Skip to main content

Simulation of a 14 Node IEEE System with Distributed Generation Using Quasi-dynamic Analysis

  • Conference paper
  • First Online:
Applied Computer Sciences in Engineering (WEA 2018)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 915))

Included in the following conference series:

Abstract

In this article, an electrical system with a study case is presented within the Colombian industrial electric sector in order to identify the changes in the electrical variables of a electrical network with distributed generation (DG). To achieve this, each present load in the 14-node IEEE system was modelled as daily demand curve of the Colombian industrial electric sector. In first place, the power dispatch of the 14-node IEEE system with DG was optimized through the particle swarm method. Afterwards, Quasi-Dynamic simulations were implemented throughout a 24-h period in the different nodes of the system with the purpose of estimate the transformers and line losses as well as the variations in the power and voltage profiles in the system nodes. DG systems supply effectively the demanded power however the voltage and power profiles resulting from Quasi-Dynamic simulations do not show significant changes in the behavior of the electrical network.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Godoy, G.A.C.: Impacto De La Generación Distribuida En La Operación De La Distribución. Universidad De Chile, Facultad De Ciencias Físicas Y Matemáticas, Departamento De Ingeniería Eléctrica, Santiago de Chile (2013)

    Google Scholar 

  2. Sarabia, F.: Impact of distributed generation on distribution system. Department of Energy Technology, Faculty of Engineering, Science and Medicine, Aalborg University, Aalborg (2011)

    Google Scholar 

  3. Congreso de Colombia: Ley 1715 de 2014: Por medio de la cual se regula la integración de las energías renovables no convencionales al Sistema Energético Nacional (2014)

    Google Scholar 

  4. Rice, J.: Spatiotemporal complexity of slip on a fault. J. Geophys. Res.-Solid Earth 98, 9885–9907 (1993)

    Article  Google Scholar 

  5. Zoller, G., Holschneider, M., Ben-Zion, Y.: Quasi-static and quasidynamic modeling of earthquake failure at intermediate scales. Pure Appl. Geophys. 161, 2103–2118 (2004)

    Article  Google Scholar 

  6. Yao, R., Huang, S., Liu, F., Zhang, X., Zhang, X.: A multi-timescale quasi-dynamic model for simulation of cascading outages. IEEE Trans. Power Syst. 31(4), 3189–3201 (2016)

    Article  Google Scholar 

  7. Habib, A.H., Disfani, V.R., Kleissl, J., de Callafon, R.A.: Quasi-dynamic load and battery sizing and scheduling for stand-alone solar system using mixed-integer linear programming. In: de IEEE Conference on Control Applications (CCA), Buenos Aires, Argentina (2016)

    Google Scholar 

  8. Electric Power System Analysis & Nature-Inspired Optimization Algorithms, Power Flow, August 2016. http://www.al-roomi.org/power-flow

  9. Rojas, E.M.S.: Detección de áreas débiles respecto a la estabilidad de tensión en tiempo real utilizando lógica difusa. Universidad de Cuenca, Cuenca, Ecuador (2013)

    Google Scholar 

  10. Instituto Colombiano de Normas Técnicas y Certificación, ICONTEC, NTC 819, Norma Tecnica Colombiana 819, Electrotecnia. Transformadores Trifásicos Autorefrigerados Y Sumergidos En Liquido. Corriente Sin Carga, Pérdidas Y Tension De Cortocircuito, ICONTEC (1995)

    Google Scholar 

  11. Castaño, S.: Redes de distribución de energía. Universidad Nacional de Colombia, Manizales (2009)

    Google Scholar 

  12. Pedraza, A., Reyes, D., Gómez, C., Santamaría, F.: Impacto de la Generación Distribuida sobre el Esquema de Protecciones en una Red de Distribució, Universidad Distrital Francisco Jose de Caldas (2015)

    Google Scholar 

  13. GmbH DIgSILENT: DIgSILENT PowerFactory Version 15 User Manual (2014)

    Google Scholar 

  14. Hernández, F.P.: Localización de fallas en alimentadores primarios de distribución de energía eléctrica considerando incertidumbres en la carga y con presencia de Generación Distribuida. Universidad Tecnológica De Pereira, Pereira (2013)

    Google Scholar 

  15. Schutte, J.F.: Particle Swarms in sizing and global optimization, University of Pretoria (2001)

    Google Scholar 

  16. Eberhart, R., Kennedy, J.: Particle swarm optimization. In: de Proceedings of IEEE International Conference on Neural Networks, vol. 4, pp. 1942–1948 (1995)

    Google Scholar 

  17. Birge, B.: Mathworks (2006). https://www.mathworks.com/matlabcentral/fileexchange/7506-particle-swarm-optimization-toolbox

  18. Rambharose, T.: Mathworks, Noviembre 2010. https://www.mathworks.com/matlabcentral/fileexchange/29565-neural-network-add-in-for-psort

  19. Danaraj, R.: Mathwoks, Marzo 2014. https://www.mathworks.com/matlabcentral/fileexchange/46002-optimal-power-flow-by-vector-pso

  20. Danaraj, R.: Mathworks, Agosto 2008. https://www.mathworks.com/matlabcentral/fileexchange/20984-pso-solution-to-economic-dispatch

  21. Danaraj, R.: Mathworks, Marzo 2009. https://www.mathworks.com/matlabcentral/fileexchange/23491-improved-pso-program-to-solve-economic-dispatch

  22. Mathworks: Mathworks, Diciembre 2009. https://www.mathworks.com/matlabcentral/fileexchange/25986-constrained-particle-swarm-optimization

  23. Frank, S., Rebennack, S.: A Primer on Optimal Power Flow: Theory, Formulation, and Practical Examples, Golden (2012)

    Google Scholar 

  24. Habib, H., Disfani, V.R., Kleissl, J., de Callafon, R.A.: Quasi-dynamic load and battery sizing and scheduling for stand-alone solar system using mixed-integer linear programming. In: de IEEE Conference on Control Applications (CCA), Buenos Aires, Argentina (2016)

    Google Scholar 

  25. Nuñez, J.: Comparacion Tecnica Entre Los Programas De Simulacion De Sistemas De Potencia DigSILENT PowerFactory y PSSS/E (2015)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Luis Felipe Gaitan , Juan David Gómez or Edwin Rivas Trujillo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Gaitan, L.F., Gómez, J.D., Trujillo, E.R. (2018). Simulation of a 14 Node IEEE System with Distributed Generation Using Quasi-dynamic Analysis. In: Figueroa-García, J., López-Santana, E., Rodriguez-Molano, J. (eds) Applied Computer Sciences in Engineering. WEA 2018. Communications in Computer and Information Science, vol 915. Springer, Cham. https://doi.org/10.1007/978-3-030-00350-0_41

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-00350-0_41

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-00349-4

  • Online ISBN: 978-3-030-00350-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics