Skip to main content

CD20-Negative Aggressive Lymphomas

  • Chapter
  • First Online:
Aggressive Lymphomas

Part of the book series: Hematologic Malignancies ((HEMATOLOGIC))

  • 850 Accesses

Abstract

CD20-negative diffuse large B-cell lymphoma (DLBCL) is a rare and heterogeneous group of aggressive lymphoproliferative disorders. Described variants of CD20-negative DLBCL include plasmablastic lymphoma, primary effusion lymphoma, large B-cell lymphoma arising in HHV-8-associated multicentric Castleman disease, and anaplastic lymphoma kinase-positive DLBCL. CD20-negative aggressive lymphoma represents a diagnostic challenge given atypical morphology and lack of expression of B-cell markers. These are also hard-to-treat lymphomas with high rates of chemoresistance and relapse in addition to poor survival rates. The present chapter aims at summarizing the current knowledge on the biology of the distinct variants of CD20-negative DLBCL, to provide future therapeutic directions based on the limited data available and to increase awareness toward these rare lymphomas among pathologists and clinicians.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Feugier P, Van Hoof A, Sebban C, et al. Long-term results of the R-CHOP study in the treatment of elderly patients with diffuse large B-cell lymphoma: a study by the Groupe d'Etude des Lymphomes de l'Adulte. J Clin Oncol. 2005;23:4117–26.

    Article  CAS  PubMed  Google Scholar 

  2. Pfreundschuh M, Kuhnt E, Trumper L, et al. CHOP-like chemotherapy with or without rituximab in young patients with good-prognosis diffuse large-B-cell lymphoma: 6-year results of an open-label randomised study of the MabThera International Trial (MInT) Group. Lancet Oncol. 2011;12:1013–22.

    Article  CAS  PubMed  Google Scholar 

  3. Garg M, Lee BE, McGarry K, et al. CD20-negative diffuse large B-cell lymphoma presenting with lactic acidosis. Am J Hematol. 2015;90:E49–50.

    Article  PubMed  Google Scholar 

  4. Gaur S, Padilla O, Nahleh Z. Clinical features and prognosis of CD20 negative aggressive B-cell non-Hodgkins lymphoma. Lymphoma. 2013;2013:290585.

    Article  Google Scholar 

  5. Li YJ, Li ZM, Rao HL, et al. CD20-negative de novo diffuse large B-cell lymphoma in HIV-negative patients: a matched case-control analysis in a single institution. J Transl Med. 2012;10:84.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Delecluse HJ, Anagnostopoulos I, Dallenbach F, et al. Plasmablastic lymphomas of the oral cavity: a new entity associated with the human immunodeficiency virus infection. Blood. 1997;89:1413–20.

    CAS  PubMed  Google Scholar 

  7. Campo E, Stein H, Harris NL. Plasmablastic lymphoma. In: Swerdlow SH, Campo E, Harris NL, et al., editors. WHO classification of tumours of the haematopoietic and lymphoid tissues. Revised 4th ed. Lyon: IARC; 2017. p. 321–2.

    Google Scholar 

  8. Montes-Moreno S, Gonzalez-Medina AR, Rodriguez-Pinilla SM, et al. Aggressive large B-cell lymphoma with plasma cell differentiation: immunohistochemical characterization of plasmablastic lymphoma and diffuse large B-cell lymphoma with partial plasmablastic phenotype. Haematologica. 2010;95:1342–9.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Vega F, Chang CC, Medeiros LJ, et al. Plasmablastic lymphomas and plasmablastic plasma cell myelomas have nearly identical immunophenotypic profiles. Mod Pathol. 2005;18:806–15.

    Article  PubMed  Google Scholar 

  10. Castillo JJ, Winer ES, Stachurski D, et al. Clinical and pathological differences between human immunodeficiency virus-positive and human immunodeficiency virus-negative patients with plasmablastic lymphoma. Leuk Lymphoma. 2010;51:2047–53.

    Article  PubMed  Google Scholar 

  11. Castillo JJ, Furman M, Beltran BE, et al. Human immunodeficiency virus-associated plasmablastic lymphoma: poor prognosis in the era of highly active antiretroviral therapy. Cancer. 2012;118:5270–7.

    Article  PubMed  Google Scholar 

  12. Valera A, Balague O, Colomo L, et al. IG/MYC rearrangements are the main cytogenetic alteration in plasmablastic lymphomas. Am J Surg Pathol. 2010;34:1686–94.

    PubMed  PubMed Central  Google Scholar 

  13. Castillo J, Pantanowitz L, Dezube BJ. HIV-associated plasmablastic lymphoma: lessons learned from 112 published cases. Am J Hematol. 2008;83:804–9.

    Article  PubMed  Google Scholar 

  14. Morscio J, Dierickx D, Nijs J, et al. Clinicopathologic comparison of plasmablastic lymphoma in HIV-positive, immunocompetent, and posttransplant patients: single-center series of 25 cases and meta-analysis of 277 reported cases. Am J Surg Pathol. 2014;38:875–86.

    Article  PubMed  Google Scholar 

  15. Castillo JJ, Winer ES, Stachurski D, et al. HIV-negative plasmablastic lymphoma: not in the mouth. Clin Lymphoma Myeloma Leuk. 2011;11:185–9.

    Article  PubMed  Google Scholar 

  16. Liu JJ, Zhang L, Ayala E, et al. Human immunodeficiency virus (HIV)-negative plasmablastic lymphoma: a single institutional experience and literature review. Leuk Res. 2011;35:1571–7.

    Article  PubMed  Google Scholar 

  17. Noy A, Chadburn A, Lensing SY, Moore P. Plasmablastic lymphoma is curable the HAART era. A 10 year retrospective by the AIDS Malignancy Consortium (AMC). Leuk Lymphoma. 2013;122:1801.

    Google Scholar 

  18. Schommers P, Wyen C, Hentrich M, et al. Poor outcome of HIV-infected patients with plasmablastic lymphoma: results from the German AIDS-related lymphoma cohort study. AIDS. 2013;27:842–5.

    Article  PubMed  Google Scholar 

  19. Cattaneo C, Re A, Ungari M, et al. Plasmablastic lymphoma among human immunodeficiency virus-positive patients: results of a single center’s experience. Leuk Lymphoma. 2015;56:267–9.

    Article  PubMed  Google Scholar 

  20. Castillo JJ, Winer ES, Stachurski D, et al. Prognostic factors in chemotherapy-treated patients with HIV-associated plasmablastic lymphoma. Oncologist. 2010;15:293–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. NCCN guidelines version 3.2017. AIDS-related B-cell lymphomas. AIDS-4. http://www.nccn.org/professionals/physician_gls/pdf/nhl.pdf. Accessed 30 May 2017.

  22. Al-Malki MM, Castillo JJ, Sloan JM, Re A. Hematopoietic cell transplantation for plasmablastic lymphoma: a review. Biol Blood Marrow Transplant. 2014;20:1877–84.

    Article  PubMed  Google Scholar 

  23. Bibas M, Grisetti S, Alba L, et al. Patient with HIV-associated plasmablastic lymphoma responding to bortezomib alone and in combination with dexamethasone, gemcitabine, oxaliplatin, cytarabine, and pegfilgrastim chemotherapy and lenalidomide alone. J Clin Oncol. 2010;28:e704–8.

    Article  PubMed  Google Scholar 

  24. Dasanu CA, Bauer F, Codreanu I, et al. Plasmablastic haemato-lymphoid neoplasm with a complex genetic signature of Burkitt lymphoma responding to bortezomib. Hematol Oncol. 2013;31:164–6.

    Article  CAS  PubMed  Google Scholar 

  25. Yan M, Dong Z, Zhao F, et al. CD20-positive plasmablastic lymphoma with excellent response to bortezomib combined with rituximab. Eur J Haematol. 2014;93:77–80.

    Article  CAS  PubMed  Google Scholar 

  26. Castillo JJ, Reagan JL, Sikov WM, Winer ES. Bortezomib in combination with infusional dose-adjusted EPOCH for the treatment of plasmablastic lymphoma. Br J Haematol. 2015;169:352–5.

    Article  CAS  PubMed  Google Scholar 

  27. Fedele PL, Gregory GP, Gilbertson M, et al. Infusional dose-adjusted epoch plus bortezomib for the treatment of plasmablastic lymphoma. Ann Hematol. 2016;95:667–8.

    Article  PubMed  Google Scholar 

  28. Fernandez-Alvarez R, Gonzalez-Rodriguez AP, Rubio-Castro A, et al. Bortezomib plus CHOP for the treatment of HIV-associated plasmablastic lymphoma: clinical experience in three patients. Leuk Lymphoma. 2016;57(2):463–6.

    Article  PubMed  Google Scholar 

  29. Carras S, Regny C, Peoc'h M, et al. Dramatic efficacy of low dose lenalidomide as single agent in a patient with refractory gastric non-human immunodeficiency virus-associated plasmablastic lymphoma. Leuk Lymphoma. 2015;56:2986–8.

    Article  PubMed  Google Scholar 

  30. Schmit JM, DeLaune J, Norkin M, Grosbach A. A case of plasmablastic lymphoma achieving complete response and durable remission after lenalidomide-based therapy. Oncol Res Treat. 2017;40:46–8.

    Article  CAS  PubMed  Google Scholar 

  31. Colomo L, Loong F, Rives S, et al. Diffuse large B-cell lymphomas with plasmablastic differentiation represent a heterogeneous group of disease entities. Am J Surg Pathol. 2004;28:736–47.

    Article  PubMed  Google Scholar 

  32. Holderness BM, Malhotra S, Levy NB, Danilov AV. Brentuximab vedotin demonstrates activity in a patient with plasmablastic lymphoma arising from a background of chronic lymphocytic leukemia. J Clin Oncol. 2013;31:e197–9.

    Article  PubMed  Google Scholar 

  33. Beroukhim R, Mermel CH, Porter D, et al. The landscape of somatic copy-number alteration across human cancers. Nature. 2010;463:899–905.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Rahl PB, Lin CY, Seila AC, et al. c-Myc regulates transcriptional pause release. Cell. 2010;141:432–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Delmore JE, Issa GC, Lemieux ME, et al. BET bromodomain inhibition as a therapeutic strategy to target c-Myc. Cell. 2011;146:904–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Guo L, Bodo J, Durkin L, Hsi ED. Evaluation of PD1/PDL1 expression and their clinicopathologic association in EBV-associated lymphoproliferative disorders in nonimmunosuppressed patients. Appl Immunohistochem Mol Morphol. 2017; Epub ahead of print.

    Google Scholar 

  37. Kim SJ, Hyeon J, Cho I, Ko YH, Kim WS. Comparison of efficacy of pembrolizumab between Epstein-Barr virus–positive and –negative relapsed or refractory non-Hodgkin lymphomas. Cancer Res Treat. 2018; Epub ahead of print.

    Google Scholar 

  38. Said J, Cesarman E. Primary effusion lymphoma. In: Swerdlow SH, Campo E, Harris NL, et al., editors. WHO classification of tumours of haematopoietic and lmyphoid tissues. Revised 4th ed. Lyon: IARC; 2017. p. 323–4.

    Google Scholar 

  39. Knowles DM, Inghirami G, Ubriaco A, Dalla-Favera R. Molecular genetic analysis of three AIDS-associated neoplasms of uncertain lineage demonstrates their B-cell derivation and the possible pathogenetic role of the Epstein-Barr virus. Blood. 1989;73:792–9.

    CAS  PubMed  Google Scholar 

  40. Cesarman E, Chang Y, Moore PS, et al. Kaposi’s sarcoma-associated herpesvirus-like DNA sequences in AIDS-related body-cavity-based lymphomas. N Engl J Med. 1995;332:1186–91.

    Article  CAS  PubMed  Google Scholar 

  41. Said J, Cesarman E. Primary effusion lymphoma. In: Swerdlow S, Campo E, Harris N, et al., editors. WHO classification of tumours of haematopoietic and lymphoid tissues. 4th ed. Lyon: IARC; 2008. p. 260–1.

    Google Scholar 

  42. Wilson KS, McKenna RW, Kroft SH, et al. Primary effusion lymphomas exhibit complex and recurrent cytogenetic abnormalities. Br J Haematol. 2002;116:113–21.

    Article  PubMed  Google Scholar 

  43. Boulanger E, Agbalika F, Maarek O, et al. A clinical, molecular and cytogenetic study of 12 cases of human herpesvirus 8 associated primary effusion lymphoma in HIV-infected patients. Hematol J. 2001;2:172–9.

    Article  CAS  PubMed  Google Scholar 

  44. Kim Y, Park CJ, Roh J, Huh J. Current concepts in primary effusion lymphoma and other effusion-based lymphomas. Korean J Pathol. 2014;48:81–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Luan SL, Boulanger E, Ye H, et al. Primary effusion lymphoma: genomic profiling revealed amplification of SELPLG and CORO1C encoding for proteins important for cell migration. J Pathol. 2010;222:166–79.

    Article  CAS  PubMed  Google Scholar 

  46. Gantt S, Casper C. Human herpesvirus 8-associated neoplasms: the roles of viral replication and antiviral treatment. Curr Opin Infect Dis. 2011;24:295–301.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Shi Y, Hou Y, Hu Q, et al. A rare case of HHV-8-positive/HIV-negative/EBV-negative primary effusion lymphoma in a renal transplant recipient. Cytopathology. 2012;23:137–9.

    Article  CAS  PubMed  Google Scholar 

  48. Matsumoto Y, Nomura K, Ueda K, et al. Human herpesvirus 8-negative malignant effusion lymphoma: a distinct clinical entity and successful treatment with rituximab. Leuk Lymphoma. 2005;46:415–9.

    Article  PubMed  Google Scholar 

  49. Kaplan LD. Human herpesvirus-8: Kaposi sarcoma, multicentric Castleman disease, and primary effusion lymphoma. Hematology Am Soc Hematol Educ Program. 2013;2013:103–8.

    Article  PubMed  Google Scholar 

  50. Carbone A, Gloghini A, Vaccher E, et al. Kaposi’s sarcoma-associated herpesvirus/human herpesvirus type 8-positive solid lymphomas: a tissue-based variant of primary effusion lymphoma. J Mol Diagn. 2005;7:17–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Chadburn A, Hyjek E, Mathew S, et al. KSHV-positive solid lymphomas represent an extra-cavitary variant of primary effusion lymphoma. Am J Surg Pathol. 2004;28:1401–16.

    Article  PubMed  Google Scholar 

  52. Pan ZG, Zhang QY, Lu ZB, et al. Extracavitary KSHV-associated large B-cell lymphoma: a distinct entity or a subtype of primary effusion lymphoma? Study of 9 cases and review of an additional 43 cases. Am J Surg Pathol. 2012;36:1129–40.

    Article  PubMed  Google Scholar 

  53. Simonelli C, Spina M, Cinelli R, et al. Clinical features and outcome of primary effusion lymphoma in HIV-infected patients: a single-institution study. J Clin Oncol. 2003;21:3948–54.

    Article  PubMed  Google Scholar 

  54. Boulanger E, Gerard L, Gabarre J, et al. Prognostic factors and outcome of human herpesvirus 8-associated primary effusion lymphoma in patients with AIDS. J Clin Oncol. 2005;23:4372–80.

    Article  PubMed  Google Scholar 

  55. Lim ST, Karim R, Nathwani BN, et al. AIDS-related Burkitt’s lymphoma versus diffuse large-cell lymphoma in the pre-highly active antiretroviral therapy (HAART) and HAART eras: significant differences in survival with standard chemotherapy. J Clin Oncol. 2005;23:4430–8.

    Article  CAS  PubMed  Google Scholar 

  56. Castillo JJ, Shum H, Lahijani M, et al. Prognosis in primary effusion lymphoma is associated with the number of body cavities involved. Leuk Lymphoma. 2012;53:2378–82.

    Article  CAS  PubMed  Google Scholar 

  57. Simonelli C, Tedeschi R, Gloghini A, et al. Characterization of immunologic and virological parameters in HIV-infected patients with primary effusion lymphoma during antiblastic therapy and highly active antiretroviral therapy. Clin Infect Dis. 2005;40:1022–7.

    Article  PubMed  Google Scholar 

  58. Boulanger E, Daniel MT, Agbalika F, Oksenhendler E. Combined chemotherapy including high-dose methotrexate in KSHV/HHV8-associated primary effusion lymphoma. Am J Hematol. 2003;73:143–8.

    Article  CAS  PubMed  Google Scholar 

  59. El-Ayass W, Yu EM, Karcher DS, Aragon-Ching JB. Complete response to EPOCH in a patient with HIV and extracavitary primary effusion lymphoma involving the colon: a case report and review of literature. Clin Lymphoma Myeloma Leuk. 2012;12:144–7.

    Article  PubMed  Google Scholar 

  60. Barta SK, Lee JY, Kaplan LD, et al. Pooled analysis of AIDS malignancy consortium trials evaluating rituximab plus CHOP or infusional EPOCH chemotherapy in HIV-associated non-Hodgkin lymphoma. Cancer. 2012;118:3977–83.

    Article  CAS  PubMed  Google Scholar 

  61. Ripamonti D, Marini B, Rambaldi A, Suter F. Treatment of primary effusion lymphoma with highly active antiviral therapy in the setting of HIV infection. AIDS. 2008;22:1236–7.

    Article  PubMed  Google Scholar 

  62. Won JH, Han SH, Bae SB, et al. Successful eradication of relapsed primary effusion lymphoma with high-dose chemotherapy and autologous stem cell transplantation in a patient seronegative for human immunodeficiency virus. Int J Hematol. 2006;83:328–30.

    Article  PubMed  Google Scholar 

  63. Bryant A, Milliken S. Successful reduced-intensity conditioning allogeneic HSCT for HIV-related primary effusion lymphoma. Biol Blood Marrow Transplant. 2008;14:601–2.

    Article  PubMed  Google Scholar 

  64. Keller SA, Schattner EJ, Cesarman E. Inhibition of NF-kappaB induces apoptosis of KSHV-infected primary effusion lymphoma cells. Blood. 2000;96:2537–42.

    CAS  PubMed  Google Scholar 

  65. An J, Sun Y, Fisher M, Rettig MB. Antitumor effects of bortezomib (PS-341) on primary effusion lymphomas. Leukemia. 2004;18:1699–704.

    Article  CAS  PubMed  Google Scholar 

  66. Boulanger E, Meignin V, Oksenhendler E. Bortezomib (PS-341) in patients with human herpesvirus 8-associated primary effusion lymphoma. Br J Haematol. 2008;141:559–61.

    Article  CAS  PubMed  Google Scholar 

  67. Bhatt S, Ashlock BM, Toomey NL, et al. Efficacious proteasome/HDAC inhibitor combination therapy for primary effusion lymphoma. J Clin Invest. 2013;123:2616–28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Antar A, El Hajj H, Jabbour M, et al. Primary effusion lymphoma in an elderly patient effectively treated by lenalidomide: case report and review of literature. Blood Cancer J. 2014;4:e190.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Davis DA, Mishra S, Anagho HA, et al. Restoration of immune surface molecules in Kaposi sarcoma-associated herpesvirus infected cells by lenalidomide and pomalidomide. Oncotarget. 2017;8:50342–58.

    PubMed  PubMed Central  Google Scholar 

  70. Bhatt S, Ashlock BM, Natkunam Y, et al. CD30 targeting with brentuximab vedotin: a novel therapeutic approach to primary effusion lymphoma. Blood. 2013;122:1233–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Chen BJ, Chapuy B, Ouyang J, et al. PD-L1 expression is characteristic of a subset of aggressive B-cell lymphomas and virus-associated malignancies. Clin Cancer Res. 2013;19:3462–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Wang HY, Fuda FS, Chen W, Karandikar NJ. Notch1 in primary effusion lymphoma: a clinicopathological study. Mod Pathol. 2010;23:773–80.

    Article  CAS  PubMed  Google Scholar 

  73. Granato M, Rizzello C, Gilardini Montani MS, et al. Quercetin induces apoptosis and autophagy in primary effusion lymphoma cells by inhibiting PI3K/AKT/mTOR and STAT3 signaling pathways. J Nutr Biochem. 2017;41:124–36.

    Article  CAS  PubMed  Google Scholar 

  74. Dupin N, Diss TL, Kellam P, et al. HHV-8 is associated with a plasmablastic variant of Castleman disease that is linked to HHV-8-positive plasmablastic lymphoma. Blood. 2000;95:1406–12.

    CAS  PubMed  Google Scholar 

  75. Oksenhendler E, Boulanger E, Galicier L, et al. High incidence of Kaposi sarcoma-associated herpesvirus-related non-Hodgkin lymphoma in patients with HIV infection and multicentric Castleman disease. Blood. 2002;99:2331–6.

    Article  CAS  PubMed  Google Scholar 

  76. Du MQ, Liu H, Diss TC, et al. Kaposi sarcoma-associated herpesvirus infects monotypic (IgM lambda) but polyclonal naive B cells in Castleman disease and associated lymphoproliferative disorders. Blood. 2001;97:2130–6.

    Article  CAS  PubMed  Google Scholar 

  77. Issacson P, Campo E, Harris NL. Large B-cell lymphoma arising in HHV8-associated multicentric Castlemans disease. In: Swerdlow S, Campo E, Harris N, et al., editors. WHO classification of tumours of haematopoietic and lymphoid tissues. 4th ed. Lyon: IARC; 2008. p. 258–9.

    Google Scholar 

  78. Montes-Moreno S, Montalban C, Piris MA. Large B-cell lymphomas with plasmablastic differentiation: a biological and therapeutic challenge. Leuk Lymphoma. 2012;53:185–94.

    Article  CAS  PubMed  Google Scholar 

  79. Oksenhendler E, Boutboul D, Beldjord K, et al. Human herpesvirus 8+ polyclonal IgMlambda B-cell lymphocytosis mimicking plasmablastic leukemia/lymphoma in HIV-infected patients. Eur J Haematol. 2013;91:497–503.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Suda T, Katano H, Delsol G, et al. HHV-8 infection status of AIDS-unrelated and AIDS-associated multicentric Castleman’s disease. Pathol Int. 2001;51:671–9.

    Article  CAS  PubMed  Google Scholar 

  81. Cronin DM, Warnke RA. Castleman disease: an update on classification and the spectrum of associated lesions. Adv Anat Pathol. 2009;16:236–46.

    Article  PubMed  Google Scholar 

  82. Kishimoto T. IL-6: from its discovery to clinical applications. Int Immunol. 2010;22:347–52.

    Article  CAS  PubMed  Google Scholar 

  83. Hsi ED, Lorsbach RB, Fend F, Dogan A. Plasmablastic lymphoma and related disorders. Am J Clin Pathol. 2011;136:183–94.

    Article  PubMed  Google Scholar 

  84. Pagni F, Bosisio FM, Sala E, et al. The plasmablasts in Castleman disease. Am J Clin Pathol. 2013;139:555–9.

    Article  CAS  PubMed  Google Scholar 

  85. Gerard L, Michot JM, Burcheri S, et al. Rituximab decreases the risk of lymphoma in patients with HIV-associated multicentric Castleman disease. Blood. 2012;119:2228–33.

    Article  CAS  PubMed  Google Scholar 

  86. Sarosiek KA, Cavallin LE, Bhatt S, et al. Efficacy of bortezomib in a direct xenograft model of primary effusion lymphoma. Proc Natl Acad Sci U S A. 2010;107:13069–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Fajgenbaum DC, van Rhee F, Nabel CS. HHV-8-negative, idiopathic multicentric Castleman disease: novel insights into biology, pathogenesis, and therapy. Blood. 2014;123:2924–33.

    Article  CAS  PubMed  Google Scholar 

  88. van Rhee F, Wong RS, Munshi N, et al. Siltuximab for multicentric Castleman’s disease: a randomised, double-blind, placebo-controlled trial. Lancet Oncol. 2014;15:966–74.

    Article  PubMed  CAS  Google Scholar 

  89. Szturz P, Adam Z, Rehak Z, et al. Salvage lenalidomide in four rare oncological diseases. Tumori. 2013;99:e251–6.

    Article  PubMed  Google Scholar 

  90. Zhou X, Wei J, Lou Y, et al. Salvage therapy with lenalidomide containing regimen for relapsed/refractory Castleman disease: a report of three cases. Front Med. 2017;11:287–92.

    Article  PubMed  Google Scholar 

  91. Rimokh R, Magaud JP, Berger F, et al. A translocation involving a specific breakpoint (q35) on chromosome 5 is characteristic of anaplastic large cell lymphoma (‘Ki-1 lymphoma’). Br J Haematol. 1989;71:31–6.

    Article  CAS  PubMed  Google Scholar 

  92. Delsol G, Lamant L, Mariame B, et al. A new subtype of large B-cell lymphoma expressing the ALK kinase and lacking the 2;5 translocation. Blood. 1997;89:1483–90.

    CAS  PubMed  Google Scholar 

  93. Momose S, Tamaru J, Kishi H, et al. Hyperactivated STAT3 in ALK-positive diffuse large B-cell lymphoma with clathrin-ALK fusion. Hum Pathol. 2009;40:75–82.

    Article  CAS  PubMed  Google Scholar 

  94. Beltran B, Castillo J, Salas R, et al. ALK-positive diffuse large B-cell lymphoma: report of four cases and review of the literature. J Hematol Oncol. 2009;2:11.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  95. Sachdev R, Goel S, Gupta S, Sood N. Anaplastic lymphoma kinase (ALK) positive diffuse large B cell lymphoma in a 20 year old: a rare entity. Indian J Pathol Microbiol. 2014;57:157–8.

    Article  PubMed  Google Scholar 

  96. Stachurski D, Miron PM, Al-Homsi S, et al. Anaplastic lymphoma kinase-positive diffuse large B-cell lymphoma with a complex karyotype and cryptic 3′ ALK gene insertion to chromosome 4 q22-24. Hum Pathol. 2007;38:940–5.

    Article  CAS  PubMed  Google Scholar 

  97. Ott G, Rosenwald A, Campo E. Understanding MYC-driven aggressive B-cell lymphomas: pathogenesis and classification. Hematology Am Soc Hematol Educ Program. 2013;2013:575–83.

    Article  PubMed  Google Scholar 

  98. Valera A, Colomo L, Martinez A, et al. ALK-positive large B-cell lymphomas express a terminal B-cell differentiation program and activated STAT3 but lack MYC rearrangements. Mod Pathol. 2013;26:1329–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Nieborowska-Skorska M, Slupianek A, Xue L, et al. Role of signal transducer and activator of transcription 5 in nucleophosmin/anaplastic lymphoma kinase-mediated malignant transformation of lymphoid cells. Cancer Res. 2001;61:6517–23.

    CAS  PubMed  Google Scholar 

  100. Zamo A, Chiarle R, Piva R, et al. Anaplastic lymphoma kinase (ALK) activates Stat3 and protects hematopoietic cells from cell death. Oncogene. 2002;21:1038–47.

    Article  CAS  PubMed  Google Scholar 

  101. Zhang Q, Wang HY, Liu X, Wasik MA. STAT5A is epigenetically silenced by the tyrosine kinase NPM1-ALK and acts as a tumor suppressor by reciprocally inhibiting NPM1-ALK expression. Nat Med. 2007;13:1341–8.

    Article  CAS  PubMed  Google Scholar 

  102. Bai RY, Ouyang T, Miething C, et al. Nucleophosmin-anaplastic lymphoma kinase associated with anaplastic large-cell lymphoma activates the phosphatidylinositol 3-kinase/Akt antiapoptotic signaling pathway. Blood. 2000;96:4319–27.

    CAS  PubMed  Google Scholar 

  103. Laurent C, Do C, Gascoyne RD, et al. Anaplastic lymphoma kinase-positive diffuse large B-cell lymphoma: a rare clinicopathologic entity with poor prognosis. J Clin Oncol. 2009;27:4211–6.

    Article  PubMed  Google Scholar 

  104. Wass M, Behlendorf T, Schadlich B, et al. Crizotinib in refractory ALK-positive diffuse large B-cell lymphoma: a case report with a short-term response. Eur J Haematol. 2014;92:268–70.

    Article  CAS  PubMed  Google Scholar 

  105. Cerchietti L, Damm-Welk C, Vater I, et al. Inhibition of anaplastic lymphoma kinase (ALK) activity provides a therapeutic approach for CLTC-ALK-positive human diffuse large B cell lymphomas. PLoS One. 2011;6:e18436.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Amin HM, McDonnell TJ, Ma Y, et al. Selective inhibition of STAT3 induces apoptosis and G(1) cell cycle arrest in ALK-positive anaplastic large cell lymphoma. Oncogene. 2004;23:5426–34.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jorge J. Castillo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Castillo, J.J. (2019). CD20-Negative Aggressive Lymphomas. In: Lenz, G., Salles, G. (eds) Aggressive Lymphomas. Hematologic Malignancies. Springer, Cham. https://doi.org/10.1007/978-3-030-00362-3_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-00362-3_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-00361-6

  • Online ISBN: 978-3-030-00362-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics