP, et al. Hepatosplenic T-cell lymphoma: sinusal/sinusoidal localization of malignant cells expressing the T-cell receptor gamma delta. Blood. 1990;75(11):2213–9.PubMedGoogle Scholar
  169. 169.
    Alonsozana EL, Stamberg J, Kumar D, et al. Isochromosome 7q: the primary cytogenetic abnormality in hepatosplenic gammadelta T cell lymphoma. Leukemia. 1997;11(8):1367–72.PubMedCrossRefGoogle Scholar
  170. 170.
    Macon WR, Levy NB, Kurtin PJ, et al. Hepatosplenic alphabeta T-cell lymphomas: a report of 14 cases and comparison with hepatosplenic gammadelta T-cell lymphomas. Am J Surg Pathol. 2001;25(3):285–96.PubMedCrossRefGoogle Scholar
  171. 171.
    Wlodarska I, Martin-Garcia N, Achten R, et al. Fluorescence in situ hybridization study of chromosome 7 aberrations in hepatosplenic T-cell lymphoma: isochromosome 7q as a common abnormality accumulating in forms with features of cytologic progression. Genes Chromosomes Cancer. 2002;33(3):243–51.PubMedCrossRefGoogle Scholar
  172. 172.
    Jonveaux P, Daniel MT, Martel V, Maarek O, Berger R. Isochromosome 7q and trisomy 8 are consistent primary, non-random chromosomal abnormalities associated with hepatosplenic T gamma/delta lymphoma. Leukemia. 1996;10(9):1453–5.PubMedGoogle Scholar
  173. 173.
    Feldman AL, Law M, Grogg KL, et al. Incidence of TCR and TCL1 gene translocations and isochromosome 7q in peripheral T-cell lymphomas using fluorescence in situ hybridization. Am J Clin Pathol. 2008;130(2):178–85.PubMedPubMedCentralCrossRefGoogle Scholar
  174. 174.
    McKinney M, Moffitt AB, Gaulard P, et al. The genetic basis of hepatosplenic T-cell lymphoma. Cancer Discov. 2017;7(4):369–79.PubMedPubMedCentralCrossRefGoogle Scholar
  175. 175.
    Miyazaki K, Yamaguchi M, Imai H, et al. Gene expression profiling of peripheral T-cell lymphoma including gammadelta T-cell lymphoma. Blood. 2009;113(5):1071–4.PubMedCrossRefGoogle Scholar
  176. 176.
    Lee MY, Tsou MH, Tan TD, Lu MC. Clinicopathological analysis of T-cell lymphoma in Taiwan according to WHO classification: high incidence of enteropathy-type intestinal T-cell lymphoma. Eur J Haematol. 2005;75(3):221–6.PubMedCrossRefGoogle Scholar
  177. 177.
    Verbeek WH, Van De Water JM, Al-Toma A, Oudejans JJ, Mulder CJ, Coupe VM. Incidence of enteropathy—associated T-cell lymphoma: a nation-wide study of a population-based registry in The Netherlands. Scand J Gastroenterol. 2008;43(11):1322–8.PubMedCrossRefGoogle Scholar
  178. 178.
    Malamut G, Chandesris O, Verkarre V, et al. Enteropathy associated T cell lymphoma in celiac disease: a large retrospective study. Dig Liver Dis. 2013;45(5):377–84.PubMedCrossRefGoogle Scholar
  179. 179.
    Isaacson P, Wright DH. Intestinal lymphoma associated with malabsorption. Lancet. 1978;1(8055):67–70.PubMedCrossRefGoogle Scholar
  180. 180.
    Sabattini E, Pizzi M, Tabanelli V, et al. CD30 expression in peripheral T-cell lymphomas. Haematologica. 2013;98(8):e81–2.PubMedPubMedCentralCrossRefGoogle Scholar
  181. 181.
    Khalaf WF, Caldwell ME, Reddy N. Brentuximab in the treatment of CD30-positive enteropathy-associated T-cell lymphoma. J Natl Compr Cancer Netw. 2013;11(2):137–40; quiz 140.CrossRefGoogle Scholar
  182. 182.
    van de Water JM, Cillessen SA, Visser OJ, Verbeek WH, Meijer CJ, Mulder CJ. Enteropathy associated T-cell lymphoma and its precursor lesions. Best Pract Res Clin Gastroenterol. 2010;24(1):43–56.PubMedCrossRefGoogle Scholar
  183. 183.
    Malamut G, Afchain P, Verkarre V, et al. Presentation and long-term follow-up of refractory celiac disease: comparison of type I with type II. Gastroenterology. 2009;136(1):81–90.PubMedCrossRefGoogle Scholar
  184. 184.
    Chott A, Haedicke W, Mosberger I, et al. Most CD56+ intestinal lymphomas are CD8+CD5-T-cell lymphomas of monomorphic small to medium size histology. Am J Pathol. 1998;153(5):1483–90.PubMedPubMedCentralCrossRefGoogle Scholar
  185. 185.
    Chan JK, Chan AC, Cheuk W, et al. Type II enteropathy-associated T-cell lymphoma: a distinct aggressive lymphoma with frequent gammadelta T-cell receptor expression. Am J Surg Pathol. 2011;35(10):1557–69.PubMedCrossRefGoogle Scholar
  186. 186.
    Tan SY, Chuang SS, Tang T, et al. Type II EATL (epitheliotropic intestinal T-cell lymphoma): a neoplasm of intra-epithelial T-cells with predominant CD8alphaalpha phenotype. Leukemia. 2013;27(8):1688–96.PubMedCrossRefGoogle Scholar
  187. 187.
    Tan SY, Ooi AS, Ang MK, et al. Nuclear expression of MATK is a novel marker of type II enteropathy-associated T-cell lymphoma. Leukemia. 2011;25(3):555–7.PubMedCrossRefGoogle Scholar
  188. 188.
    Akiyama T, Okino T, Konishi H, et al. CD8+, CD56+ (natural killer-like) T-cell lymphoma involving the small intestine with no evidence of enteropathy: clinicopathology and molecular study of five Japanese patients. Pathol Int. 2008;58(10):626–34.PubMedCrossRefGoogle Scholar
  189. 189.
    Takeshita M, Nakamura S, Kikuma K, et al. Pathological and immunohistological findings and genetic aberrations of intestinal enteropathy-associated T cell lymphoma in Japan. Histopathology. 2011;58(3):395–407.PubMedCrossRefGoogle Scholar
  190. 190.
    Deleeuw RJ, Zettl A, Klinker E, et al. Whole-genome analysis and HLA genotyping of enteropathy-type T-cell lymphoma reveals 2 distinct lymphoma subtypes. Gastroenterology. 2007;132(5):1902–11.PubMedCrossRefGoogle Scholar
  191. 191.
    Tomita S, Kikuti YY, Carreras J, et al. Genomic and immunohistochemical profiles of enteropathy-associated T-cell lymphoma in Japan. Mod Pathol. 2015;28(10):1286–96.PubMedCrossRefGoogle Scholar
  192. 192.
    Ko YH, Karnan S, Kim KM, et al. Enteropathy-associated T-cell lymphoma—a clinicopathologic and array comparative genomic hybridization study. Hum Pathol. 2010;41(9):1231–7.PubMedCrossRefGoogle Scholar
  193. 193.
    Nicolae A, Xi L, Pham TH, et al. Mutations in the JAK/STAT and RAS signaling pathways are common in intestinal T-cell lymphomas. Leukemia. 2016;30(11):2245–7.PubMedPubMedCentralCrossRefGoogle Scholar
  194. 194.
    Moffitt AB, Ondrejka SL, McKinney M, et al. Enteropathy-associated T cell lymphoma subtypes are characterized by loss of function of SETD2. J Exp Med. 2017;214(5):1371–86.PubMedPubMedCentralCrossRefGoogle Scholar
  195. 195.
    Nairismagi ML, Tan J, Lim JQ, et al. JAK-STAT and G-protein-coupled receptor signaling pathways are frequently altered in epitheliotropic intestinal T-cell lymphoma. Leukemia. 2016;30(6):1311–9.PubMedPubMedCentralCrossRefGoogle Scholar
  196. 196.
    Roberti A, Dobay MP, Bisig B, et al. Type II enteropathy-associated T-cell lymphoma features a unique genomic profile with highly recurrent SETD2 alterations. Nat Commun. 2016;7:12602.PubMedPubMedCentralCrossRefGoogle Scholar
  197. 197.
    Kucuk C, Jiang B, Hu X, et al. Activating mutations of STAT5B and STAT3 in lymphomas derived from gammadelta-T or NK cells. Nat Commun. 2015;6:6025.PubMedCrossRefGoogle Scholar
  198. 198.
    Kucuk C, Hu X, Jiang B, et al. Global promoter methylation analysis reveals novel candidate tumor suppressor genes in natural killer cell lymphoma. Clin Cancer Res. 2015;21(7):1699–711.PubMedPubMedCentralCrossRefGoogle Scholar
  199. 199.
    Perry AM, Warnke RA, Hu Q, et al. Indolent T-cell lymphoproliferative disease of the gastrointestinal tract. Blood. 2013;122(22):3599–606.PubMedPubMedCentralCrossRefGoogle Scholar
  200. 200.
    Carbonnel F, d’Almagne H, Lavergne A, et al. The clinicopathological features of extensive small intestinal CD4 T cell infiltration. Gut. 1999;45(5):662–7.PubMedPubMedCentralCrossRefGoogle Scholar
  201. 201.
    Margolskee E, Jobanputra V, Lewis SK, Alobeid B, Green PH, Bhagat G. Indolent small intestinal CD4+ T-cell lymphoma is a distinct entity with unique biologic and clinical features. PLoS One. 2013;8(7):e68343.PubMedPubMedCentralCrossRefGoogle Scholar
  202. 202.
    Malamut G, Meresse B, Kaltenbach S, et al. Small intestinal CD4+ T-cell lymphoma is a heterogenous entity with common pathology features. Clin Gastroenterol Hepatol. 2014;12(4):599–608 e591.PubMedCrossRefGoogle Scholar
  203. 203.
    Leventaki V, Manning JT Jr, Luthra R, et al. Indolent peripheral T-cell lymphoma involving the gastrointestinal tract. Hum Pathol. 2014;45(2):421–6.PubMedCrossRefGoogle Scholar
  204. 204.
    Au WY, Weisenburger DD, Intragumtornchai T, et al. Clinical differences between nasal and extranasal natural killer/T-cell lymphoma: a study of 136 cases from the International Peripheral T-Cell Lymphoma Project. Blood. 2009;113(17):3931–7.PubMedCrossRefGoogle Scholar
  205. 205.
    Kwong YL. The diagnosis and management of extranodal NK/T-cell lymphoma, nasal-type and aggressive NK-cell leukemia. J Clin Exp Hematop. 2011;51(1):21–8.PubMedCrossRefGoogle Scholar
  206. 206.
    Huang Y, de Leval L, Gaulard P. Molecular underpinning of extranodal NK/T-cell lymphoma. Best practice & research. Clin Haematol. 2013;26(1):57–74.Google Scholar
  207. 207.
    Kim WY, Jung HY, Nam SJ, et al. Expression of programmed cell death ligand 1 (PD-L1) in advanced stage EBV-associated extranodal NK/T cell lymphoma is associated with better prognosis. Virchows Arch. 2016;469(5):581–90.PubMedCrossRefGoogle Scholar
  208. 208.
    Lai J, Xu P, Jiang X, Zhou S, Liu A. Successful treatment with anti-programmed-death-1 antibody in a relapsed natural killer/T-cell lymphoma patient with multi-line resistance: a case report. BMC Cancer. 2017;17(1):507.PubMedPubMedCentralCrossRefGoogle Scholar
  209. 209.
    Coppo P, Gouilleux-Gruart V, Huang Y, et al. STAT3 transcription factor is constitutively activated and is oncogenic in nasal-type NK/T-cell lymphoma. Leukemia. 2009;23(9):1667–78.PubMedPubMedCentralCrossRefGoogle Scholar
  210. 210.
    Huang Y, de Reynies A, de Leval L, et al. Gene expression profiling identifies emerging oncogenic pathways operating in extranodal NK/T-cell lymphoma, nasal type. Blood. 2010;115(6):1226–37.PubMedPubMedCentralCrossRefGoogle Scholar
  211. 211.
    Iqbal J, Kucuk C, Deleeuw RJ, et al. Genomic analyses reveal global functional alterations that promote tumor growth and novel tumor suppressor genes in natural killer-cell malignancies. Leukemia. 2009;23(6):1139–51.PubMedCrossRefGoogle Scholar
  212. 212.
    Teruya-Feldstein J, Jaffe ES, Burd PR, et al. The role of Mig, the monokine induced by interferon-gamma, and IP-10, the interferon-gamma-inducible protein-10, in tissue necrosis and vascular damage associated with Epstein-Barr virus-positive lymphoproliferative disease. Blood. 1997;90(10):4099–105.PubMedGoogle Scholar
  213. 213.
    Koo GC, Tan SY, Tang T, et al. Janus kinase 3-activating mutations identified in natural killer/T-cell lymphoma. Cancer Discov. 2012;2(7):591–7.PubMedCrossRefGoogle Scholar
  214. 214.
    Bouchekioua A, Scourzic L, de Wever O, et al. JAK3 deregulation by activating mutations confers invasive growth advantage in extranodal nasal-type natural killer cell lymphoma. Leukemia. 2014;28(2):338–48.PubMedCrossRefGoogle Scholar
  215. 215.
    Kimura H, Karube K, Ito Y, et al. Rare occurrence of JAK3 mutations in NK cell neoplasms in Japan. Leuk Lymphoma. 2014;55(4):962–3.PubMedCrossRefGoogle Scholar
  216. 216.
    Jiang L, Gu ZH, Yan ZX, et al. Exome sequencing identifies somatic mutations of DDX3X in natural killer/T-cell lymphoma. Nat Genet. 2015;47(9):1061–6. Epub ahead of print.PubMedCrossRefGoogle Scholar
  217. 217.
    Dybkaer K, Iqbal J, Zhou G, et al. Genome wide transcriptional analysis of resting and IL2 activated human natural killer cells: gene expression signatures indicative of novel molecular signaling pathways. BMC Genomics. 2007;8:230.PubMedPubMedCentralCrossRefGoogle Scholar
  218. 218.
    Schmitz N, de Leval L. How I manage peripheral T-cell lymphoma, not otherwise specified and angioimmunoblastic T-cell lymphoma: current practice and a glimpse into the future. Br J Haematol. 2017;176(6):851–66.PubMedCrossRefGoogle Scholar
  219. 219.
    Matnani RG, Stewart RL, Pulliam J, Jennings CD, Kesler M. Peripheral T-cell lymphoma with aberrant expression of CD19, CD20, and CD79a: case report and literature review. Case Rep Hematol. 2013;2013:183134.PubMedPubMedCentralGoogle Scholar
  220. 220.
    Yao X, Teruya-Feldstein J, Raffeld M, Sorbara L, Jaffe ES. Peripheral T-cell lymphoma with aberrant expression of CD79a and CD20: a diagnostic pitfall. Mod Pathol. 2001;14(2):105–10.PubMedCrossRefGoogle Scholar
  221. 221.
    Rahemtullah A, Longtine JA, Harris NL, et al. CD20+ T-cell lymphoma: clinicopathologic analysis of 9 cases and a review of the literature. Am J Surg Pathol. 2008;32(11):1593–607.PubMedCrossRefGoogle Scholar
  222. 222.
    Dupuis J, Emile JF, Mounier N, et al. Prognostic significance of Epstein-Barr virus in nodal peripheral T-cell lymphoma, unspecified: a Groupe d’Etude des Lymphomes de l’Adulte (GELA) study. Blood. 2006;108(13):4163–9.PubMedCrossRefGoogle Scholar
  223. 223.
    Yamashita Y, Nakamura S, Kagami Y, et al. Lennert’s lymphoma: a variant of cytotoxic T-cell lymphoma? Am J Surg Pathol. 2000;24(12):1627–33.Google Scholar
  224. 224.
    Geissinger E, Odenwald T, Lee SS, et al. Nodal peripheral T-cell lymphomas and, in particular, their lymphoepithelioid (Lennert’s) variant are often derived from CD8(+) cytotoxic T-cells. Virchows Arch. 2004;445(4):334–43.PubMedCrossRefGoogle Scholar
  225. 225.
    Martinez-Delgado B. Peripheral T-cell lymphoma gene expression profiles. Hematol Oncol. 2006;24(3):113–9.PubMedCrossRefGoogle Scholar
  226. 226.
    Cuadros M, Dave SS, Jaffe ES, et al. Identification of a proliferation signature related to survival in nodal peripheral T-cell lymphomas. J Clin Oncol. 2007;25(22):3321–9.PubMedCrossRefGoogle Scholar
  227. 227.
    Martinez-Delgado B, Cuadros M, Honrado E, et al. Differential expression of NF-kappaB pathway genes among peripheral T-cell lymphomas. Leukemia. 2005;19(12):2254–63.PubMedCrossRefGoogle Scholar
  228. 228.
    Ballester B, Ramuz O, Gisselbrecht C, et al. Gene expression profiling identifies molecular subgroups among nodal peripheral T-cell lymphomas. Oncogene. 2006;25(10):1560–70.PubMedCrossRefGoogle Scholar
  229. 229.
    Wang T, et al. GATA-3 expression identifies a high-risk subset of PTCL, NOS with distinct molecular and clinical features. Blood. 2014;123(19):3007–15.PubMedPubMedCentralCrossRefGoogle Scholar
  230. 230.
    de Leval L, Bisig B, Thielen C, Boniver J, Gaulard P. Molecular classification of T-cell lymphomas. Crit Rev Oncol Hematol. 2009;72(2):125–43.PubMedCrossRefGoogle Scholar
  231. 231.
    Nagel S, Leich E, Quentmeier H, et al. Amplification at 7q22 targets cyclin-dependent kinase 6 in T-cell lymphoma. Leukemia. 2008;22(2):387–92.PubMedCrossRefGoogle Scholar
  232. 232.
    Fujiwara SI, Yamashita Y, Nakamura N, et al. High-resolution analysis of chromosome copy number alterations in angioimmunoblastic T-cell lymphoma and peripheral T-cell lymphoma, unspecified, with single nucleotide polymorphism-typing microarrays. Leukemia. 2008;22(10):1891–8.CrossRefPubMedGoogle Scholar
  233. 233.
    Nelson M, Horsman DE, Weisenburger DD, et al. Cytogenetic abnormalities and clinical correlations in peripheral T-cell lymphoma. Br J Haematol. 2008;141(4):461–9.PubMedCrossRefGoogle Scholar
  234. 234.
    Gesk S, Martin-Subero JI, Harder L, et al. Molecular cytogenetic detection of chromosomal breakpoints in T-cell receptor gene loci. Leukemia. 2003;17(4):738–45.PubMedCrossRefGoogle Scholar
  235. 235.
    Almire C, Bertrand P, Ruminy P, et al. PVRL2 is translocated to the TRA@ locus in t(14;19)(q11;q13)-positive peripheral T-cell lymphomas. Genes Chromosomes Cancer. 2007;46(11):1011–8.PubMedCrossRefGoogle Scholar
  236. 236.
    Martin-Subero JI, Wlodarska I, Bastard C, et al. Chromosomal rearrangements involving the BCL3 locus are recurrent in classical Hodgkin and peripheral T-cell lymphoma. Blood. 2006;108(1):401–2; author reply 402-403.PubMedCrossRefGoogle Scholar
  237. 237.
    Feldman AL, Law M, Remstein ED, et al. Recurrent translocations involving the IRF4 oncogene locus in peripheral T-cell lymphomas. Leukemia. 2009;23(3):574–80.PubMedCrossRefGoogle Scholar
  238. 238.
    Somja J, Bisig B, Bonnet C, Herens C, Siebert R, de Leval L. Peripheral T-cell lymphoma with t(6;14)(p25;q11.2) translocation presenting with massive splenomegaly. Virchows Arch. 2014;464(6):735–41.PubMedGoogle Scholar
  239. 239.
    Heavican TB, Yu J, Bouska A, Greiner TC, Lachel CM, Wang C, Dave BJ, Amador CC, Fu K, Vose JM, Weisenburger DD, Gascoyne RD, Hartmann S, Pedersen MB, Wilcox R, Teh BT, Lim ST, Ong CK, Seto M, Berger F, Rosenwald A, Ott G, Campo E, Rimsza LM, Jaffe ES, Braziel RM, d’Amore FA, Inghirami G, Bertoni F, Staudt L, McKeithan TW, Pileri SA, Chan WC, Iqbal J. Molecular subgroups of peripheral T-cell lymphoma evolve by distinct genetic pathways. 58th ASH Annual Meeting and Exposition, San Diego, CA; 2106.Google Scholar
  240. 240.
    Schatz JH, Horwitz SM, Teruya-Feldstein J, et al. Targeted mutational profiling of peripheral T-cell lymphoma not otherwise specified highlights new mechanisms in a heterogeneous pathogenesis. Leukemia. 2015;29(1):237–41.PubMedCrossRefGoogle Scholar
  241. 241.
    Abate F, da Silva-Almeida AC, Zairis S, et al. Activating mutations and translocations in the guanine exchange factor VAV1 in peripheral T-cell lymphomas. Proc Natl Acad Sci U S A. 2017;114(4):764–9.PubMedPubMedCentralCrossRefGoogle Scholar
  242. 242.
    Coiffier B, Federico M, Caballero D, et al. Therapeutic options in relapsed or refractory peripheral T-cell lymphoma. Cancer Treat Rev. 2014;40(9):1080–8.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of Pathology and MicrobiologyUniversity of Nebraska Medical CenterOmahaUSA
  2. 2.Institute of PathologyLausanne University Hospital (CHUV) and University of LausanneLausanneSwitzerland

Personalised recommendations