Skip to main content

Modeling the Traceability and Recovery Processes in the Closed-Loop Supply Chain and Their Effects

  • Conference paper
  • First Online:

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 915))

Abstract

The traceability and recovery plays a main role in the competitiveness of the food supply chain. The quality control of fruit manufacturing mainly depend of the traceability technologies used. In this sense, the quality control policies aimed at the traceability of products cause impact to production capacity and recovery. In the closed-loop supply chain (CLSC), wastes recovery and control in manufacturing contributes to improvement of the quality, as well as sustainable production. This article presents a dynamic behaviour analysis of production capacity, traceability and recovery on the peach-supply chain. Consequently, the study shows a simulation model based on system dynamics (SD) methodology. Results of simulation model explain why the delay in the waste recovery and traceability processes affect on the supply chain and its demand. The case of study is the peach supply chain, due partly to its great market potential for food industry.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. FAOSTAT: Database of Country Indicators, Rome (2017)

    Google Scholar 

  2. Tostivint, C., de Veron, S., Jan, O., et al.: Measuring food waste in a dairy supply chain in Pakistan. J. Clean. Prod. 145, 221–231 (2017). https://doi.org/10.1016/j.jclepro.2016.12.081

    Article  Google Scholar 

  3. Hoolohan, C., McLachlan, C., Mander, S.: Trends and drivers of end-use energy demand and the implications for managing energy in food supply chains: synthesising insights from the social sciences. Sustain. Prod. Consum. 8, 1–17 (2016). https://doi.org/10.1016/j.spc.2016.06.002

    Article  Google Scholar 

  4. Abeliotis, K., Lasaridi, K., Costarelli, V., Chroni, C.: The implications of food waste generation on climate change: the case of Greece. Sustain. Prod. Consum. 3, 8–14 (2015). https://doi.org/10.1016/j.spc.2015.06.006

    Article  Google Scholar 

  5. Pandey, P.K., Cao, W., Biswas, S., Vaddella, V.: A new closed loop heating system for composting of green and food wastes. J. Clean. Prod. 133, 1252–1259 (2016). https://doi.org/10.1016/j.jclepro.2016.05.114

    Article  Google Scholar 

  6. Brandenburg, M., Govindan, K., Sarkis, J., Seuring, S.: Quantitative models for sustainable supply chain management: developments and directions. Eur. J. Oper. Res. 233, 299–312 (2014). https://doi.org/10.1016/j.ejor.2013.09.032

    Article  MathSciNet  MATH  Google Scholar 

  7. Seuring, S., Müller, M.: From a literature review to a conceptual framework for sustainable supply chain management. J. Clean. Prod. 16, 1699–1710 (2008). https://doi.org/10.1016/j.jclepro.2008.04.020

    Article  Google Scholar 

  8. Gupta, S., Palsule-Desai, O.D.: Sustainable supply chain management: review and research opportunities. IIMB Manag. Rev. 23, 234–245 (2011). https://doi.org/10.1016/j.iimb.2011.09.002

    Article  Google Scholar 

  9. Hassini, E., Surti, C., Searcy, C.: A literature review and a case study of sustainable supply chains with a focus on metrics. Int. J. Prod. Econ. 140, 69–82 (2012). https://doi.org/10.1016/j.ijpe.2012.01.042

    Article  Google Scholar 

  10. Li, Y., Zhao, X., Shi, D., Li, X.: Governance of sustainable supply chains in the fast fashion industry. Eur. Manag. J. 32, 823–836 (2014). https://doi.org/10.1016/j.emj.2014.03.001

    Article  Google Scholar 

  11. Wang, Y., Chang, X., Chen, Z., et al.: Impact of subsidy policies on recycling and remanufacturing using system dynamics methodology: a case of auto parts in China. J. Clean. Prod. 74, 161–171 (2014). https://doi.org/10.1016/j.jclepro.2014.03.023

    Article  Google Scholar 

  12. Gokarn, S., Kuthambalayan, T.S.: Analysis of challenges inhibiting the reduction of waste in food supply chain. J. Clean. Prod. 168, 595–604 (2017). https://doi.org/10.1016/j.jclepro.2017.09.028

    Article  Google Scholar 

  13. Ministerio de Agricultura y Desarrollo Rural (2018) Agronet

    Google Scholar 

  14. Vargas, J., Herrera, M.M.: Comparación de ténicas de modelamiento para el control de procesos: un enfoque de aprendizaje con dinámica de sistemas. Inventum 18, 37–48 (2015)

    Article  Google Scholar 

  15. Herrera-Ramírez, M.M., Orjuela-Castro, J., Sandoval-Cruz, H., Martínez-Vargas, M.A. Modelado dinámico y estratégico de la cadena agroindustrial de frutas. Universidad Piloto de Colombia, Bogotá D.C. (2017)

    Google Scholar 

  16. Azadi, M., Jafarian, M., Farzipoor Saen, R., Mirhedayatian, S.M.: A new fuzzy DEA model for evaluation of efficiency and effectiveness of suppliers in sustainable supply chain management context. Comput. Oper. Res. 54, 274–285 (2014). https://doi.org/10.1016/j.cor.2014.03.002

    Article  MathSciNet  MATH  Google Scholar 

  17. Mele, F.D., Guillen-Gosalbez, G., Jimenez, L., Bandoni, A.: Optimal planning of the sustainable supply chain for sugar and bioethanol production. Comput. Aided Chem. Eng. 27, 597–602 (2009). https://doi.org/10.1016/S1570-7946(09)70320-7

    Article  Google Scholar 

  18. Sterman, J.D.: Systems Thinking and Modeling for a Complex World. McGraw-Hill, Boston (2000)

    Google Scholar 

  19. Kumar, S., Nigmatullin, A.: A system dynamics analysis of food supply chains - case study with non-perishable products. Simul. Model. Pract. Theory 19, 2151–2168 (2011). https://doi.org/10.1016/j.simpat.2011.06.006

    Article  Google Scholar 

  20. Redlingshöfer, B., Coudurier, B., Georget, M.: Quantifying food loss during primary production and processing in France. J. Clean. Prod. 164, 703–714 (2017). https://doi.org/10.1016/j.jclepro.2017.06.173

    Article  Google Scholar 

  21. Mangmeechai, A.: The environmental life cycle assessment of agricultural sector in Thailand: EIO-LCA approach. Environ. Qual. Manag. 26, 47–56 (2017). https://doi.org/10.1002/tqem.21503

    Article  Google Scholar 

  22. Orjuela, J., Herrera, M., Casilimas, W.: Impact analysis of transport capacity and food safety in Bogota (2015). https://doi.org/10.1109/WEA.2015.7370138

  23. Raak, N., Symmank, C., Zahn, S., et al.: Processing- and product-related causes for food waste and implications for the food supply chain. Waste Manag. 61, 461–472 (2017). https://doi.org/10.1016/j.wasman.2016.12.027

    Article  Google Scholar 

  24. Irani, Z., Sharif, A.M., Lee, H., et al.: Managing food security through food waste and loss: small data to big data. Comput. Oper. Res., 1–17 (2017). https://doi.org/10.1016/j.cor.2017.10.007

    Article  Google Scholar 

  25. Li, B., Emr, N., Malling, E., Me, K.: Advances in non-destructive early assessment of fruit ripeness towards defining optimal time of harvest and yield prediction—a review. Plants 7, 3 (2018). https://doi.org/10.3390/plants7010003

    Article  Google Scholar 

  26. Magalhães, V.S.M., Ferreira, L.M.D., Silva, C.: An overview on the research status of the problem of food loss and waste along food supply chains. In: Proceedings of the International Conference on Computers and Industrial Engineering, CIE (2017)

    Google Scholar 

  27. Ding, H., Wang, L., Zheng, L.: Collaborative mechanism on profit allotment and public health for a sustainable supply chain. Eur. J. Oper. Res. 267, 478–495 (2018). https://doi.org/10.1016/j.ejor.2017.11.057

    Article  MathSciNet  MATH  Google Scholar 

  28. Besiou, M., Georgiadis, P., Van Wassenhove, L.N.: Official recycling and scavengers: symbiotic or conflicting? Eur. J. Oper. Res. 218, 563–576 (2012). https://doi.org/10.1016/j.ejor.2011.11.030

    Article  MATH  Google Scholar 

  29. Diabat, A., Kannan, D., Mathiyazhagan, K.: Analysis of enablers for implementation of sustainable supply chain management - a textile case. J. Clean. Prod. 83, 391–403 (2014). https://doi.org/10.1016/j.jclepro.2014.06.081

    Article  Google Scholar 

  30. Wu, Z., Pagell, M.: Balancing priorities: decision-making in sustainable supply chain management. J. Oper. Manag. 29, 577–590 (2011). https://doi.org/10.1016/j.jom.2010.10.001

    Article  Google Scholar 

  31. Linton, J.D., Klassen, R., Jayaraman, V.: Sustainable supply chains: an introduction. J. Oper. Manag. 25, 1075–1082 (2007). https://doi.org/10.1016/j.jom.2007.01.012

    Article  Google Scholar 

  32. Herrera Ramírez, M.M., Orjuela Castro, J.A.: Perspectiva de trazabilidad en la cadena de suministros de frutas: un enfoque desde la dinámica de sistemas. Ingeniería 19, 63–84 (2014)

    Google Scholar 

  33. Bueno-Solano, A., Cedillo-Campos, M.G.: Dynamic impact on global supply chains performance of disruptions propagation produced by terrorist acts. Transp. Res. Part E Logist. Transp. Rev. 61, 1–12 (2014). https://doi.org/10.1016/j.tre.2013.09.005

    Article  Google Scholar 

  34. Liu, S., Kasturiratne, D., Moizer, J.: A hub-and-spoke model for multi-dimensional integration of green marketing and sustainable supply chain management. Ind. Mark. Manag. 41, 581–588 (2012). https://doi.org/10.1016/j.indmarman.2012.04.005

    Article  Google Scholar 

  35. Brindley, C., Oxborrow, L.: Aligning the sustainable supply chain to green marketing needs: a case study. Ind. Mark. Manag. 43, 45–55 (2014). https://doi.org/10.1016/j.indmarman.2013.08.003

    Article  Google Scholar 

  36. Vermeulen, W.J.V., Kok, M.T.J.: Government interventions in sustainable supply chain governance: experience in Dutch front-running cases. Ecol. Econ. 83, 183–196 (2012). https://doi.org/10.1016/j.ecolecon.2012.04.006

    Article  Google Scholar 

  37. Zhang, H., Li, L., Zhou, P., et al.: Subsidy modes, waste cooking oil and biofuel: policy effectiveness and sustainable supply chains in China. Energy Policy 65, 270–274 (2014). https://doi.org/10.1016/j.enpol.2013.10.009

    Article  Google Scholar 

  38. Eskandarpour, M., Dejax, P., Miemczyk, J., Péton, O.: Sustainable supply chain network design: an optimization-oriented review. Omega (U.K.) 54, 11–32 (2015). https://doi.org/10.1016/j.omega.2015.01.006

    Article  Google Scholar 

  39. Chaabane, A., Ramudhin, A., Paquet, M.: Design of sustainable supply chains under the emission trading scheme. Int. J. Prod. Econ. 135, 37–49 (2012). https://doi.org/10.1016/j.ijpe.2010.10.025

    Article  Google Scholar 

  40. Van Hoof, B., Thiell, M.: Collaboration capacity for sustainable supply chain management: small and medium-sized enterprises in Mexico. J. Clean. Prod. 67, 239–248 (2014). https://doi.org/10.1016/j.jclepro.2013.12.030

    Article  Google Scholar 

  41. Beske, P., Land, A., Seuring, S.: Sustainable supply chain management practices and dynamic capabilities in the food industry: a critical analysis of the literature. Int. J. Prod. Econ. 152, 131–143 (2014). https://doi.org/10.1016/j.ijpe.2013.12.026

    Article  Google Scholar 

  42. Frostenson, M., Prenkert, F.: Sustainable supply chain management when focal firms are complex: a network perspective. J. Clean. Prod. 107, 85–94 (2015). https://doi.org/10.1016/j.jclepro.2014.05.034

    Article  Google Scholar 

  43. Fleury, A.M., Davies, B.: Sustainable supply chains-minerals and sustainable development, going beyond the mine. Resour. Policy 37, 175–178 (2012). https://doi.org/10.1016/j.resourpol.2012.01.003

    Article  Google Scholar 

  44. Georgiadis, P., Besiou, M.: Sustainability in electrical and electronic equipment closed-loop supply chains: a system dynamics approach. J. Clean. Prod. 16, 1665–1678 (2008). https://doi.org/10.1016/j.jclepro.2008.04.019

    Article  Google Scholar 

  45. Vlachos, D., Georgiadis, P., Iakovou, E.: A system dynamics model for dynamic capacity planning of remanufacturing in closed-loop supply chains. Comput. Oper. Res. 34, 367–394 (2007). https://doi.org/10.1016/j.cor.2005.03.005

    Article  MATH  Google Scholar 

  46. Savaskan, R.C., Bhattacharya, S., Van Wassenhove, L.N.: Closed-loop supply chain models with product remanufacturing. Manag. Sci. 50, 239–252 (2004). https://doi.org/10.1287/mnsc.1030.0186

    Article  MATH  Google Scholar 

  47. Tian, Y., Govindan, K., Zhu, Q.: A system dynamics model based on evolutionary game theory for green supply chain management diffusion among Chinese manufacturers. J. Clean. Prod. 80, 96–105 (2014). https://doi.org/10.1016/j.jclepro.2014.05.076

    Article  Google Scholar 

  48. Kuai, P., Li, W., Cheng, R., Cheng, G.: An application of system dynamics for evaluating planning alternatives to guide a green industrial transformation in a resource-based city. J. Clean. Prod. 104, 403–412 (2015). https://doi.org/10.1016/j.jclepro.2015.05.042

    Article  Google Scholar 

  49. Sterman, J.D.: Appropriate summary statistics for evaluating the historical fit of system dynamics models. Dynamica 10, 51–66 (1984)

    Google Scholar 

  50. Sterman, J.D.: Business dynamics: Systems Thinking and Modeling for a Complex World. McGraw-Hill, New York City (2000)

    Google Scholar 

  51. Sachan, A., Sahay, B.S., Sharma, D.: Developing Indian grain supply chain cost model: a system dynamics approach. Int. J. Product. Perform. Manag. 54, 187–205 (2005). https://doi.org/10.1108/17410400510584901

    Article  Google Scholar 

  52. Orjuela-Castro, J., Herrera-Ramirez, M., Adarme-Jaimes, W.: Warehousing and transportation logistics of mango in Colombia: a system dynamics model. Rev. Fac. Ing. 26, 71–85 (2017). https://doi.org/10.19053/01211129

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the anonymous reviewers for their helpful comments that helped improve the content of the paper. We would also like to acknowledge the comments of the Professor J. Orjuela.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Milton M. Herrera .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Herrera, M.M., Vargas, L., Contento, D. (2018). Modeling the Traceability and Recovery Processes in the Closed-Loop Supply Chain and Their Effects. In: Figueroa-García, J., López-Santana, E., Rodriguez-Molano, J. (eds) Applied Computer Sciences in Engineering. WEA 2018. Communications in Computer and Information Science, vol 915. Springer, Cham. https://doi.org/10.1007/978-3-030-00350-0_28

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-00350-0_28

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-00349-4

  • Online ISBN: 978-3-030-00350-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics