Skip to main content

Kinase Inhibitors in Large Cell Lymphoma

  • Chapter
  • First Online:
Aggressive Lymphomas

Part of the book series: Hematologic Malignancies ((HEMATOLOGIC))

  • 851 Accesses

Abstract

Regulation of a broad array of cellular functions in both normal cells and cancer is controlled through the phosphorylation of unique proteins within multistep signaling pathways. Phosphorylation is directed through hundreds of specific kinases which can be activated through a variety of mechanisms. Not surprisingly, these tightly regulated networks are critical to nearly all cellular functions and can be abnormally activated or suppressed in cancer through both genetic and epigenetic mechanisms (Gross et al., J Clin Invest 125:1780–1789, 2015). Often, these alterations in kinase activity result in tumorigenic changes leading to increased survival and resistance, as well as tumor growth and spread (Fig. 15.1). It has also become evident that aberrant kinase activity plays a central role in a tumor’s ability to evade immune surveillance. As a result, kinase inhibition has emerged as a field of intense study across multiple cancer subtypes, and currently over 25 oncology drugs that target kinases are approved in the United States (Gross et al., J Clin Invest 125:1780–1789, 2015).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gross S, Rahal R, Stransky N, et al. Targeting cancer with kinase inhibitors. J Clin Invest. 2015;125:1780–9.

    Article  Google Scholar 

  2. Liu W, Meckel T, Tolar P, Sohn HW, Pierce SK. Antigen affinity discrimination is an intrinsic function of the B cell receptor. J Exp Med. 2010;207:1095–111.

    Article  CAS  Google Scholar 

  3. Neimann C, Weistner A. B-cell receptor signaling as a driver of lymphoma development and evolution. Semin Cancer Biol. 2015;23:410–21.

    Article  Google Scholar 

  4. Davis E, Ngo V, Lenz G, et al. Chronic active B-cell receptor signaling in diffuse large B-cell lymphoma. Nature. 2010;463:88–92.

    Article  CAS  Google Scholar 

  5. Havranek O, Xu J, Davis E, et al. Molecular aspects of tonic B-cell receptor signaling in diffuse large B-cell lymphoma provide biomarkers and targets for specific inhibition. Blood. 2016;128:779.

    Google Scholar 

  6. Honigberg L, Smith A, Sirisawad M, et al. The Bruton tyrosine kinase inhibitor PCI-32765 blocks B-cell activation and is efficacious in models of autoimmune disease and B-cell malignancy. PNAS. 2010;107:13075–80.

    Article  CAS  Google Scholar 

  7. Advani R, Buggy J, Sharman J, et al. Bruton tyrosine kinase inhibitor Ibrutinib (PCI-32765) has significant activity in patients with relapsed/refractory B-cell malignancies. J Clin Oncol. 2013;31(1):88–94.

    Article  CAS  Google Scholar 

  8. Wilson W, Young R, Schmitz R, et al. Targeting B cell receptor signaling with ibrutinib in diffuse large B cell lymphoma. Nat Med. 2015;21(8):922–6.

    Article  CAS  Google Scholar 

  9. Younes A, Theiblemont C, Morchhauser F, et al. Combination of ibrutinib with rituximab, cyclophosphamide, doxorubicin, vincristine, and prednisone (R-CHOP) for treatment-naive patients with CD20-positive B-cell non-Hodgkin lymphoma: a non-randomised, phase 1b study. Lancet Oncol. 2015;15(9):1019–26.

    Article  Google Scholar 

  10. Byrd J, Harrington B, O’Brien S, et al. Acalabrutinib in relapsed chronic lymphocytic leukemia. N Eng J Med. 2016;374:323–32.

    Article  CAS  Google Scholar 

  11. Li C, Yang L, Bell T, et al. Novel Bruton’s tyrosine kinase inhibitor Bgb-3111 demonstrates potent activity in mantle cell lymphoma. Blood. 2016;128:5374.

    Google Scholar 

  12. Tam C, Simpson D, Opat S, et al. Safety and activity of the highly specific BTK inhibitor BGB-3111 in patients with indolent and aggressive non Hodgkin’s lymphoma. Blood. 2017;130:152.

    Google Scholar 

  13. Mocsai A, Ruland J, Tybulewiicz V, et al. The SYK tyrosine kinase: a crucial player in diverse biological functions. Nat Rev Immunol. 2010;10(6):387–402.

    Article  CAS  Google Scholar 

  14. Friedberg J, Sharman J, Sweetenham J, et al. Inhibition of Syk with fostamatinib disodium has significant clinical activity in non-Hodgkin lymphoma and chronic lymphocytic leukemia. Blood. 2010;115:2578–85.

    Article  CAS  Google Scholar 

  15. Flinn I, Bartlett N, Blum K, et al. A phase II trial to evaluate the efficacy of fostamatinib in patients with relapsed or refractory diffuse large B-cell lymphoma (DLBCL). Eur J Cancer. 2016;54:11–7.

    Article  CAS  Google Scholar 

  16. Sharman J, Klein L, Boxer M, et al. Phase 2 trial of Entospletinib (GS-9973), a selective Syk inhibitor, in indolent non-Hodgkin’s lymphoma (iNHL). Blood. 2015;126:1545.

    Google Scholar 

  17. Cheng S, Coffey G, Zhang XH, et al. SYK inhibition and response prediction in diffuse large B-cell lymphoma. Blood. 2011;118:6342–52.

    Article  CAS  Google Scholar 

  18. Barr P, Saylors G, et al. Phase 2 study of idelalisib and entospletinib: pneumonitis limits combination therapy in relapsed refractory CLL and NHL. Blood. 2016;127(20):2411–5.

    Article  CAS  Google Scholar 

  19. Ma J, Xing W, Coffey G, et al. Cerdulatinib, a novel dual SYK/JAK kinase inhibitor, has broad anti-tumor activity in both ABC and GCB types of diffuse large B cell lymphoma. Oncotarget. 2015;22:43881–96.

    Google Scholar 

  20. Hamlin P, Farber C, Fenske T, et al. The dual SYK/JAK inhibitor cerdulatinib demonstrates rapid tumor responses in a Phase 2 Study in patients with relapsed B-cell malignancies. Hematol Oncol. 2017;35:74.

    Article  Google Scholar 

  21. Cantley LC. The phosphoinositide 3-kinase pathway. Science. 2002;296(5573):1655–7.

    Article  CAS  Google Scholar 

  22. Liu P, Cheng H, Roberts TM, Zhao JJ. Targeting the phosphoinositide 3-kinase pathway in cancer. Nat Rev Drug Discov. 2009;8(8):627–44.

    Article  CAS  Google Scholar 

  23. Engelman JA. Targeting PI3K signalling in cancer: opportunities, challenges and limitations. Nat Rev Cancer. 2009;9(8):550–62.

    Article  CAS  Google Scholar 

  24. Hennessy BT, Smith DL, Ram PT, Lu Y, Mills GB. Exploiting the PI3K/AKT pathway for cancer drug discovery. Nat Rev Drug Discov. 2005;4(12):988–1004.

    Article  CAS  Google Scholar 

  25. Meadows SA, Vega F, Kashishian A, Johnson D, Diehl V, Miller LL, et al. PI3Kdelta inhibitor, GS-1101 (CAL-101), attenuates pathway signaling, induces apoptosis, and overcomes signals from the microenvironment in cellular models of Hodgkin lymphoma. Blood. 2012;119(8):1897–900.

    Article  CAS  Google Scholar 

  26. Go H, Jang JY, Kim PJ, Kim YG, Nam SJ, Paik JH, et al. MicroRNA-21 plays an oncogenic role by targeting FOXO1 and activating the PI3K/AKT pathway in diffuse large B-cell lymphoma. Oncotarget. 2015;6(17):15035–49.

    Article  Google Scholar 

  27. Psyrri A, Papageorgiou S, Liakata E, Scorilas A, Rontogianni D, Kontos CK, et al. Phosphatidylinositol 3′-kinase catalytic subunit alpha gene amplification contributes to the pathogenesis of mantle cell lymphoma. Clin Cancer Res. 2009;15(18):5724–32.

    Article  CAS  Google Scholar 

  28. Yahiaoui OI, Nunes JA, Castanier C, Devillier R, Broussais F, Fabre AJ, et al. Constitutive AKT activation in follicular lymphoma. BMC Cancer. 2014;14:565.

    Article  Google Scholar 

  29. Rommel C, Camps M, Ji H. PI3K delta and PI3K gamma: partners in crime in inflammation in rheumatoid arthritis and beyond? Nat Rev Immunol. 2007;7(3):191–201.

    Article  CAS  Google Scholar 

  30. Flinn IW, Kahl BS, Leonard JP, Furman RR, Brown JR, Byrd JC, et al. Idelalisib, a selective inhibitor of phosphatidylinositol 3-kinase-delta, as therapy for previously treated indolent non-Hodgkin lymphoma. Blood. 2014;123(22):3406–13.

    Article  CAS  Google Scholar 

  31. Gopal AK, Kahl BS, de Vos S, Wagner-Johnston ND, Schuster SJ, Jurczak WJ, et al. PI3Kdelta inhibition by idelalisib in patients with relapsed indolent lymphoma. N Engl J Med. 2014;370(11):1008–18.

    Article  CAS  Google Scholar 

  32. Kahl BS, Spurgeon SE, Furman RR, Flinn IW, Coutre SE, Brown JR, et al. A phase 1 study of the PI3Kdelta inhibitor idelalisib in patients with relapsed/refractory mantle cell lymphoma (MCL). Blood. 2014;123(22):3398–405.

    Article  CAS  Google Scholar 

  33. Wagner-Johnston ND, De Vos S, Leonard J, Sharman JP, Schreeder MT, Fowler NH. Preliminary results of PI3Kδ inhibitor idelalisib (GS-1101) treatment in combination with everolimus, bortezomib, or bendamustine/rituximab in patients with previously treated mantle cell lymphoma (MCL). ASCO Meeting Abstr. 2013;31:8501.

    Google Scholar 

  34. Flinn I, Patel MR, Maris MB, Matous J, Cherry M, Berdeja JG. An open-label, phase Ib study of Duvelisib (IPI-145) in combination with Bendamustine, Rituximab or Bendamustine/Rituximab in select subjects with lymphoma or chronic lymphocytic leukemia. Blood. 2014;124:4422.

    Google Scholar 

  35. Horwitz SM, Porcu P, Flinn I, Kahl BS, Sweeney J, Stern HM, Douglas M, Allen K, Kelly P, Foss FM. Duvelisib (IPI-145), a Phosphoinositide-3-Kinase-δ,γ inhibitor, shows activity in patients with relapsed/refractory T-cell lymphoma. Blood. 2014;124:803.

    Article  Google Scholar 

  36. Erdmann T, Klener P, Lynch JT, Grau M, Vockova P, Molinsky J, et al. Sensitivity to PI3K and AKT inhibitors is mediated by divergent molecular mechanisms in subtypes of DLBCL. Blood. 2017;130(3):310–22.

    Article  CAS  Google Scholar 

  37. Lenz G, Hawkes E, Verhoef G, et al. Clinical outcomes and molecular characterization from a phase II study of copanlisib in patients with relapsed or refractory diffuse large B-cell lymphoma. Hematol Oncol. 2017;35:68–9.

    Article  Google Scholar 

  38. Dreyling M, Morschhauser F, Bouabdallah K, Bron D, Cunningham D, Assouline SE, et al. Phase II study of copanlisib, a PI3K inhibitor, in relapsed or refractory, indolent or aggressive lymphoma. Ann Oncol. 2017;28(9):2169–78.

    Article  CAS  Google Scholar 

  39. Freidman D, Lanasa M, Brander D, et al. Comparison of the PI3K-δ inhibitors TGR1202 and GS-1101 in inducing cytotoxicity and inhibiting phosphorylation of Akt in CLL cells in vitro. Blood. 2012;120:3914.

    Google Scholar 

  40. Maharaj KK, Powers J, Fonseca R, et al. Abstract 545: differential regulation of human T-cells by TGR-1202, a novel PI3Kδ inhibitor. Cancer Res. 2016;76(14 Supplement):545.

    Article  Google Scholar 

  41. O’Connor OO, Flinn IW, Patel MR, et al. TGR-1202, a novel once daily PI3K-delta inhibitor, demonstrates clinical activity with a favorable safety profile in patients with CLL and B-cell lymphoma [abstract]. Blood. 2015;126(23).

    Google Scholar 

  42. Lunning MA, Vose J, Fowler N, et al. Ublituximab + TGR-1202 demonstrates activity and a favorable safety profile in relapsed/refractory B-cell NHL and high-risk CLL: phase I results [abstract]. Blood. 2015;126(23). Abstract 1538.

    Google Scholar 

  43. Witzig TE, Geyer SM, Ghobrial I, Inwards DJ, Fonseca R, Kurtin P, et al. Phase II trial of single-agent temsirolimus (CCI-779) for relapsed mantle cell lymphoma. J Clin Oncol. 2005;23(23):5347–56.

    Article  CAS  Google Scholar 

  44. Smith SM, van Besien K, Karrison T, Dancey J, McLaughlin P, Younes A, et al. Temsirolimus has activity in non-mantle cell non-Hodgkin’s lymphoma subtypes: the University of Chicago phase II consortium. J Clin Oncol. 2010;28(31):4740–6.

    Article  CAS  Google Scholar 

  45. Witzig TE, Reeder CB, LaPlant BR, Gupta M, Johnston PB, Micallef IN, et al. A phase II trial of the oral mTOR inhibitor everolimus in relapsed aggressive lymphoma. Leukemia. 2011;25(2):341–7.

    Article  CAS  Google Scholar 

  46. Oki Y, Buglio D, Fanale M, Fayad L, Copeland A, Romaguera J, et al. Phase I study of panobinostat plus everolimus in patients with relapsed or refractory lymphoma. Clin Cancer Res. 2013;19(24):6882–90.

    Article  CAS  Google Scholar 

  47. Witzig TE, Tobinai K, Rigacci L, Lin T, Ikeda T, Vanazzi A. PILLAR-2: a randomized, double-blind, placebo-controlled, phase III study of adjuvant everolimus (EVE) in patients (pts) with poor-risk diffuse large B-cell lymphoma (DLBCL). J Clin Oncol. 2016;34:7506.

    Article  Google Scholar 

  48. Guidetti A, Viviani S, Marchiano A, et al. Dual targeted therapy with the AKT inhibitor perifosine and the multikinase inhibitor sorafenib in patients with relapsed/refractory lymphomas: final results of a phase II trial. Blood. 2012;120:3679.

    Google Scholar 

  49. Oki Y, Fanale M, Romaguera J, Fayad L, Fowler N, Copeland A, et al. Phase II study of an AKT inhibitor MK2206 in patients with relapsed or refractory lymphoma. Br J Haematol. 2015;171(4):463–70.

    Article  CAS  Google Scholar 

  50. Hapgood G, Savage KJ. The biology and management of systemic anaplastic large cell lymphoma. Blood. 2015;126(1):17–25.

    Article  CAS  Google Scholar 

  51. Laurent C, Do C, Gascoyne RD, Lamant L, Ysebaert L, Laurent G, et al. Anaplastic lymphoma kinase-positive diffuse large B-cell lymphoma: a rare clinicopathologic entity with poor prognosis. J Clin Oncol. 2009;27(25):4211–6.

    Article  Google Scholar 

  52. Shaw AT, Kim DW, Mehra R, Tan DS, Felip E, Chow LQ, et al. Ceritinib in ALK-rearranged non-small-cell lung cancer. N Engl J Med. 2014;370(13):1189–97.

    Article  CAS  Google Scholar 

  53. Richly H, Kim TM, Schuler M, Kim DW, Harrison SJ, Shaw AT, et al. Ceritinib in patients with advanced anaplastic lymphoma kinase-rearranged anaplastic large-cell lymphoma. Blood. 2015;126(10):1257–8.

    Article  CAS  Google Scholar 

  54. Bavetsias V, Linardopoulos S. Aurora kinase inhibitors: current status and outlook. Front Oncol. 2015;5:278.

    Article  Google Scholar 

  55. Manfredi MG, Ecsedy JA, Chakravarty A, et al. Characterization of Alisertib (MLN8237), an investigational small-molecule inhibitor of aurora A kinase using novel in vivo pharmacodynamic assays. Clin Cancer Res. 2011;17:7614–24.

    Article  CAS  Google Scholar 

  56. Kelly KR, Shea TC, Goy A, Berdeja JG, Reeder CB, McDonagh KT, et al. Phase I study of MLN8237—investigational aurora A kinase inhibitor—in relapsed/refractory multiple myeloma, non-Hodgkin lymphoma and chronic lymphocytic leukemia. Investig New Drugs. 2014;32:489–99.

    Article  CAS  Google Scholar 

  57. Friedberg JW, Mahadevan D, Cebula E, Persky D, Lossos I, Agarwal AB, et al. Phase II study of alisertib, a selective aurora A kinase inhibitor, in relapsed and refractory aggressive B- and T-cell non-Hodgkin lymphomas. J Clin Oncol. 2014;32:44–50.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nathan Fowler .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Morschhauser, F., Manier, S., Fowler, N. (2019). Kinase Inhibitors in Large Cell Lymphoma. In: Lenz, G., Salles, G. (eds) Aggressive Lymphomas. Hematologic Malignancies. Springer, Cham. https://doi.org/10.1007/978-3-030-00362-3_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-00362-3_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-00361-6

  • Online ISBN: 978-3-030-00362-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics