Epidemiology of Aggressive Lymphomas

  • James R. CerhanEmail author
Part of the Hematologic Malignancies book series (HEMATOLOGIC)


The three most common aggressive non-Hodgkin lymphomas (NHLs) are diffuse large B-cell lymphoma (DLBCL), Burkitt lymphoma (BL), and peripheral T-cell lymphoma (PTCL) and as a group accounted for an estimated 24% of all lymphoid malignancies in the USA in 2016. DLBCL is the most common subtype, with an age-adjusted incidence of 6.95 cases per 100,000; is more common in whites; and has a 5-year relative survival of 59.6%. Key DLBCL risk factors include a family history of NHL, genetic loci, infections (HIV/AIDS, HCV, HBV), organ transplantation, certain autoimmune diseases (systemic lupus, Sjogren syndrome, celiac), and several suggestive behavioral factors (body mass, alcohol use, vegetable intake, and recreational sun exposure). BL is much rarer, with an age-adjusted incidence of 0.40 per 100,000 and a 5-year relative survival of 56.4%. BL is often classified as endemic (with a strong association with EBV and malaria), immunodeficiency-associated (with strong associations with HIV/AIDS and solid organ transplantation), and sporadic (with suggested associations with several lifestyle factors). PTCL has an age-adjusted incidence of 1.15 per 100,000; is more common in blacks than whites or Asian/Pacific Islanders; and has a 5-year relative survival of 56.0%. Risk factors are least well defined for this heterogeneous and less studied subtype but include a family history of NHL, HIV/AIDS, organ transplantation, celiac disease, and some recently suggestive lifestyle factors. Established and suggested risk factors are both observed across many subtypes (including indolent subtypes) as well as being unique to a single or small group of subtypes, but there does not appear to be a unique risk factor profile for aggressive lymphomas as a group. In summary, the aggressive subtypes of DLBCL, BL, and PTCL have largely unique descriptive epidemiologies and risk factor profiles and thus likely distinct etiologies, with clear implications for understanding pathogenesis and primary prevention. Future research is needed to better characterize heterogeneity for existing and recently defined aggressive subtypes, identify additional risk factors, and link these factors to the molecular underpinnings of these diverse and important lymphoid malignancies.


  1. 1.
    Swerdlow SH, Campo E, Pileri SA, et al. The 2016 revision of the World Health Organization classification of lymphoid neoplasms. Blood. 2016;127(20):2375–90.PubMedPubMedCentralCrossRefGoogle Scholar
  2. 2.
    Teras LR, DeSantis CE, Cerhan JR, et al. 2016 US lymphoid malignancy statistics by World Health Organization subtypes. CA Cancer J Clin. 2016;66(6):443–59.CrossRefGoogle Scholar
  3. 3.
    Jaffe ES, Harris NHL, Stein H, et al. Introduction and overview of the classification of lymphoid neoplasms. In: Swerdlow SH, Campo E, Harris NL, et al., editors. WHO classification of tumours of the haematopoietic and lymphoid tissues. Lyon: IARC; 2008.Google Scholar
  4. 4.
    Swerdlow SH, Campo E, Harris NL, et al. WHO classification of tumours of the haematopoietic and lymphoid tissues. In: Bosman FT, Jaffe ES, Lakhani SR, et al., editors. World Health Organization classification of tumours. Lyon: IARC Press; 2008.Google Scholar
  5. 5.
    Fritz A, Percy C, Jack A, et al. International classification of diseases for oncology. 3rd ed. Geneva: World Health Organization; 2000.Google Scholar
  6. 6.
    Jaffe ES, Harris NL, Stein H, et al. World Health Organization classification of tumours: pathology and genetics of tumours of haematopoietic and lymphoid tissues. Lyon: IARC Press; 2001.Google Scholar
  7. 7.
    Jaffe ES, Pittaluga S. Aggressive B-cell lymphomas: a review of new and old entities in the WHO classification. Hematology Am Soc Hematol Educ Program. 2011;2011:506–14.PubMedPubMedCentralCrossRefGoogle Scholar
  8. 8.
    Ott G. Aggressive B-cell lymphomas in the update of the 4th edition of the World Health Organization classification of haematopoietic and lymphatic tissues: refinements of the classification, new entities and genetic findings. Br J Haematol. 2017;178(6):871–87.PubMedCrossRefGoogle Scholar
  9. 9.
    Armitage JO. The aggressive peripheral T-cell lymphomas: 2017. Am J Hematol. 2017;92(7):706–15.PubMedCrossRefGoogle Scholar
  10. 10.
    Laurent C, Baron M, Amara N, et al. Impact of expert pathologic review of lymphoma diagnosis: study of patients from the French Lymphopath Network. J Clin Oncol. 2017;35(18):2008–17.PubMedCrossRefGoogle Scholar
  11. 11.
    Magrath I. Epidemiology: clues to the pathogenesis of Burkitt lymphoma. Br J Haematol. 2012;156(6):744–56.PubMedCrossRefGoogle Scholar
  12. 12.
    Perry AM, Diebold J, Nathwani BN, et al. Non-Hodgkin lymphoma in the developing world: review of 4539 cases from the International Non-Hodgkin Lymphoma Classification Project. Haematologica. 2016;101(10):1244–50.PubMedPubMedCentralCrossRefGoogle Scholar
  13. 13.
    Sant M, Allemani C, Tereanu C, et al. Incidence of hematologic malignancies in Europe by morphologic subtype: results of the HAEMACARE project. Blood. 2010;116(19):3724–34.PubMedCrossRefGoogle Scholar
  14. 14.
    Smith A, Crouch S, Lax S, et al. Lymphoma incidence, survival and prevalence 2004-2014: sub-type analyses from the UK’s Haematological Malignancy Research Network. Br J Cancer. 2015;112(9):1575–84.PubMedPubMedCentralCrossRefGoogle Scholar
  15. 15.
    Yoon SO, Suh C, Lee DH, et al. Distribution of lymphoid neoplasms in the Republic of Korea: analysis of 5318 cases according to the World Health Organization classification. Am J Hematol. 2010;85(10):760–4.PubMedCrossRefGoogle Scholar
  16. 16.
    Sun J, Yang Q, Lu Z, et al. Distribution of lymphoid neoplasms in China: analysis of 4,638 cases according to the World Health Organization classification. Am J Clin Pathol. 2012;138(3):429–34.PubMedCrossRefGoogle Scholar
  17. 17.
    Arora N, Manipadam MT, Nair S. Frequency and distribution of lymphoma types in a tertiary care hospital in South India: analysis of 5115 cases using the World Health Organization 2008 classification and comparison with world literature. Leuk Lymphoma. 2013;54(5):1004–11.PubMedCrossRefGoogle Scholar
  18. 18.
    Chihara D, Ito H, Matsuda T, et al. Differences in incidence and trends of haematological malignancies in Japan and the United States. Br J Haematol. 2014;164(4):536–45.PubMedCrossRefGoogle Scholar
  19. 19.
    Lim RB, Loy EY, Lim GH, et al. Gender and ethnic differences in incidence and survival of lymphoid neoplasm subtypes in an Asian population: secular trends of a population-based cancer registry from 1998 to 2012. Int J Cancer. 2015;137(11):2674–87.PubMedCrossRefGoogle Scholar
  20. 20.
    National Cancer Institute. Surveillance, epidemiology, and end results (SEER) program. SEER*stat database: incidence—SEER 18 regs research data + hurricane katrina impacted. Accessed 29 April 2017.
  21. 21.
    Morton LM, Turner JJ, Cerhan JR, et al. Proposed classification of lymphoid neoplasms for epidemiologic research from the Pathology Working Group of the International Lymphoma Epidemiology Consortium (InterLymph). Blood. 2007;110(2):695–708.PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Turner JJ, Morton LM, Linet MS, et al. InterLymph hierarchical classification of lymphoid neoplasms for epidemiologic research based on the WHO classification (2008): update and future directions. Blood. 2010;116(20):e90–8.PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    National Cancer Institute. Surveillance research program, National Cancer Institute SEER*stat software version 8.3.4.
  24. 24.
    van Leeuwen MT, Turner JJ, Joske DJ, et al. Lymphoid neoplasm incidence by WHO subtype in Australia 1982-2006. Int J Cancer. 2014;135(9):2146–56.PubMedCrossRefGoogle Scholar
  25. 25.
    Shirley MH, Sayeed S, Barnes I, et al. Incidence of haematological malignancies by ethnic group in England, 2001-7. Br J Haematol. 2013;163(4):465–77.PubMedCrossRefGoogle Scholar
  26. 26.
    Mbulaiteye SM, Anderson WF, Bhatia K, et al. Trimodal age-specific incidence patterns for Burkitt lymphoma in the United States, 1973-2005. Int J Cancer. 2010;126(7):1732–9.PubMedPubMedCentralGoogle Scholar
  27. 27.
    Mbulaiteye SM, Anderson WF, Ferlay J, et al. Pediatric, elderly, and emerging adult-onset peaks in Burkitt’s lymphoma incidence diagnosed in four continents, excluding Africa. Am J Hematol. 2012;87(6):573–8.PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Iversen U, Iversen OH, Bluming AZ, et al. Cell kinetics of African cases of Burkitt lymphoma. A preliminary report. Eur J Cancer. 1972;8(3):305–8.PubMedCrossRefGoogle Scholar
  29. 29.
    Sant M, Minicozzi P, Mounier M, et al. Survival for haematological malignancies in Europe between 1997 and 2008 by region and age: results of EUROCARE-5, a population-based study. Lancet Oncol. 2014;15(9):931–42.PubMedCrossRefGoogle Scholar
  30. 30.
    Sehn LH, Donaldson J, Chhanabhai M, et al. Introduction of combined CHOP plus rituximab therapy dramatically improved outcome of diffuse large B-cell lymphoma in British Columbia. J Clin Oncol. 2005;23(22):5027–33.PubMedCrossRefGoogle Scholar
  31. 31.
    Flowers CR, Fedewa SA, Chen AY, et al. Disparities in the early adoption of chemoimmunotherapy for diffuse large B-cell lymphoma in the United States. Cancer Epidemiol Biomark Prev. 2012;21(9):1520–30.CrossRefGoogle Scholar
  32. 32.
    Boyle P. Relative value of incidence and mortality data in cancer research. Recent Results Cancer Res. 1989;114(4):41–63.PubMedCrossRefGoogle Scholar
  33. 33.
    Measurement of progress against cancer. Extramural Committee to Assess Measures of Progress Against Cancer. J Natl Cancer Inst. 1990;82(10):825–35.Google Scholar
  34. 34.
    Clarke CA, Glaser SL. Changing incidence of non-Hodgkin lymphomas in the United States. Cancer. 2002;94(7):2015–23.PubMedCrossRefGoogle Scholar
  35. 35.
    Bosetti C, Levi F, Ferlay J, et al. Incidence and mortality from non-Hodgkin lymphoma in Europe: the end of an epidemic? Int J Cancer. 2008;123(8):1917–23.PubMedCrossRefGoogle Scholar
  36. 36.
    Howlader N, Morton LM, Feuer EJ, et al. Contributions of subtypes of non-Hodgkin lymphoma to mortality trends. Cancer Epidemiol Biomark Prev. 2016;25(1):174–9.CrossRefGoogle Scholar
  37. 37.
    Maurer MJ, Ghesquieres H, Jais JP, et al. Event-free survival at 24 months is a robust end point for disease-related outcome in diffuse large B-cell lymphoma treated with immunochemotherapy. J Clin Oncol. 2014;32(10):1066–73.PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    Jakobsen LH, Bogsted M, Brown PN, et al. Minimal loss of lifetime for patients with diffuse large B-cell lymphoma in remission and event free 24 months after treatment: a Danish population-based study. J Clin Oncol. 2017;35(7):778–84.PubMedCrossRefGoogle Scholar
  39. 39.
    Maurer MJ, Jais JP, Ghesquieres H, et al. Personalized risk prediction for event-free survival at 24 months in patients with diffuse large B-cell lymphoma. Am J Hematol. 2016;91(2):179–84.PubMedCrossRefGoogle Scholar
  40. 40.
    Thompson CA, Ghesquieres H, Maurer MJ, et al. Utility of routine post-therapy surveillance scans in diffuse large B-cell lymphoma. J Clin Oncol. 2014;32(31):3506–12.PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    Novak AJ, Asmann YW, Maurer MJ, et al. Whole-exome analysis reveals novel somatic genomic alterations associated with outcome in immunochemotherapy-treated diffuse large B-cell lymphoma. Blood Cancer J. 2015;5:e346.PubMedPubMedCentralCrossRefGoogle Scholar
  42. 42.
    Maurer MJ, Ellin F, Srour L, et al. An international assessment of event-free survival at 24 months (EFS24) and subsequent survival in peripheral T-cell lymphoma. J Clin Oncol. 2017;35(36):4019–26.PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    Bassig BA, Lan Q, Rothman N, et al. Current understanding of lifestyle and environmental factors and risk of non-hodgkin lymphoma: an epidemiological update. J Cancer Epidemiol. 2012;2012:978930.PubMedPubMedCentralCrossRefGoogle Scholar
  44. 44.
    Boffetta P. I. Epidemiology of adult non-Hodgkin lymphoma. Ann Oncol. 2011;22(4):iv27–31.Google Scholar
  45. 45.
    Cerhan JR, Vajdic CM, Spinelli JJ. Non-Hodgkin lymphoma. In: Schottenfeld D, Fraumeni JF, editors. Cancer epidemiology and prevention. New York: Oxford University Press; 2017. in press.Google Scholar
  46. 46.
    Boffetta P, Armstrong B, Linet M, et al. Consortia in cancer epidemiology: lessons from InterLymph. Cancer Epidemiol Biomark Prev. 2007;16(2):197–9.CrossRefGoogle Scholar
  47. 47.
    Blettner M, Sauerbrei W, Schlehofer B, et al. Traditional reviews, meta-analyses and pooled analyses in epidemiology. Int J Epidemiol. 1999;28(1):1–9.CrossRefPubMedGoogle Scholar
  48. 48.
    Weisenburger DD. Pathological classification of non-Hodgkin’s lymphoma for epidemiological studies. Cancer Res. 1992;52(Suppl 19):5456s–62s; discussion 5462s–5464s.PubMedGoogle Scholar
  49. 49.
    Harris NL, Jaffe ES, Stein H, et al. A revised European-American classification of lymphoid neoplasms: a proposal from the International Lymphoma Study Group. Blood. 1994;84(5):1361–92.PubMedGoogle Scholar
  50. 50.
    Morton LM, Sampson JN, Cerhan JR, et al. Rationale and design of the International Lymphoma Epidemiology Consortium (InterLymph) non-Hodgkin Lymphoma Subtypes Project. J Natl Cancer Inst Monogr. 2014;2014(48):1–14.PubMedPubMedCentralCrossRefGoogle Scholar
  51. 51.
    Cerhan JR, Kricker A, Paltiel O, et al. Medical history, lifestyle, family history, and occupational risk factors for diffuse large B-cell lymphoma: the InterLymph Non-Hodgkin Lymphoma Subtypes Project. J Natl Cancer Inst Monogr. 2014;2014(48):15–25.PubMedPubMedCentralCrossRefGoogle Scholar
  52. 52.
    Fallah M, Kharazmi E, Pukkala E, et al. Familial risk of non-Hodgkin lymphoma by sex, relationship, age at diagnosis and histology: a joint study from five Nordic countries. Leukemia. 2016;30(2):373–8.PubMedCrossRefGoogle Scholar
  53. 53.
    Goldin LR, Bjorkholm M, Kristinsson SY, et al. Highly increased familial risks for specific lymphoma subtypes. Br J Haematol. 2009;146(1):91–4.PubMedPubMedCentralCrossRefGoogle Scholar
  54. 54.
    Goldin LR, Bjorkholm M, Kristinsson SY, et al. Elevated risk of chronic lymphocytic leukemia and other indolent non-Hodgkin’s lymphomas among relatives of patients with chronic lymphocytic leukemia. Haematologica. 2009;94(5):647–53.PubMedPubMedCentralCrossRefGoogle Scholar
  55. 55.
    Cerhan JR, Slager SL. Familial predisposition and genetic risk factors for lymphoma. Blood. 2015;126:2265–73.PubMedPubMedCentralCrossRefGoogle Scholar
  56. 56.
    Skibola CF, Curry JD, Nieters A. Genetic susceptibility to lymphoma. Haematologica. 2007;92(7):960–9.PubMedPubMedCentralCrossRefGoogle Scholar
  57. 57.
    Cerhan JR. Host genetics in follicular lymphoma. Best Pract Res Clin Haematol. 2011;24(2):121–34.PubMedPubMedCentralCrossRefGoogle Scholar
  58. 58.
    Slager SL, Caporaso NE, de Sanjose S, et al. Genetic susceptibility to chronic lymphocytic leukemia. Semin Hematol. 2013;50(4):296–302.PubMedCrossRefGoogle Scholar
  59. 59.
    Sud A, Hemminki K, Houlston RS. Candidate gene association studies and risk of Hodgkin lymphoma: a systematic review and meta-analysis. Hematol Oncol. 2017;35(1):34–50.PubMedCrossRefGoogle Scholar
  60. 60.
    Kushekhar K, van den Berg A, Nolte I, et al. Genetic associations in classical hodgkin lymphoma: a systematic review and insights into susceptibility mechanisms. Cancer Epidemiol Biomark Prev. 2014;23(12):2737–47.CrossRefGoogle Scholar
  61. 61.
    McAulay KA, Jarrett RF. Human leukocyte antigens and genetic susceptibility to lymphoma. Tissue Antigens. 2015;86(2):98–113.PubMedCrossRefGoogle Scholar
  62. 62.
    Skibola CF, Bracci PM, Nieters A, et al. Tumor necrosis factor (TNF) and lymphotoxin-alpha (LTA) polymorphisms and risk of non-Hodgkin lymphoma in the InterLymph Consortium. Am J Epidemiol. 2010;171(3):267–76.PubMedPubMedCentralCrossRefGoogle Scholar
  63. 63.
    Rothman N, Skibola CF, Wang SS, et al. Genetic variation in TNF and IL10 and risk of non-Hodgkin lymphoma: a report from the InterLymph Consortium. Lancet Oncol. 2006;7(1):27–38.PubMedCrossRefGoogle Scholar
  64. 64.
    Cerhan JR, Berndt SI, Vijai J, et al. Genome-wide association study identifies multiple susceptibility loci for diffuse large B cell lymphoma. Nat Genet. 2014;46(11):1233–8.PubMedPubMedCentralCrossRefGoogle Scholar
  65. 65.
    Bassig BA, Cerhan JR, Au W-Y, et al. Genetic susceptibility to diffuse large B-cell lymphoma in a pooled study of three Eastern Asian populations. Eur J Haematol. 2015;95(5):442–8.PubMedCrossRefGoogle Scholar
  66. 66.
    Tan DE, Foo JN, Bei JX, et al. Genome-wide association study of B cell non-Hodgkin lymphoma identifies 3q27 as a susceptibility locus in the Chinese population. Nat Genet. 2013;45(7):804–7.PubMedCrossRefGoogle Scholar
  67. 67.
    Hosnijeh FS, Portengen L, Spath F, et al. Soluble B-cell activation marker of sCD27 and sCD30 and future risk of B-cell lymphomas: a nested case-control study and meta-analyses. Int J Cancer. 2016;138(10):2357–67.PubMedCrossRefGoogle Scholar
  68. 68.
    De Roos AJ, Mirick DK, Edlefsen KL, et al. Markers of B-cell activation in relation to risk of non-Hodgkin lymphoma. Cancer Res. 2012;72(18):4733–43.PubMedPubMedCentralCrossRefGoogle Scholar
  69. 69.
    Purdue MP, Lan Q, Kemp TJ, et al. Elevated serum sCD23 and sCD30 up to two decades prior to diagnosis associated with increased risk of non-Hodgkin lymphoma. Leukemia. 2015;29(6):1429–31.PubMedCrossRefGoogle Scholar
  70. 70.
    Purdue MP, Hofmann JN, Kemp TJ, et al. A prospective study of 67 serum immune and inflammation markers and risk of non-Hodgkin lymphoma. Blood. 2013;122(6):951–7.PubMedPubMedCentralCrossRefGoogle Scholar
  71. 71.
    Centers for Disease Control (CDC). Revision of the CDC surveillance case definition for acquired immunodeficiency syndrome. Council of State and Territorial Epidemiologists; AIDS Program, Center for Infectious Diseases. MMWR Suppl. 1987;36(1):1S–15S.Google Scholar
  72. 72.
    Gibson TM, Morton LM, Shiels MS, et al. Risk of non-Hodgkin lymphoma subtypes in HIV-infected people during the HAART era: a population-based study. AIDS. 2014;28(15):2313–8.PubMedPubMedCentralCrossRefGoogle Scholar
  73. 73.
    van Leeuwen MT, Vajdic CM, Middleton MG, et al. Continuing declines in some but not all HIV-associated cancers in Australia after widespread use of antiretroviral therapy. AIDS. 2009;23(16):2183–90.PubMedPubMedCentralCrossRefGoogle Scholar
  74. 74.
    Simard EP, Pfeiffer RM, Engels EA. Spectrum of cancer risk late after AIDS onset in the United States. Arch Intern Med. 2010;170(15):1337–45.PubMedPubMedCentralCrossRefGoogle Scholar
  75. 75.
    Bouvard V, Baan R, Straif K, et al. A review of human carcinogens—part B: biological agents. Lancet Oncol. 2009;10(4):321–2.PubMedCrossRefGoogle Scholar
  76. 76.
    Pinzone MR, Berretta M, Cacopardo B, et al. Epstein-barr virus- and Kaposi sarcoma-associated herpesvirus-related malignancies in the setting of human immunodeficiency virus infection. Semin Oncol. 2015;42(2):258–71.PubMedCrossRefGoogle Scholar
  77. 77.
    de Sanjose S, Benavente Y, Vajdic CM, et al. Hepatitis C and non-Hodgkin lymphoma among 4784 cases and 6269 controls from the International Lymphoma Epidemiology Consortium. Clin Gastroenterol Hepatol. 2008;6(4):451–8.PubMedPubMedCentralCrossRefGoogle Scholar
  78. 78.
    Anderson LA, Pfeiffer R, Warren JL, et al. Hematopoietic malignancies associated with viral and alcoholic hepatitis. Cancer Epidemiol Biomark Prev. 2008;17(11):3069–75.CrossRefGoogle Scholar
  79. 79.
    Dalia S, Chavez J, Castillo JJ, et al. Hepatitis B infection increases the risk of non-Hodgkin lymphoma: a meta-analysis of observational studies. Leuk Res. 2013;37(9):1107–15.PubMedCrossRefGoogle Scholar
  80. 80.
    Stapleton JT, Xiang J, McLinden JH, et al. A novel T cell evasion mechanism in persistent RNA virus infection. Trans Am Clin Climatol Assoc. 2014;125:14–24; discussion 24–6.PubMedPubMedCentralGoogle Scholar
  81. 81.
    Krajden M, Yu A, Braybrook H, et al. GBV-C/hepatitis G virus infection and non-Hodgkin lymphoma: a case control study. Int J Cancer. 2010;126(12):2885–92.PubMedGoogle Scholar
  82. 82.
    Chang CM, Stapleton JT, Klinzman D, et al. GBV-C infection and risk of NHL among U.S. adults. Cancer Res. 2014;74(19):5553–60.PubMedPubMedCentralCrossRefGoogle Scholar
  83. 83.
    Clarke CA, Morton LM, Lynch C, et al. Risk of lymphoma subtypes after solid organ transplantation in the United States. Br J Cancer. 2013;109(1):280–8.PubMedPubMedCentralCrossRefGoogle Scholar
  84. 84.
    Vajdic CM, van Leeuwen MT, Turner JJ, et al. No excess risk of follicular lymphoma in kidney transplant and HIV-related immunodeficiency. Int J Cancer. 2010;127(11):2732–5.PubMedCrossRefGoogle Scholar
  85. 85.
    Quinlan SC, Morton LM, Pfeiffer RM, et al. Increased risk for lymphoid and myeloid neoplasms in elderly solid-organ transplant recipients. Cancer Epidemiol Biomark Prev. 2010;19(5):1229–37.CrossRefGoogle Scholar
  86. 86.
    van Leeuwen MT, Grulich AE, Webster AC, et al. Immunosuppression and other risk factors for early and late non-Hodgkin lymphoma after kidney transplantation. Blood. 2009;114(3):630–7.PubMedCrossRefGoogle Scholar
  87. 87.
    Quinlan SC, Pfeiffer RM, Morton LM, et al. Risk factors for early-onset and late-onset post-transplant lymphoproliferative disorder in kidney recipients in the United States. Am J Hematol. 2011;86(2):206–9.PubMedPubMedCentralCrossRefGoogle Scholar
  88. 88.
    Castillo JJ, Dalia S, Pascual SK. Association between red blood cell transfusions and development of non-Hodgkin lymphoma: a meta-analysis of observational studies. Blood. 2010;116(16):2897–907.PubMedCrossRefGoogle Scholar
  89. 89.
    Ekstrom Smedby K, Vajdic CM, Falster M, et al. Autoimmune disorders and risk of non-Hodgkin lymphoma subtypes: a pooled analysis within the InterLymph Consortium. Blood. 2008;111(8):4029–38.PubMedPubMedCentralCrossRefGoogle Scholar
  90. 90.
    Apor E, O’Brien J, Stephen M, et al. Systemic lupus erythematosus is associated with increased incidence of hematologic malignancies: a meta-analysis of prospective cohort studies. Leuk Res. 2014;38(9):1067–71.PubMedCrossRefGoogle Scholar
  91. 91.
    Theander E, Henriksson G, Ljungberg O, et al. Lymphoma and other malignancies in primary Sjogren’s syndrome: a cohort study on cancer incidence and lymphoma predictors. Ann Rheum Dis. 2006;65(6):796–803.PubMedCrossRefGoogle Scholar
  92. 92.
    Anderson LA, Gadalla S, Morton LM, et al. Population-based study of autoimmune conditions and the risk of specific lymphoid malignancies. Int J Cancer. 2009;125(2):398–405.PubMedPubMedCentralCrossRefGoogle Scholar
  93. 93.
    Tio M, Cox MR, Eslick GD. Meta-analysis: coeliac disease and the risk of all-cause mortality, any malignancy and lymphoid malignancy. Aliment Pharmacol Ther. 2012;35(5):540–51.PubMedCrossRefGoogle Scholar
  94. 94.
    Baecklund E, Smedby KE, Sutton LA, et al. Lymphoma development in patients with autoimmune and inflammatory disorders—what are the driving forces? Semin Cancer Biol. 2014;24:61–70.PubMedCrossRefGoogle Scholar
  95. 95.
    Erber E, Lim U, Maskarinec G, et al. Common immune-related risk factors and incident non-Hodgkin lymphoma: the multiethnic cohort. Int J Cancer. 2009;125(6):1440–5.PubMedPubMedCentralCrossRefGoogle Scholar
  96. 96.
    Musolino C, Allegra A, Minciullo PL, et al. Allergy and risk of hematologic malignancies: associations and mechanisms. Leuk Res. 2014;38(10):1137–44.PubMedCrossRefGoogle Scholar
  97. 97.
    Castillo JJ, Mull N, Reagan JL, et al. Increased incidence of non-Hodgkin lymphoma, leukemia, and myeloma in patients with diabetes mellitus type 2: a meta-analysis of observational studies. Blood. 2012;119(21):4845–50.PubMedPubMedCentralCrossRefGoogle Scholar
  98. 98.
    Kane EV, Roman E, Becker N, et al. Menstrual and reproductive factors, and hormonal contraception use: associations with non-Hodgkin lymphoma in a pooled analysis of InterLymph case-control studies. Ann Oncol. 2012;23(9):2362–74.PubMedPubMedCentralCrossRefGoogle Scholar
  99. 99.
    Kane EV, Bernstein L, Bracci PM, et al. Postmenopausal hormone therapy and non-Hodgkin lymphoma: a pooled analysis of InterLymph case-control studies. Ann Oncol. 2013;24(2):433–41.PubMedCrossRefGoogle Scholar
  100. 100.
    Cerhan JR, Vachon CM, Habermann TM, et al. Hormone replacement therapy and risk of non-Hodgkin lymphoma and chronic lymphocytic leukemia. Cancer Epidemiol Biomark Prev. 2002;11:1466–71.Google Scholar
  101. 101.
    Lu Y, Wang SS, Sullivan-Halley J, et al. Oral contraceptives, menopausal hormone therapy use and risk of B-cell non-Hodgkin lymphoma in the California Teachers Study. Int J Cancer. 2011;129(4):974–82.PubMedCrossRefGoogle Scholar
  102. 102.
    Morton LM, Wang SS, Richesson DA, et al. Reproductive factors, exogenous hormone use and risk of lymphoid neoplasms among women in the National Institutes of Health-AARP Diet and Health Study Cohort. Int J Cancer. 2009;124(11):2737–43.PubMedPubMedCentralCrossRefGoogle Scholar
  103. 103.
    Kato I, Chlebowski RT, Hou L, et al. Menopausal estrogen therapy and non-Hodgkin’s lymphoma: a post-hoc analysis of women’s health initiative randomized clinical trial. Int J Cancer. 2016;138(3):604–11.PubMedCrossRefGoogle Scholar
  104. 104.
    t Mannetje A, De Roos AJ, Boffetta P, et al. Occupation and risk of non-Hodgkin lymphoma and its subtypes: a pooled analysis from the InterLymph consortium. Environ Health Perspect. 2016;124(4):396–405.CrossRefGoogle Scholar
  105. 105.
    Schinasi L, Leon ME. Non-Hodgkin lymphoma and occupational exposure to agricultural pesticide chemical groups and active ingredients: a systematic review and meta-analysis. Int J Environ Res Public Health. 2014;11(4):4449–527.PubMedPubMedCentralCrossRefGoogle Scholar
  106. 106.
    Alavanja MC, Hofmann JN, Lynch CF, et al. Non-hodgkin lymphoma risk and insecticide, fungicide and fumigant use in the agricultural health study. PLoS One. 2014;9(10):e109332.PubMedPubMedCentralCrossRefGoogle Scholar
  107. 107.
    Goodman JE, Loftus CT, Zu K. 2,4-Dichlorophenoxyacetic acid and non-Hodgkin’s lymphoma: results from the Agricultural Health Study and an updated meta-analysis. Ann Epidemiol. 2017;27(4):290–292 e5.PubMedCrossRefGoogle Scholar
  108. 108.
    Zhang Y, Sanjose SD, Bracci PM, et al. Personal use of hair dye and the risk of certain subtypes of non-Hodgkin lymphoma. Am J Epidemiol. 2008;167(11):1321–31.PubMedPubMedCentralCrossRefGoogle Scholar
  109. 109.
    Larsson SC, Wolk A. Body mass index and risk of non-Hodgkin’s and Hodgkin’s lymphoma: a meta-analysis of prospective studies. Eur J Cancer. 2011;47(16):2422–30.PubMedCrossRefGoogle Scholar
  110. 110.
    Castillo JJ, Ingham RR, Reagan JL, et al. Obesity is associated with increased relative risk of diffuse large B-cell lymphoma: a meta-analysis of observational studies. Clin Lymphoma Myeloma Leuk. 2014;14(2):122–30.PubMedCrossRefGoogle Scholar
  111. 111.
    Cerhan JR, Janney CA, Vachon CM, et al. Anthropometric characteristics, physical activity, and risk of non-Hodgkin’s lymphoma subtypes and B-cell chronic lymphocytic leukemia: a prospective study. Am J Epidemiol. 2002;156(6):527–35.PubMedCrossRefGoogle Scholar
  112. 112.
    Bertrand KA, Giovannucci E, Zhang SM, et al. A prospective analysis of body size during childhood, adolescence, and adulthood and risk of non-Hodgkin lymphoma. Cancer Prev Res (Phila). 2013;6(8):864–73.CrossRefGoogle Scholar
  113. 113.
    Pylypchuk RD, Schouten LJ, Goldbohm RA, et al. Body mass index, height, and risk of lymphatic malignancies: a prospective cohort study. Am J Epidemiol. 2009;170(3):297–307.PubMedCrossRefGoogle Scholar
  114. 114.
    Yang TO, Cairns BJ, Kroll ME, et al. Body size in early life and risk of lymphoid malignancies and histological subtypes in adulthood. Int J Cancer. 2016;139(1):42–9.PubMedPubMedCentralCrossRefGoogle Scholar
  115. 115.
    Roberts DL, Dive C, Renehan AG. Biological mechanisms linking obesity and cancer risk: new perspectives. Annu Rev Med. 2010;61:301–16.PubMedCrossRefGoogle Scholar
  116. 116.
    Jochem C, Leitzmann MF, Keimling M, et al. Physical activity in relation to risk of hematologic cancers: a systematic review and meta-analysis. Cancer Epidemiol Biomark Prev. 2014;23(5):833–46.CrossRefGoogle Scholar
  117. 117.
    Teras LR, Gapstur SM, Diver WR, et al. Recreational physical activity, leisure sitting time and risk of non-Hodgkin lymphoid neoplasms in the American Cancer Society Cancer Prevention Study II Cohort. Int J Cancer. 2012;131(8):1912–20.PubMedCrossRefGoogle Scholar
  118. 118.
    Castillo JJ, Dalia S. Cigarette smoking is associated with a small increase in the incidence of non-Hodgkin lymphoma: a meta-analysis of 24 observational studies. Leuk Lymphoma. 2012;53(10):1911–9.PubMedCrossRefGoogle Scholar
  119. 119.
    Sergentanis TN, Kanavidis P, Michelakos T, et al. Cigarette smoking and risk of lymphoma in adults: a comprehensive meta-analysis on Hodgkin and non-Hodgkin disease. Eur J Cancer Prev. 2013;22(2):131–50.PubMedCrossRefGoogle Scholar
  120. 120.
    Morton LM, Hartge P, Holford TR, et al. Cigarette smoking and risk of non-Hodgkin lymphoma: a pooled analysis from the International Lymphoma Epidemiology Consortium (interlymph). Cancer Epidemiol Biomark Prev. 2005;14(4):925–33.CrossRefGoogle Scholar
  121. 121.
    Schiff D, Suman VJ, Yang P, et al. Risk factors for primary central nervous system lymphoma: a case-control study. Cancer. 1998;82(5):975–82.PubMedCrossRefGoogle Scholar
  122. 122.
    Tramacere I, Pelucchi C, Bonifazi M, et al. Alcohol drinking and non-Hodgkin lymphoma risk: a systematic review and a meta-analysis. Ann Oncol. 2012;23(11):2791–8.PubMedCrossRefGoogle Scholar
  123. 123.
    Romeo J, Warnberg J, Nova E, et al. Moderate alcohol consumption and the immune system: a review. Br J Nutr. 2007;98(Suppl 1):S111–5.PubMedGoogle Scholar
  124. 124.
    Hagner PR, Mazan-Mamczarz K, Dai B, et al. Alcohol consumption and decreased risk of non-Hodgkin lymphoma: role of mTOR dysfunction. Blood. 2009;113(22):5526–35.PubMedCrossRefGoogle Scholar
  125. 125.
    Cross AJ, Lim U. The role of dietary factors in the epidemiology of non-Hodgkin’s lymphoma. Leuk Lymphoma. 2006;47(12):2477–87.PubMedCrossRefGoogle Scholar
  126. 126.
    World Cancer Research Fund and American Institute for Cancer Research. Food, nutrition, physical activity, and the prevention of cancer: a global perspective. Washington, DC: AICR; 2007.Google Scholar
  127. 127.
    Chen GC, Lv DB, Pang Z, et al. Fruits and vegetables consumption and risk of non-Hodgkin’s lymphoma: a meta-analysis of observational studies. Int J Cancer. 2013;133(1):190–200.PubMedCrossRefGoogle Scholar
  128. 128.
    Chang ET, Canchola AJ, Clarke CA, et al. Dietary phytocompounds and risk of lymphoid malignancies in the California Teachers Study cohort. Cancer Causes Control. 2011;22(2):237–49.PubMedCrossRefGoogle Scholar
  129. 129.
    Holtan SG, O’Connor HM, Fredericksen ZS, et al. Food-frequency questionnaire-based estimates of total antioxidant capacity and risk of non-Hodgkin lymphoma. Int J Cancer. 2012;131(5):1158–68.PubMedCrossRefGoogle Scholar
  130. 130.
    Kabat GC, Kim MY, Wactawski-Wende J, et al. Intake of antioxidant nutrients and risk of non-Hodgkin’s Lymphoma in the Women’s Health Initiative. Nutr Cancer. 2012;64(2):245–54.PubMedCrossRefGoogle Scholar
  131. 131.
    Ollberding NJ, Maskarinec G, Conroy SM, et al. Prediagnostic circulating carotenoid levels and the risk of non-Hodgkin lymphoma: the Multiethnic Cohort. Blood. 2012;119(24):5817–23.PubMedPubMedCentralCrossRefGoogle Scholar
  132. 132.
    Morimoto Y, Ollberding NJ, Cooney RV, et al. Prediagnostic serum tocopherol levels and the risk of non-hodgkin lymphoma: the multiethnic cohort. Cancer Epidemiol Biomark Prev. 2013;22(11):2075–83.CrossRefGoogle Scholar
  133. 133.
    Kricker A, Armstrong BK, Hughes AM, et al. Personal sun exposure and risk of non Hodgkin lymphoma: a pooled analysis from the Interlymph Consortium. Int J Cancer. 2008;122(1):144–54.PubMedCrossRefGoogle Scholar
  134. 134.
    Chang ET, Canchola AJ, Cockburn M, et al. Adulthood residential ultraviolet radiation, sun sensitivity, dietary vitamin D, and risk of lymphoid malignancies in the California Teachers Study. Blood. 2011;118(6):1591–9.PubMedPubMedCentralCrossRefGoogle Scholar
  135. 135.
    Bertrand KA, Chang ET, Abel GA, et al. Sunlight exposure, vitamin D, and risk of non-Hodgkin lymphoma in the Nurses’ Health Study. Cancer Causes Control. 2011;22(12):1731–41.PubMedPubMedCentralCrossRefGoogle Scholar
  136. 136.
    van Leeuwen MT, Turner JJ, Falster MO, et al. Latitude gradients for lymphoid neoplasm subtypes in Australia support an association with ultraviolet radiation exposure. Int J Cancer. 2013;133(4):944–51.PubMedCrossRefGoogle Scholar
  137. 137.
    Cahoon EK, Pfeiffer RM, Wheeler DC, et al. Relationship between ambient ultraviolet radiation and non-Hodgkin lymphoma subtypes: a U.S. population-based study of racial and ethnic groups. Int J Cancer. 2015;136(5):E432–41.PubMedCrossRefGoogle Scholar
  138. 138.
    Lu D, Chen J, Jin J. Vitamin D status and risk of non-Hodgkin lymphoma: a meta-analysis. Cancer Causes Control. 2014;25(11):1553–63.PubMedCrossRefGoogle Scholar
  139. 139.
    Purdue MP, Freedman DM, Gapstur SM, et al. Circulating 25-hydroxyvitamin D and risk of non-hodgkin lymphoma: cohort consortium vitamin D pooling project of rarer cancers. Am J Epidemiol. 2010;172(1):58–69.PubMedPubMedCentralCrossRefGoogle Scholar
  140. 140.
    Leoncini L, Raphael M, Stein H, et al. Burkitt lymphoma. In: Swerdlow SH, Campo E, Harris NL, et al., editors. WHO classification of tumours of the haematopoietic and lymphoid tissues. Lyon: IARC; 2008. p. 262–4.Google Scholar
  141. 141.
    Morrow RH Jr. Epidemiological evidence for the role of falciparum malaria in the pathogenesis of Burkitt’s lymphoma. IARC Sci Publ. 1985;60:177–86.Google Scholar
  142. 142.
    Rainey JJ, Mwanda WO, Wairiumu P, et al. Spatial distribution of Burkitt’s lymphoma in Kenya and association with malaria risk. Tropical Med Int Health. 2007;12(8):936–43.CrossRefGoogle Scholar
  143. 143.
    Doll DC, List AF. Burkitt’s lymphoma in a homosexual. Lancet. 1982;1(8279):1026–7.PubMedCrossRefGoogle Scholar
  144. 144.
    Ziegler JL, Drew WL, Miner RC, et al. Outbreak of Burkitt’s-like lymphoma in homosexual men. Lancet. 1982;2(8299):631–3.PubMedCrossRefGoogle Scholar
  145. 145.
    Epeldegui M, Breen EC, Hung YP, et al. Elevated expression of activation induced cytidine deaminase in peripheral blood mononuclear cells precedes AIDS-NHL diagnosis. AIDS. 2007;21(17):2265–70.PubMedCrossRefGoogle Scholar
  146. 146.
    Carbone A, Cesarman E, Spina M, et al. HIV-associated lymphomas and gamma-herpesviruses. Blood. 2009;113(6):1213–24.PubMedCrossRefGoogle Scholar
  147. 147.
    Mbulaiteye SM, Morton LM, Sampson JN, et al. Medical history, lifestyle, family history, and occupational risk factors for sporadic Burkitt lymphoma/leukemia: the Interlymph Non-Hodgkin Lymphoma Subtypes Project. J Natl Cancer Inst Monogr. 2014;2014(48):106–14.PubMedPubMedCentralCrossRefGoogle Scholar
  148. 148.
    Morton LM, Slager SL, Cerhan JR, et al. Etiologic heterogeneity among non-Hodgkin lymphoma subtypes: the InterLymph non-Hodgkin lymphoma subtypes project. J Natl Cancer Inst Monogr. 2014;2014(48):130–44.PubMedPubMedCentralCrossRefGoogle Scholar
  149. 149.
    Amin J, Dore GJ, O’Connell DL, et al. Cancer incidence in people with hepatitis B or C infection: a large community-based linkage study. J Hepatol. 2006;45(2):197–203.PubMedCrossRefGoogle Scholar
  150. 150.
    Wang SS, Flowers CR, Kadin ME, et al. Medical history, lifestyle, family history, and occupational risk factors for peripheral T-cell lymphomas: the InterLymph non-Hodgkin lymphoma subtypes project. J Natl Cancer Inst Monogr. 2014;2014(48):66–75.PubMedPubMedCentralCrossRefGoogle Scholar
  151. 151.
    Li Z, Xia Y, Feng LN, et al. Genetic risk of extranodal natural killer T-cell lymphoma: a genome-wide association study. Lancet Oncol. 2016;17(9):1240–7.PubMedCrossRefGoogle Scholar
  152. 152.
    Biggar RJ, Engels EA, Frisch M, et al. Risk of T-cell lymphomas in persons with AIDS. J Acquir Immune Defic Syndr. 2001;26(4):371–6.PubMedCrossRefGoogle Scholar
  153. 153.
    Becker N, Falster MO, Vajdic CM, et al. Self-reported history of infections and the risk of non-Hodgkin lymphoma: an InterLymph pooled analysis. Int J Cancer. 2012;131(10):2342–8.PubMedPubMedCentralCrossRefGoogle Scholar
  154. 154.
    Kotlyar DS, Lewis JD, Beaugerie L, et al. Risk of lymphoma in patients with inflammatory bowel disease treated with azathioprine and 6-mercaptopurine: a meta-analysis. Clin Gastroenterol Hepatol. 2015;13(5):847–58.e4; quiz e48–50.PubMedCrossRefGoogle Scholar
  155. 155.
    Deepak P, Sifuentes H, Sherid M, et al. T-cell non-Hodgkin’s lymphomas reported to the FDA AERS with tumor necrosis factor-alpha (TNF-alpha) inhibitors: results of the REFURBISH study. Am J Gastroenterol. 2013;108(1):99–105.PubMedCrossRefGoogle Scholar
  156. 156.
    Jagannathan-Bogdan M, McDonnell ME, Shin H, et al. Elevated proinflammatory cytokine production by a skewed T cell compartment requires monocytes and promotes inflammation in type 2 diabetes. J Immunol. 2011;186(2):1162–72.PubMedCrossRefGoogle Scholar
  157. 157.
    Keech JA Jr, Creech BJ. Anaplastic T-cell lymphoma in proximity to a saline-filled breast implant. Plast Reconstr Surg. 1997;100(2):554–5.PubMedCrossRefGoogle Scholar
  158. 158.
    de Jong D, Vasmel WL, de Boer JP, et al. Anaplastic large-cell lymphoma in women with breast implants. JAMA. 2008;300(17):2030–5.PubMedCrossRefGoogle Scholar
  159. 159.
    Wang SS, Deapen D, Voutsinas J, et al. Breast implants and anaplastic large cell lymphomas among females in the California Teachers Study cohort. Br J Haematol. 2016;174(3):480–3.PubMedCrossRefGoogle Scholar
  160. 160.
    Kim B, Roth C, Chung KC, et al. Anaplastic large cell lymphoma and breast implants: a systematic review. Plast Reconstr Surg. 2011;127(6):2141–50.PubMedCrossRefGoogle Scholar
  161. 161.
    Aschebrook-Kilfoy B, Cocco P, La Vecchia C, et al. Medical history, lifestyle, family history, and occupational risk factors for mycosis fungoides and Sezary syndrome: the InterLymph non-Hodgkin lymphoma subtypes project. J Natl Cancer Inst Monogr. 2014;2014(48):98–105.PubMedPubMedCentralCrossRefGoogle Scholar
  162. 162.
    Bhattacharjee S, Rajaraman P, Jacobs KB, et al. A subset-based approach improves power and interpretation for the combined analysis of genetic association studies of heterogeneous traits. Am J Hum Genet. 2012;90(5):821–35.PubMedPubMedCentralCrossRefGoogle Scholar
  163. 163.
    Higgins JP, Thompson SG. Quantifying heterogeneity in a meta-analysis. Stat Med. 2002;21(11):1539–58.PubMedCrossRefGoogle Scholar
  164. 164.
    Engels EA, Parsons R, Besson C, et al. Comprehensive evaluation of medical conditions associated with risk of non-Hodgkin lymphoma using Medicare claims (“MedWAS”). Cancer Epidemiol Biomark Prev. 2016;25(7):1105–13.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of Health Sciences ResearchMayo Clinic College of MedicineRochesterUSA

Personalised recommendations