Skip to main content

State Estimation of a Dehydration Process by Interval Analysis

  • Conference paper
  • First Online:
Applied Computer Sciences in Engineering (WEA 2018)

Abstract

This article presents a general methodology of state estimation by interval analysis in a dynamic system modeled by difference equations. The methodology is applied to a pineapple osmotic dehydration process, in order to predict the behavior of the process within a range of allowed perturbation. The paper presents simulations and validations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Burgos, M., González, A., Vallejo, M., Izquierdo, C.: Selección económica de equipo utilizando matemáticas de intervalos. Información Tecnológica 9(5), 311–316 (1998)

    Google Scholar 

  2. Campos, P., Valdés, H.: Optimización global por intervalos: aplicación a problemas con parámetros inciertos. Información Tecnológica 17(5), 67–74 (2006)

    Article  Google Scholar 

  3. Zapata, G., Cardillo, J., Chacón, E.: Aportes metodológicos para el diseño de sistemas de supervisión de procesos contínuos. Información Tecnológica 22(3), 97–114 (2011)

    Article  Google Scholar 

  4. Jauberthie, C., Verdiere, N., Trave, L.: Fault detection and identification relying on set-membership identifiability. Annu. Rev. Control. 37(1), 129–136 (2013)

    Article  Google Scholar 

  5. Li, Q., Jauberthie, C., Denis, L., Cher, Z.: Guaranteed state and parameter estimation for nonlinear dynamical aerospace models. In: Informatics in Control, Automation and Robotics (ICINCO), Vienna, Austria (2014)

    Google Scholar 

  6. Ortega, F., Pérez, O., López, E.: Comparación del desempeño de estimadores de estado no lineales para determinar la concentración de biomasa y sustrato en un bioproceso. Información Tecnológica 26(5), 35–44 (2015)

    Article  Google Scholar 

  7. Kieffer, M., Jaulin, L., Walter, E.: Guaranteed recursive nonlinear state bounding using interval analysis. Int. J. Adapt. Control. Signal Process. 16(3), 193–218 (2002)

    Article  Google Scholar 

  8. Jaulin, L.: A nonlinear set membership approach for the localization and map building of underwater robots. IEEE Trans. Robot. 25(1), 88–98 (2009)

    Article  Google Scholar 

  9. Jaulin, L., Walter, E.: Set inversion via interval analysis for nonlinear bounded-error estimation. Automatica 294, 1053–1064 (1993)

    Article  MathSciNet  Google Scholar 

  10. Paşca, I.: Formally verified conditions for regularity of interval matrices. In: Autexier, S., et al. (eds.) CICM 2010. LNCS (LNAI), vol. 6167, pp. 219–233. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-14128-7_19

    Chapter  Google Scholar 

  11. Rauh, A., Auer, E.: Modeling, Design, and Simulation of Systems with Uncertainties. Springer, Berlin (2011). https://doi.org/10.1007/978-3-642-15956-5

    Book  MATH  Google Scholar 

  12. Jauberthie, C., Chanthery, E.: Optimal input design for a nonlinear dynamical uncertain aerospace system. In: IFAC Symposium on Nonlinear Control Systems, Toulouse, France (2013)

    Google Scholar 

  13. Nedialkov, N., Jackson, K.R.: A new perspective on the wrapping effect in interval methods for initial value problems for ordinary differential equations. In: Kulisch, U., Lohner, R., Facius, A. (eds.) Perspectives on Enclosure Methods, pp. 219–263. Springer, Vienna (2001). https://doi.org/10.1007/978-3-7091-6282-8_13

    Chapter  MATH  Google Scholar 

  14. Arreola, S., Rosas, M.: Aplicación de vacío en la deshidratación osmótica de higos \((\)ficus carica\()\). Información Tecnológica 18(2), 43–48 (2007)

    Article  Google Scholar 

  15. Arballo, J.: Modelado y simulación de la deshidratación combinada osmótica-microondas de frutihortícolas. Ph.D. thesis in Engineering, Universidad de La Plata, Argentina (2013)

    Google Scholar 

  16. García, A.: Análisis comparativo de la cinética de deshidratación osmótica y por flujo de aire caliente de la piña \((\)ananas comosus, variedad cayena lisa\()\). Revista Ciencias Técnicas Agropecuarias 22(1), 62–69 (2013)

    Google Scholar 

  17. García, M., Alvis, A., García, C.: Evaluación de los pretratamientos de deshidratación osmótica y microondas en la obtención de hojuelas de mango \((\)Tommy Atkins\()\). Información Tecnológica 26(5), 63–70 (2015)

    Article  Google Scholar 

  18. Jaller, S., Vargas, S.: Comparación de la transferencia de materia en los procesos de deshidratación osmótica a presión atmosférica y con impregnación de vacío en la piña cayena lisa (ananás comosus l. meer) a través de un modelo matemático. Undergraduate thesis for Agroindustrial Production Engineering, Universidad de La Sabana, Chía, Colombia (2000)

    Google Scholar 

  19. González, G.: Viabilidad de la piña colombiana var. cayena lisa, para su industrialización combinando operaciones de impregnación a vacío, deshidtratación cayena lisa (ananás comosus l. meer). Ph.D. thesis, Universidad Politécnica de Valencia, Valencia, Spain (2000)

    Google Scholar 

  20. Wullner, B.: Instrumentación y control de un deshidratador osmótico a vacío. Undergraduate thesis for Agroindustrial Production Engineering, Universidad de La Sabana, Chía, Colombia (1998)

    Google Scholar 

  21. Moore, R.: Automatic error analysis in digital computation. Technical report LMSD-48421, Lockheed Missiles and Space Co., Palo Alto, CA (1959)

    Google Scholar 

  22. Moore, R.E.: Interval Analysis. Prentice Hall, New Jersey (1966)

    Google Scholar 

  23. Jaulin, L., Walter, E.: Set inversion via interval analysis for nonlinear bounded-error estimation. Automatica 29(4), 1053–1064 (1993)

    Article  MathSciNet  Google Scholar 

  24. Nedialkov, N., Jackson, K., Pryce, J.: An effective high-order interval method for validating existence and uniqueness of the solution of an IVP for an ODE. Reliab. Comput. 7, 449–465 (2001)

    Article  MathSciNet  Google Scholar 

  25. Milanese, M., Norton, J., Piet-Lahanier, H., Walter, E.: Bounding Approaches to System Identification. Plenum, New York (1996)

    Book  Google Scholar 

  26. Lohner, R.: Enclosing the solutions of ordinary initial and boundary value problems. Wiley-Teubner, Stuttgart, pp. 255–286 (1987)

    Google Scholar 

  27. Rihm, R.: Interval methods for initial value problems in ODEs. In: Herzberger, J. (ed.) Topics in Validated Computations: Proceedings of the IMACS-GAMM International Workshop on Validated Computations, University of Oldenburg. Elsevier Studies in Computational Mathematics. Elsevier, Amsterdam, New York (1994)

    Google Scholar 

  28. Walter, E., Pronzato, L.: Identification de modles paramtriques partir de donnes exprimentales. Masson, Montreal (1994)

    Google Scholar 

  29. Castellanos, H.E., Collazos, C.A., Farfán, J.C., Meléndez-Pertuz, F.: Diseño y Construcción de un Canal Hidráulico de Pendiente Variable. Información Tecnológica 28(6), 103–114 (2017). https://doi.org/10.4067/S0718-07642017000600012. Accessed 20 July 2018

    Article  Google Scholar 

  30. Collazos, C.A., Castellanos, H.E., Burbano, A.M., Cardona, J.A., Cuervo, J.A., Maldonado-Franco, A.: Semi-mechanistic modelling of an osmotic dehydration process. WSEAS Trans. Syst. 16, 27–35 (2017). E-ISSN 2224-2678

    Google Scholar 

  31. Duarte, J., Garcá J., Jiménez, J., Sanjuan, M.E., Bula, A., González, J.: Auto-ignition control in spark-ignition engines using internal model control structure. J. Energy Resour. Technol. 139(2) (2016)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlos Collazos .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Collazos, C. et al. (2018). State Estimation of a Dehydration Process by Interval Analysis. In: Figueroa-García, J., López-Santana, E., Rodriguez-Molano, J. (eds) Applied Computer Sciences in Engineering. WEA 2018. Communications in Computer and Information Science, vol 915. Springer, Cham. https://doi.org/10.1007/978-3-030-00350-0_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-00350-0_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-00349-4

  • Online ISBN: 978-3-030-00350-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics