Skip to main content

Polysaccharides-Based Hybrids with Metal Oxide Nanoparticles

  • Chapter
  • First Online:
Polysaccharide Based Hybrid Materials

Abstract

Metal oxide nanoparticles (NPs), such as titanium dioxide (TiO2), zinc oxide (ZnO), copper oxides (CuO and Cu2O), silica (SiO2) and iron oxides (Fe2O3 and Fe3O4) NPs, are high in request for several high-tech applications, including catalysts, absorbent materials, optoelectronic materials, magnetic composites, luminescent materials, drug delivery systems, sensors, antimicrobial materials, imaging, among many others [1,2,3,4,5]. In this context, the association of metal oxide NPs with different materials [6,7,8] is a well-recognized approach to produce metal oxide-based hybrid nanomaterials with a wide range of properties and controlled morphologies with improved stability and better performance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Muthiah M, Park I-K, Cho C-S. Surface modification of iron oxide nanoparticles by biocompatible polymers for tissue imaging and targeting. Biotechnol Adv. 2013;31:1224–36.

    Article  CAS  PubMed  Google Scholar 

  2. Gautier J, Allard-Vannier E, Munnier E, Soucé M, Chourpa I. Recent advances in theranostic nanocarriers of doxorubicin based on iron oxide and gold nanoparticles. J Control Release. 2013;169:48–61.

    Article  CAS  PubMed  Google Scholar 

  3. Lima-Tenório MK, Gómez Pineda EA, Ahmad NM, Fessi H, Elaissari A. Magnetic nanoparticles: in vivo cancer diagnosis and therapy. Int J Pharm. 2015;493:313–27.

    Article  PubMed  CAS  Google Scholar 

  4. Yu X, Marks TJ, Facchetti A. Metal oxides for optoelectronic applications. Nat Mater. 2016;15:383–96.

    Article  CAS  PubMed  Google Scholar 

  5. Halbus AF, Horozov TS, Paunov VN. Colloid particle formulations for antimicrobial applications. Adv Colloid Interface Sci. 2017;249:134–48.

    Article  CAS  PubMed  Google Scholar 

  6. Li S-S, Chen C-W. Polymer–metal-oxide hybrid solar cells. J Mater Chem A. 2013;1:10574.

    Article  CAS  Google Scholar 

  7. Anasori B, Beidaghi M, Gogotsi Y. Graphene—transition metal oxide hybrid materials. Mater Today. 2014;17:253–4.

    Article  Google Scholar 

  8. Boury B, Plumejeau S. Metal oxides and polysaccharides: an efficient hybrid association for materials chemistry. Green Chem. 2015;17:72–88.

    Article  CAS  Google Scholar 

  9. Salama A. Polysaccharides/silica hybrid materials: new perspectives for sustainable raw materials. J Carbohydr Chem. 2016;35:131–49.

    Article  CAS  Google Scholar 

  10. Chauhan I, Aggrawal S, Chandravati C, Mohanty P. Metal oxide nanostructures incorporated/immobilized paper matrices and their applications: a review. RSC Adv. 2015;5:83036–55.

    Article  CAS  Google Scholar 

  11. Ortelli S, Blosi M, Albonetti S, Vaccari A, Dondi M, Costa AL. TiO2 based nano-photocatalysis immobilized on cellulose substrates. J Photochem Photobiol A Chem. 2013;276:58–64.

    Article  CAS  Google Scholar 

  12. Li Y, Cao L, Li L, Yang C. In situ growing directional spindle TiO2 nanocrystals on cellulose fibers for enhanced Pb2+ adsorption from water. J Hazard Mater. 2015;289:140–8.

    Article  CAS  PubMed  Google Scholar 

  13. El-Wakil NA, Hassan EA, Abou-Zeid RE, Dufresne A. Development of wheat gluten/nanocellulose/titanium dioxide nanocomposites for active food packaging. Carbohydr Polym. 2015;124:337–46.

    Article  CAS  PubMed  Google Scholar 

  14. Janpetch N, Vanichvattanadecha C, Rujiravanit C. Photocatalytic disinfection of water by bacterial cellulose/N–F co-doped TiO2 under fluorescent light. Cellulose. 2015;22:3321–35.

    Article  CAS  Google Scholar 

  15. Dal’Acqua N, de Mattos AB, Krindges I, Pereira MB, Barud HS, Ribeiro SJL, Duarte GCS, Radtke C, Almeida LC, Giovanela M, Crespo JS, Machado G. Characterization and application of nanostructured films containing Au and TiO2 nanoparticles supported in bacterial cellulose. J Phys Chem C. 2015;119:340–9.

    Article  CAS  Google Scholar 

  16. Li G, Nandgaonkar AG, Wang Q, Zhang J, Krause WE, Wei Q, Lucia LA. Laccase-immobilized bacterial cellulose/TiO2 functionalized composite membranes: evaluation for photo-and bio-catalytic dye degradation. J Membr Sci. 2016;525:89–98.

    Article  CAS  Google Scholar 

  17. Pang Z, Yang Z, Chen Y, Zhang J, Wang Q, Huang F, Wei Q. A room temperature ammonia gas sensor based on cellulose/TiO2/PANI composite nanofibers. Colloids Surf A. 2016;494:248–55.

    Article  CAS  Google Scholar 

  18. Fujiwara K, Kuwahara Y, Sumida Y, Yamashita H. Fabrication of photocatalytic paper using TiO2 nanoparticles confined in hollow silica capsules. Langmuir. 2017;33:288–95.

    Article  CAS  PubMed  Google Scholar 

  19. Shandilya N, Capron I. Safer-by-design hybrid nanostructures: an alternative to conventional titanium dioxide UV filters in skin care products. RSC Adv. 2017;7:20430–9.

    Article  CAS  Google Scholar 

  20. Khalid A, Ullah H, Ul-Islam M, Khan R, Khan S, Ahmad F, Khan T, Wahid F. Bacterial cellulose–TiO2 nanocomposites promote healing and tissue regeneration in burn mice model. RSC Adv. 2017;7:47662–8.

    Article  CAS  Google Scholar 

  21. Dumitriu C, Voicu SI, Muhulet A, Nechifor G, Popescu S, Ungureanu C, Carja A, Miculescu F, Trusca R, Pirvu C. Production and characterization of cellulose acetate—titanium dioxide nanotubes membrane fraxiparinized through polydopamine for clinical applications. Carbohydr Polym. 2018;181:215–23.

    Article  CAS  PubMed  Google Scholar 

  22. Martins NCT, Freire CSR, Neto CP, Silvestre AJD, Causio J, Baldi G, Sadocco P, Trindade T. Antibacterial paper based on composite coatings of nanofibrillated cellulose and ZnO. Colloids Surf A. 2013;417:111–9.

    Article  CAS  Google Scholar 

  23. Khatri V, Halász K, Trandafiloví LV, Dimitrijevíc-Brankoví S, Mohanty P, Djokoví V, Csóka L. ZnO-modified cellulose fiber sheets for antibody immobilization. Carbohydr Polym. 2014;109:139–47.

    Article  CAS  PubMed  Google Scholar 

  24. Wang P, Zhao J, Xuan R, Wang Y, Zou C, Zhang Z, Wan Y, Xu Y. Flexible and monolithic zinc oxide bionanocomposite foams by a bacterial cellulose mediated approach for antibacterial applications. Dalton Trans. 2014;43:6762–8.

    Article  CAS  PubMed  Google Scholar 

  25. Gimenez AJ, Luna-Barcenas G, Sanchez IC, Yanez-Limon JM. Paper-based ZnO oxygen sensor. IEEE Sens J. 2015;15:1246–51.

    Article  CAS  Google Scholar 

  26. Mun S, Maniruzzaman M, Ko H-U, Kafy A, Kim J. Preparation and characterisation of cellulose ZnO hybrid film by blending method and its glucose biosensor application. Mater Technol. 2015;30:150–4.

    Article  CAS  Google Scholar 

  27. Fu F, Li L, Liu L, Cai J, Zhang Y, Zhou J, Zhang L. Construction of cellulose based ZnO nanocomposite films with antibacterial properties through one-step coagulation. ACS Appl Mater Interfaces. 2015;7:2597–606.

    Article  CAS  PubMed  Google Scholar 

  28. Grüneberger F, Künniger T, Huch A, Zimmermann T, Arnold M. Nanofibrillated cellulose in wood coatings: dispersion and stabilization of ZnO as UV absorber. Prog Org Coatings. 2015;87:112–21.

    Article  CAS  Google Scholar 

  29. Nath BK, Chaliha C, Kalita E, Kalita MC. Synthesis and characterization of ZnO:CeO 2:nanocellulose:PANI bionanocomposite. A bimodal agent for arsenic adsorption and antibacterial action. Carbohydr Polym. 2016;148:397–405.

    Article  CAS  PubMed  Google Scholar 

  30. Zhao S-W, Zheng M, Zou X-H, Guo Y, Pan Q-J. Self-assembly of hierarchically structured cellulose@ZnO composite in solid–liquid homogeneous phase: synthesis, dft calculations, and enhanced antibacterial activities. ACS Sustain Chem Eng. 2017;5:6585–96.

    Article  CAS  Google Scholar 

  31. Khalid A, Khan R, Ul-Islam M, Khan T, Wahid F. Bacterial cellulose-zinc oxide nanocomposites as a novel dressing system for burn wounds. Carbohydr Polym. 2017;164:214–21.

    Article  CAS  PubMed  Google Scholar 

  32. Wang D-C, Yu H-Y, Song M-L, Yang R-T, Yao J-M. Superfast adsorption–disinfection cryogels decorated with cellulose nanocrystal/zinc oxide nanorod clusters for water-purifying microdevices. ACS Sustain Chem Eng. 2017;5:6776–85.

    Article  CAS  Google Scholar 

  33. Xu M, Wang H, Wang G, Zhang L, Liu G, Zeng Z, Ren T, Zhao W, Wu X, Xue Q. Study of synergistic effect of cellulose on the enhancement of photocatalytic activity of ZnO. J Mater Sci. 2017;52:8472–84.

    Article  CAS  Google Scholar 

  34. Ibrahim NA, Eid BM, El-Aziz EA, Abou Elmaaty TM, Ramadan SM. Multifunctional cellulose-containing fabrics using modified finishing formulations. RSC Adv. 2017;7:33219–30.

    Article  CAS  Google Scholar 

  35. Rajeswari A, Jackcina E, Christy S, Pius A. New insight of hybrid membrane to degrade Congo red and reactive yellow under sunlight. J Photochem Photobiol B Biol. 2018;179:7–17.

    Article  CAS  Google Scholar 

  36. Jiang Y, Wang W, Li X, Wang X, Zhou J, Mu X. Enzyme-mimetic catalyst-modified nanoporous SiO2–cellulose hybrid composites with high specific surface area for rapid H2O2 detection. ACS Appl Mater Interfaces. 2013;5:1913–6.

    Article  CAS  PubMed  Google Scholar 

  37. Song H, Zheng L. Nanocomposite films based on cellulose reinforced with nano-SiO2: microstructure, hydrophilicity, thermal stability, and mechanical properties. Cellulose. 2013;20:1737–46.

    Article  CAS  Google Scholar 

  38. Kim J-H, Kim J-H, Choi E-S, Yu HK, Kim JH, Wu Q, Chun S-J, Lee S-Y, Lee S-Y. Colloidal silica nanoparticle-assisted structural control of cellulose nanofiber paper separators for lithium-ion batteries. J Power Sources. 2013;242:533–40.

    Article  CAS  Google Scholar 

  39. Evans E, Gabriel EFM, Benavidez TE, Coltro WKT, Garcia CD. Modification of microfluidic paper-based devices with silica nanoparticles. Analyst. 2014;139:5560–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. He M, Duan B, Xu D, Zhang L. Moisture and solvent responsive cellulose/SiO2 nanocomposite materials. Cellulose. 2015;22:553–63.

    Article  CAS  Google Scholar 

  41. Fu J, Wang S, He C, Lu Z, Huang J, Chen Z. Facilitated fabrication of high strength silica aerogels using cellulose nanofibrils as scaffold. Carbohydr Polym. 2016;147:89–96.

    Article  CAS  PubMed  Google Scholar 

  42. Hakeem A, Zahid F, Duan R, Asif M, Zhang T, Zhang Z, Cheng Y, Lou X, Xia F. Cellulose conjugated FITC-labelled mesoporous silica nanoparticles: intracellular accumulation and stimuli responsive doxorubicin release. Nanoscale. 2016;8:5089–97.

    Article  CAS  PubMed  Google Scholar 

  43. Sheykhnazari S, Tabarsa T, Ashori A, Ghanbari A. Bacterial cellulose composites loaded with SiO2 nanoparticles: Dynamic-mechanical and thermal properties. Int J Biol Macromol. 2016;93:672–7.

    Article  CAS  PubMed  Google Scholar 

  44. Cai Y, Hou X, Wang W, Liu M, Zhang J, Qiao H, Huang F, Wei Q. Effects of SiO2 nanoparticles on structure and property of form-stable phase change materials made of cellulose acetate phase inversion membrane absorbed with capric-myristic-stearic acid ternary eutectic mixture. Thermochim Acta. 2017;653:49–58.

    Article  CAS  Google Scholar 

  45. Nechyporchuk O, Bordes R, Köhnke T. Wet spinning of flame-retardant cellulosic fibers supported by interfacial complexation of cellulose nanofibrils with silica nanoparticles. ACS Appl Mater Interfaces. 2017;9:39069–77.

    Article  CAS  PubMed  Google Scholar 

  46. Garusinghe UM, Varanasi S, Garnier G, Batchelor W. Strong cellulose nanofibre–nanosilica composites with controllable pore structure. Cellulose. 2017;24:2511–21.

    Article  CAS  Google Scholar 

  47. Chu G, Qu D, Zussman E, Xu Y. Ice-assisted assembly of liquid crystalline cellulose nanocrystals for preparing anisotropic aerogels with ordered structures. Chem Mater. 2017;29:3980–8.

    Article  CAS  Google Scholar 

  48. Albertini F, Ribeiro T, Alves S, Baleizão C, Farinha JPS. Boron-chelating membranes based in hybrid mesoporous silica nanoparticles for water purification. Mater Des. 2018;141:407–13.

    Article  CAS  Google Scholar 

  49. Anirudhan TS, Rejeena SR. Selective adsorption of hemoglobin using polymer-grafted-magnetite nanocellulose composite. Carbohydr Polym. 2013;93:518–27.

    Article  CAS  PubMed  Google Scholar 

  50. Chen L, Berry RM, Tam KC. Synthesis of β-cyclodextrin-modified cellulose nanocrystals (CNCs)@Fe3O4 @SiO2 superparamagnetic nanorods. ACS Sustain Chem Eng. 2014;2:951–8.

    Article  CAS  Google Scholar 

  51. Li J, Wang F, Shi D, Zhang Y, Shao Z. Multifunctional biopolymer nanoparticles for drug delivery and protein immobilization. Ferroelectrics. 2015;486:156–67.

    Article  CAS  Google Scholar 

  52. Gomes D, Silva D, Toma SH, Menegatti De Melo F, Vieira L, Carvalho C, Magalhães A, Sabadini E, Domingues A, Santos D, Araki K, Toma HE. Direct synthesis of magnetite nanoparticles from iron(II) carboxymethylcellulose and their performance as NMR contrast agents. J Magn Magn Mater. 2015;397:28–32.

    Google Scholar 

  53. Wan C, Li J. Facile synthesis of well-dispersed superparamagnetic γ-Fe2O3 nanoparticles encapsulated in three-dimensional architectures of cellulose aerogels and their applications for Cr(VI) removal from contaminated water. ACS Sustain Chem Eng. 2015;3:2142–52.

    Article  CAS  Google Scholar 

  54. Patra S, Roy E, Karfa P, Kumar S, Madhuri R, Sharma PK. Dual-responsive polymer coated superparamagnetic nanoparticle for targeted drug delivery and hyperthermia treatment. ACS Appl Mater Interfaces. 2015;7:9235–46.

    Article  CAS  PubMed  Google Scholar 

  55. Darwish MSA, Nguyen NHA, Ševců A, Stibor I, Smoukov SK. Dual-modality self-heating and antibacterial polymer-coated nanoparticles for magnetic hyperthermia. Mater Sci Eng, C. 2016;63:88–95.

    Article  CAS  Google Scholar 

  56. Luo X, Lei X, Cai N, Xie X, Xue Y, Yu F. Removal of heavy metal ions from water by magnetic cellulose-based beads with embedded chemically modified magnetite nanoparticles and activated carbon. ACS Sustain Chem Eng. 2016;4:3960–9.

    Article  CAS  Google Scholar 

  57. Sadasivuni KK, Ponnamma D, Ko H-U, Kim HC, Zhai L, Kim J. Flexible NO2 sensors from renewable cellulose nanocrystals/iron oxide composites. Sens Actuators B Chem. 2016;233:633–8.

    Article  CAS  Google Scholar 

  58. Bekaroğlu MG, İşçi Y, İşçi S. Colloidal properties and in vitro evaluation of Hydroxy ethyl cellulose coated iron oxide particles for targeted drug delivery. Mater Sci Eng, C. 2017;78:847–53.

    Article  CAS  Google Scholar 

  59. Guo J, Filpponen I, Johansson L-S, Mohammadi P, Latikka M, Linder MB, Ras RHA, Rojas OJ. Complexes of magnetic nanoparticles with cellulose nanocrystals as regenerable, highly efficient, and selective platform for protein separation. Biomacromolecules. 2017;18:898–905.

    Article  CAS  PubMed  Google Scholar 

  60. Ortega GA, Pérez-Rodríguez S, Reguera E. Magnetic paper—based ELISA for IgM-dengue detection. RSC Adv. 2017;7:4921–32.

    Article  CAS  Google Scholar 

  61. Zhou Z, Lu C, Wu X, Zhang X. Cellulose nanocrystals as a novel support for CuO nanoparticles catalysts: facile synthesis and their application to 4-nitrophenol reduction. RSC Adv. 2013;3:26066.

    Article  CAS  Google Scholar 

  62. Hebeish A, Sharaf S. Novel nanocomposite hydrogel for wound dressing and other medical applications. RSC Adv. 2015;5:103036–46.

    Article  CAS  Google Scholar 

  63. Booshehri AY, Wang R, Xu R. Simple method of deposition of CuO nanoparticles on a cellulose paper and its antibacterial activity. Chem Eng J. 2015;262:999–1008.

    Article  CAS  Google Scholar 

  64. Sedighi Majid Montazer A. Tunable shaped N-doped CuO nanoparticles on cotton fabric through processing conditions: synthesis, antibacterial behavior and mechanical properties. Cellulose. 2016;23:2229–43.

    Article  CAS  Google Scholar 

  65. Shankar S, Wang L-F, Rhim J-W. Preparation and properties of carbohydrate-based composite films incorporated with CuO nanoparticles. Carbohydr Polym. 2017;169:264–71.

    Article  CAS  PubMed  Google Scholar 

  66. Peng S, Fan L, Rao W, Bai Z, Xu W, Xu J. Bacterial cellulose membranes coated by polypyrrole/copper oxide as flexible supercapacitor electrodes. J Mater Sci. 2017;52:1930–42.

    Article  CAS  Google Scholar 

  67. Almasi H, Jafarzadeh P, Mehryar L. Fabrication of novel nanohybrids by impregnation of CuO nanoparticles into bacterial cellulose and chitosan nanofibers: Characterization, antimicrobial and release properties. Carbohydr Polym. 2018;186:273–81.

    Article  CAS  PubMed  Google Scholar 

  68. Le Cunff J, Tomašić V, Wittine O. Photocatalytic degradation of the herbicide terbuthylazine: preparation, characterization and photoactivity of the immobilized thin layer of TiO2/chitosan. J Photochem Photobiol A Chem. 2015;309:22–9.

    Article  CAS  Google Scholar 

  69. Xiao G, Su H, Tan T. Synthesis of core–shell bioaffinity chitosan–TiO2 composite and its environmental applications. J Hazard Mater. 2015;283:888–96.

    Article  CAS  PubMed  Google Scholar 

  70. Kamari Y, Ghiaci M. Preparation and characterization of ibuprofen/modified chitosan/TiO2 hybrid composite as a controlled drug-delivery system. Microporous Mesoporous Mater. 2016;234:361–9.

    Article  CAS  Google Scholar 

  71. Tang Y, Hu X, Zhang X, Guo D, Zhang J, Kong F. Chitosan/titanium dioxide nanocomposite coatings: rheological behavior and surface application to cellulosic paper. Carbohydr Polym. 2016;151:752–9.

    Article  CAS  PubMed  Google Scholar 

  72. Yazdani MR, Bhatnagar A, Vahala R. Synthesis, characterization and exploitation of nano-TiO2/feldspar-embedded chitosan beads towards UV-assisted adsorptive abatement of aqueous arsenic (As). Chem Eng J. 2017;316:370–82.

    Article  CAS  Google Scholar 

  73. Shamsabadi AA, Seidi F, Salehi E, Nozari M, Rahimpour A, Soroush M. Efficient CO2-removal using novel mixed-matrix membranes with modified TiO2 nanoparticles. J Mater Chem A. 2017;5:4011–25.

    Article  CAS  Google Scholar 

  74. Xu W, Xie W, Huang X, Chen X, Huang N, Wang X, Liu J. The graphene oxide and chitosan biopolymer loads TiO2 for antibacterial and preservative research. Food Chem. 2017;221:267–77.

    Article  CAS  PubMed  Google Scholar 

  75. Zhang X, Xiao G, Wang Y, Zhao Y, Su H, Tan T. Preparation of chitosan-TiO2 composite film with efficient antimicrobial activities under visible light for food packaging applications. Carbohydr Polym. 2017;169:101–7.

    Article  CAS  PubMed  Google Scholar 

  76. AL-Mokaram A, Yahya R, Abdi M, Mahmud H. The development of non-enzymatic glucose biosensors based on electrochemically prepared polypyrrole–chitosan–titanium dioxide nanocomposite films. Nanomaterials 2017;7:129.

    Article  PubMed Central  CAS  Google Scholar 

  77. Natarajan S, Lakshmi DS, Bhuvaneshwari M, Iswarya V, Mrudula P, Chandrasekaran N, Mukherjee A. Antifouling activities of pristine and nanocomposite chitosan/TiO2/Ag films against freshwater algae. RSC Adv. 2017;7:27645–55.

    Article  CAS  Google Scholar 

  78. Alizadeh B, Delnavaz M, Shakeri A. Removal of Cd(II) and phenol using novel cross-linked magnetic EDTA/chitosan/TiO2 nanocomposite. Carbohydr Polym. 2018;181:675–83.

    Article  CAS  PubMed  Google Scholar 

  79. Samadi S, Moradkhani M, Beheshti H, Irani M, Aliabadi M. Fabrication of chitosan/poly(lactic acid)/graphene oxide/TiO2 composite nanofibrous scaffolds for sustained delivery of doxorubicin and treatment of lung cancer. Int J Biol Macromol. 2018;110:416–24.

    Article  CAS  PubMed  Google Scholar 

  80. Cui H-F, Wu W-W, Li M-M, Song X, Lv Y, Zhang T-T. A highly stable acetylcholinesterase biosensor based on chitosan-TiO2-graphene nanocomposites for detection of organophosphate pesticides. Biosens Bioelectron. 2018;99:223–9.

    Article  CAS  PubMed  Google Scholar 

  81. Krishnaveni R, Thambidurai S. Industrial method of cotton fabric finishing with chitosan–ZnO composite for anti-bacterial and thermal stability. Ind Crops Prod. 2013;47:160–7.

    Article  CAS  Google Scholar 

  82. Díez-Pascual AM, Díez-Vicente AL. Wound healing bionanocomposites based on castor oil polymeric films reinforced with chitosan-modified ZnO nanoparticles. Biomacromol. 2015;16:2631–44.

    Article  CAS  Google Scholar 

  83. Farzana MH, Meenakshi S. Exploitation of zinc oxide impregnated chitosan beads for the photocatalytic decolorization of an azo dye. Int J Biol Macromol. 2015;72:900–10.

    Article  CAS  PubMed  Google Scholar 

  84. Wang Y, Wang S, Tao L, Min Q, Xiang J, Wang Q, Xie J, Yue Y, Wu S, Li X, Ding H. A disposable electrochemical sensor for simultaneous determination of norepinephrine and serotonin in rat cerebrospinal fluid based on MWNTs-ZnO/chitosan composites modified screen-printed electrode. Biosens Bioelectron. 2015;65:31–8.

    Article  CAS  PubMed  Google Scholar 

  85. Zhao H, Lv P, Huo D, Zhang C, Ding Y, Xu P, Hu Y. Doxorubicin loaded chitosan–ZnO hybrid nanospheres combining cell imaging and cancer therapy. RSC Adv. 2015;5:60549–51.

    Article  CAS  Google Scholar 

  86. Upadhyaya L, Singh J, Agarwal V, Pandey AC, Verma SP, Das P, Tewari RP. Efficient water soluble nanostructured ZnO grafted O-carboxymethyl chitosan/curcumin-nanocomposite for cancer therapy. Process Biochem. 2015;50:678–88.

    Article  CAS  Google Scholar 

  87. Lu Z, Gao J, He Q, Wu J, Liang D, Yang H, Chen R. Enhanced antibacterial and wound healing activities of microporous chitosan-Ag/ZnO composite dressing. Carbohydr Polym. 2017;156:460–9.

    Article  CAS  PubMed  Google Scholar 

  88. Youssef AM, El-Sayed SM, El-Sayed HS, Salama HH, Dufresne A. Enhancement of Egyptian soft white cheese shelf life using a novel chitosan/carboxymethyl cellulose/zinc oxide bionanocomposite film. Carbohydr Polym. 2016;151:9–19.

    Article  CAS  PubMed  Google Scholar 

  89. Noshirvani N, Ghanbarzadeh B, Rezaei Mokarram R, Hashemi M. Novel active packaging based on carboxymethyl cellulose-chitosan-ZnO NPs nanocomposite for increasing the shelf life of bread. Food Packag Shelf Life. 2017;11:106–14.

    Article  Google Scholar 

  90. Zhao S, You B, Jiang L. Oriented assembly of zinc oxide mesocrystal in chitosan and applications for glucose biosensors. Cryst Growth Des. 2016;16:3359–65.

    Article  CAS  Google Scholar 

  91. Al-Naamani L, Dobretsov S, Dutta J, Burgess JG. Chitosan-zinc oxide nanocomposite coatings for the prevention of marine biofouling. Chemosphere. 2017;168:408–17.

    Article  CAS  PubMed  Google Scholar 

  92. Thirumalraj B, Rajkumar C, Chen S-M, Lin K-Y. Determination of 4-nitrophenol in water by use of a screen-printed carbon electrode modified with chitosan-crafted ZnO nanoneedles. J Colloid Interface Sci. 2017;499:83–92.

    Article  CAS  PubMed  Google Scholar 

  93. El-Mekawy RE, Jassas RS. Recent trends in smart and flexible three-dimensional cross-linked polymers: synthesis of chitosan–ZnO nanocomposite hydrogels for insulin drug delivery. MedChemComm. 2017;8:897–906.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Rasool K, Nasrallah GK, Younes N, Pandey RP, Abdul Rasheed P, Mahmoud KA. “Green” ZnO-interlinked chitosan nanoparticles for the efficient inhibition of sulfate-reducing bacteria in inject seawater. ACS Sustain Chem Eng. 2018;6:3896–906.

    Article  CAS  Google Scholar 

  95. Elsayed A, Al-Remawi M, Maghrabi I, Hamaidi M, Jaber N. Development of insulin loaded mesoporous silica injectable particles layered by chitosan as a controlled release delivery system. Int J Pharm. 2014;461:448–58.

    Article  CAS  PubMed  Google Scholar 

  96. Feng W, Nie W, He C, Zhou X, Chen L, Qiu K, Wang W, Yin Z. Effect of pH-responsive alginate/chitosan multilayers coating on delivery efficiency, cellular uptake and biodistribution of mesoporous silica nanoparticles based nanocarriers. ACS Appl Mater Interfaces. 2014;6:8447–60.

    Article  CAS  PubMed  Google Scholar 

  97. Zhao H, Xu J-H, Wang T, Luo G-S. A novel microfluidic approach for preparing chitosan–silica core–shell hybrid microspheres with controlled structures and their catalytic performance. Lab Chip. 2014;14:1901–6.

    Article  CAS  PubMed  Google Scholar 

  98. Tian R, Qu Y, Zheng X. Amplified fluorescence quenching of lucigenin self-assembled inside silica/chitosan nanoparticles by Cl. Anal Chem. 2014;86:9114–21.

    Article  CAS  PubMed  Google Scholar 

  99. Qu Y, Han H, Zheng X, Guo Z, Li Y. Detection of surface pH of paper using a chitosan-modified silica fluorescent nanosensor. Sens Actuators B Chem. 2014;195:252–8.

    Article  CAS  Google Scholar 

  100. Wang D, Romer F, Connell L, Walter C, Saiz E, Yue S, Lee PD, McPhail DS, Hanna JV, Jones JR. Highly flexible silica/chitosan hybrid scaffolds with oriented pores for tissue regeneration. J Mater Chem B. 2015;3:7560–76.

    Article  CAS  PubMed  Google Scholar 

  101. Tian R, Xian L, Li Y, Zheng X. Silica modified chitosan/polyethylenimine nanogel for improved stability and gene carrier ability. J Nanosci Nanotechnol. 2016;16:5426–31.

    Article  CAS  PubMed  Google Scholar 

  102. Roosen J, Van Roosendael S, Borra CR, Van Gerven T, Mullens S, Binnemans K. Recovery of scandium from leachates of Greek bauxite residue by adsorption on functionalized chitosan–silica hybrid materials. Green Chem. 2016;18:2005–13.

    Article  CAS  Google Scholar 

  103. Zhao R, Li T, Zheng G, Jiang K, Fan L, Shao J. Simultaneous inhibition of growth and metastasis of hepatocellular carcinoma by co-delivery of ursolic acid and sorafenib using lactobionic acid modified and pH-sensitive chitosan-conjugated mesoporous silica nanocomplex. Biomaterials. 2017;143:1–16.

    Article  CAS  PubMed  Google Scholar 

  104. Pipattanawarothai A, Suksai C, Srisook K, Trakulsujaritchok T. Non-cytotoxic hybrid bioscaffolds of chitosan-silica: sol-gel synthesis, characterization and proposed application. Carbohydr Polym. 2017;178:190–9.

    Article  CAS  PubMed  Google Scholar 

  105. Rafigh SM, Heydarinasab A. Mesoporous chitosan–SiO2 nanoparticles: Synthesis, characterization, and CO2 adsorption capacity. ACS Sustain Chem Eng. 2017;5:10379–86.

    Article  CAS  Google Scholar 

  106. Yu Z, Li B, Chu J, Zhang P. Silica in situ enhanced PVA/chitosan biodegradable films for food packages. Carbohydr Polym. 2018;184:214–20.

    Article  CAS  PubMed  Google Scholar 

  107. Blachnio M, Budnyak TM, Derylo-Marczewska A, Marczewski AW, Tertykh VA. Chitosan–silica hybrid composites for removal of sulfonated azo dyes from aqueous solutions. Langmuir. 2018;34:2258–73.

    Article  CAS  PubMed  Google Scholar 

  108. Ricardi NC, de Menezes EW, Valmir E, Benvenutti J, da Natividade Schöffer J, Hackenhaar CR, Hertz PF, Costa TMH. Highly stable novel silica/chitosan support for β-galactosidase immobilization for application in dairy technology. Food Chem. 2018;246:343–50.

    Article  CAS  PubMed  Google Scholar 

  109. Xiang X, Ding S, Suo H, Xu C, Gao Z, Hu Y. Fabrication of chitosan-mesoporous silica SBA-15 nanocomposites via functional ionic liquid as the bridging agent for PPL immobilization. Carbohydr Polym. 2018;182:245–53.

    Article  CAS  PubMed  Google Scholar 

  110. Prabhakar N, Thakur H, Bharti A, Kaur N. Chitosan-iron oxide nanocomposite based electrochemical aptasensor for determination of malathion. Anal Chim Acta. 2016;939:108–16.

    Article  CAS  PubMed  Google Scholar 

  111. Chaichi MJ, Ehsani M. A novel glucose sensor based on immobilization of glucose oxidase on the chitosan-coated Fe3O4 nanoparticles and the luminol–H2O2–gold nanoparticle chemiluminescence detection system. Sensors Actuators B Chem. 2016;223:713–22.

    Article  CAS  Google Scholar 

  112. Chen G, Liu J, Qi Y, Yao J, Yan B. Biodiesel production using magnetic whole-cell biocatalysts by immobilization of Pseudomonas mendocina on Fe3O4-chitosan microspheres. Biochem Eng J. 2016;113:86–92.

    Article  CAS  Google Scholar 

  113. Key J, Dhawan D, Cooper CL, Knapp DW, Kim K, Kwon IC, Choi K, Park K, Decuzzi P, Leary JF. Multicomponent, peptide-targeted glycol chitosan nanoparticles containing ferrimagnetic iron oxide nanocubes for bladder cancer multimodal imaging. Int J Nanomed. 2016;11:4141–55.

    Article  CAS  Google Scholar 

  114. Kostevsek N, Locatelli E, Garrovo C, Arena F, Monaco I, Nikolov IP, Sturm S, Zuzek Rozman K, Lorusso V, Giustetto P, Bardini P, Biffi S, Comes Franchini M. The one-step synthesis and surface functionalization of dumbbell-like gold–iron oxide nanoparticles: a chitosan-based nanotheranostic system. Chem Commun. 2016;52:378–81.

    Article  CAS  Google Scholar 

  115. Lu J, Xu K, Yang J, Hao Y, Cheng F. Nano iron oxide impregnated in chitosan bead as a highly efficient sorbent for Cr(VI) removal from water. Carbohydr Polym. 2017;173:28–36.

    Article  CAS  PubMed  Google Scholar 

  116. Kong D, Wang N, Qiao N, Wang Q, Wang Z, Zhou Z, Ren Z. Facile preparation of ion-imprinted chitosan microspheres enwrapping Fe3O4 and graphene oxide by inverse suspension cross-linking for highly selective removal of copper(II). ACS Sustain Chem Eng. 2017;5:7401–9.

    Article  CAS  Google Scholar 

  117. Zhang P, Fang X, Yan G, Gao M, Zhang X. Highly efficient enrichment of low-abundance intact proteins by core-shell structured Fe3O4-chitosan@graphene composites. Talanta. 2017;174:845–52.

    Article  CAS  PubMed  Google Scholar 

  118. Liu S, Kang M, Yan F, Peng D, Yang Y, He L, Wang M, Fang S, Zhang Z. Electrochemical DNA biosensor based on microspheres of cuprous oxide and nano-chitosan for Hg(II) detection. Electrochim Acta. 2015;160:64–73.

    Article  CAS  Google Scholar 

  119. Senthil Kumar P, Selvakumar M, Babu SG, Jaganathan SK, Karuthapandian S, Chattopadhyay S. Novel CuO/chitosan nanocomposite thin film: facile hand-picking recoverable, efficient and reusable heterogeneous photocatalyst. RSC Adv. 2015;5:57493–501.

    Article  CAS  Google Scholar 

  120. Cao C, Xiao L, Chen C, Cao Q. Magnetically separable Cu2O/chitosan–Fe3O4 nanocomposites: Preparation, characterization and visible-light photocatalytic performance. Appl Surf Sci. 2015;333:110–8.

    Article  CAS  Google Scholar 

  121. Chani MTS. Impedimetric sensing of temperature and humidity by using organic-inorganic nanocomposites composed of chitosan and a CuO-Fe3O4 nanopowder. Microchim Acta. 2017;184:2349–56.

    Article  CAS  Google Scholar 

  122. Wahid F, Wang H-S, Lu Y-S, Zhong C, Chu L-Q. Preparation, characterization and antibacterial applications of carboxymethyl chitosan/CuO nanocomposite hydrogels. Int J Biol Macromol. 2017;101:690–5.

    Article  CAS  PubMed  Google Scholar 

  123. Nouri A, Yaraki MT, Ghorbanpour M, Agarwal S, Gupta VK. Enhanced antibacterial effect of chitosan film using montmorillonite/CuO nanocomposite. Int J Biol Macromol. 2018;109:1219–31.

    Article  CAS  PubMed  Google Scholar 

  124. Alzahrani E. Chitosan membrane embedded with ZnO/CuO nanocomposites for the photodegradation of fast green dye under artificial and solar irradiation. Anal Chem Insights. 2018;13:1–13.

    Article  Google Scholar 

  125. Bao S-J, Lei C, Xu M-W, Cai C-J, Cheng C-J, Ming C. Li, Environmentally-friendly biomimicking synthesis of TiO2 nanomaterials using saccharides to tailor morphology, crystal phase and photocatalytic activity. CrystEngComm. 2013;15:4694–9.

    Article  CAS  Google Scholar 

  126. Khodadadi B. Facile sol–gel synthesis of Nd, Ce-codoped TiO2 nanoparticle using starch as a green modifier: structural, optical and photocatalytic behaviors. J Sol-Gel Sci Technol. 2016;80:793–801.

    Article  CAS  Google Scholar 

  127. Wang X, Feng W, Wang W, Wang W, Zhao L, Li Y. Sodium carboxymethyl starch-based highly conductive gel electrolyte for quasi-solid-state quantum dot-sensitized solar cells. Res Chem Intermed. 2018;44:1161–72.

    Article  CAS  Google Scholar 

  128. Baysal A, Kuznek C, Ozcan M. Starch coated titanium dioxide nanoparticles as a challenging sorbent to separate and preconcentrate some heavy metals using graphite furnace atomic absorption spectrometry. Int J Environ Anal Chem. 2018;98:45–55.

    Article  CAS  Google Scholar 

  129. Kotharangannagari VK, Krishnan K. Biodegradable hybrid nanocomposites of starch/lysine and ZnO nanoparticles with shape memory properties. Mater Des. 2016;109:590–5.

    Article  CAS  Google Scholar 

  130. Marvizadeh MM, Oladzadabbasabadi N, Mohammadi Nafchi A, Jokar M. Preparation and characterization of bionanocomposite film based on tapioca starch/bovine gelatin/nanorod zinc oxide. Int J Biol Macromol. 2017;99:1–7.

    Article  CAS  PubMed  Google Scholar 

  131. Kaur M, Kalia A, Thakur A. Effect of biodegradable chitosan-rice-starch nanocomposite films on post-harvest quality of stored peach fruit. Starch. 2017;69:1600208.

    Article  CAS  Google Scholar 

  132. Liu Y, Mo X, Pang J, Yang F. Effects of silica on the morphology, structure, and properties of thermoplastic cassava starch/poly(vinyl alcohol) blends. J Appl Polym Sci 133 (2016).

    Google Scholar 

  133. Liu S, Li X, Chen L, Li L, Li B, Zhu J, Liang X. Investigating the H2O/O2 selective permeability from a view of multi-scale structure of starch/SiO2 nanocomposites. Carbohydr Polym. 2017;173:143–9.

    Article  CAS  PubMed  Google Scholar 

  134. Chotikhun A, Hiziroglu S, Kard B, Konemann C, Buser M, Frazier S. Measurement of termite resistance of particleboard panels made from Eastern redcedar using nano particle added modified starch as binder. Measurement. 2018;120:169–74.

    Article  Google Scholar 

  135. Zhang J, Shin MC, Yang VC. Magnetic targeting of novel heparinized iron oxide nanoparticles evaluated in a 9L-glioma mouse model. Pharm Res. 2014;31:579–92.

    Article  PubMed  CAS  Google Scholar 

  136. Singh PN, Tiwary D, Sinha I. Starch-functionalized magnetite nanoparticles for hexavalent chromium removal from aqueous solutions. Desalin Water Treat. 2016;57:12608–19.

    Article  CAS  Google Scholar 

  137. Huo L, Zeng X, Su S, Bai L, Wang Y. Enhanced removal of As (V) from aqueous solution using modified hydrous ferric oxide nanoparticles. Sci Rep. 2017;7:40765.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Hamidian H, Tavakoli T. Preparation of a new Fe3O4/starch-g-polyester nanocomposite hydrogel and a study on swelling and drug delivery properties. Carbohydr Polym. 2016;144:140–8.

    Article  CAS  PubMed  Google Scholar 

  139. Saikia C, Das MK, Ramteke A, Maji TK. Effect of crosslinker on drug delivery properties of curcumin loaded starch coated iron oxide nanoparticles. Int J Biol Macromol. 2016;93:1121–32.

    Article  CAS  PubMed  Google Scholar 

  140. Gonçalves AI, Rodrigues MT, Carvalho PP, Bañobre-López M, Paz E, Freitas P, Gomes ME. Exploring the potential of starch/polycaprolactone aligned magnetic responsive scaffolds for tendon regeneration. Adv Healthc Mater. 2016;5:213–22.

    Article  PubMed  CAS  Google Scholar 

  141. Fernandes T, Soares SF, Trindade T, Daniel-da-Silva AL. Magnetic hybrid nanosorbents for the uptake of paraquat from water. Nanomaterials. 2017;7:68.

    Article  PubMed Central  CAS  Google Scholar 

  142. Poorgholy N, Massoumi B, Jaymand M. A novel starch-based stimuli-responsive nanosystem for theranostic applications. Int J Biol Macromol. 2017;97:654–61.

    Article  CAS  PubMed  Google Scholar 

  143. Saikia C, Das MK, Ramteke A, Maji TK. Controlled release of curcumin from thiolated starch-coated iron oxide magnetic nanoparticles: An in vitro evaluation. Int J Polym Mater Polym Biomater. 2017;66:349–58.

    Article  CAS  Google Scholar 

  144. Luo K, Jeong K-B, Park C-S, Kim Y-R. Biosynthesis of superparamagnetic polymer microbeads via simple precipitation of enzymatically synthesized short-chain amylose. Carbohydr Polym. 2018;181:818–24.

    Article  CAS  PubMed  Google Scholar 

  145. Sun D, Du Y, Li Z, Chen Z, Zhu C, Liu S. Starch-assisted synthesis and photocatalytic activity of monosized cuprous oxide octahedron microcrystals. J Sol-Gel Sci Technol. 2016;78:347–52.

    Article  CAS  Google Scholar 

  146. Alishah H, Pourseyedi S, Ebrahimipour SY, Mahani SE, Rafiei N. Green synthesis of starch-mediated CuO nanoparticles: preparation, characterization, antimicrobial activities and in vitro MTT assay against MCF-7 cell line. Rend Lincei. 2017;28:65–71.

    Article  Google Scholar 

  147. Ashjari HR, Dorraji MSS, Fakhrzadeh V, Eslami H, Rasoulifard MH, Rastgouy-Houjaghan M, Gholizadeh P, Kafil HS. Starch-based polyurethane/CuO nanocomposite foam: antibacterial effects for infection control. Int J Biol Macromol. 2018;111:1076–82.

    Article  CAS  PubMed  Google Scholar 

  148. Yuan B, Zhang J, Mi Q, Yu J, Song R, Zhang J. Transparent cellulose–silica composite aerogels with excellent flame retardancy via an in situ sol–gel process. ACS Sustain Chem Eng. 2017;5:11117–23.

    Article  CAS  Google Scholar 

  149. Wang Q, Wang Y, Chen L, Cai J, Zhang L. Facile construction of cellulose nanocomposite aerogel containing TiO2 nanoparticles with high content and small size and their applications. Cellulose. 2017;24:2229–40.

    Article  CAS  Google Scholar 

  150. Norfazilah W, Ismail W. Sol–gel technology for innovative fabric finishing—a review. J Sol-Gel Sci Technol. 2016;78:698–707.

    Article  CAS  Google Scholar 

  151. Zhao S-W, Guo C-R, Hu Y-Z, Guo Y-R, Pan Q-J. The preparation and antibacterial activity of cellulose/ZnO composite: a review. Open Chem. 2018;16:9–20.

    Article  Google Scholar 

  152. Sirvï JA, Visanko M, Heiskanen JP, Liimatainen H. UV-absorbing cellulose nanocrystals as functional reinforcing fillers in polymer nanocomposite films. J Mater Chem A Mater Energy Sustain. 2016;4:6368–75.

    Article  CAS  Google Scholar 

  153. Wan C, Li J. Embedding ZnO nanorods into porous cellulose aerogels via a facile one-step low-temperature hydrothermal method. Mater Des. 2015;83:620–5.

    Article  CAS  Google Scholar 

  154. Bagheri M, Rabieh S. Preparation and characterization of cellulose-ZnO nanocomposite based on ionic liquid ([C4mim]Cl). Cellulose. 2013;20:699–705.

    Article  CAS  Google Scholar 

  155. Zhaochuang JM, Zhiguo S, Zhou WX. Preparation of ZnO–cellulose nanocomposites by different cellulose solution systems with a colloid mill. Cellulose. 2016;23:3703–15.

    Article  CAS  Google Scholar 

  156. Fu F, Gu J, Cao J, Shen R, Liu H, Zhang Y, Liu X, Zhou J. Reduction of silver ions using an alkaline cellulose dope: straightforward access to Ag/ZnO decorated cellulose nanocomposite film with enhanced antibacterial activities. ACS Sustain Chem Eng. 2018;6:738–48.

    Article  CAS  Google Scholar 

  157. Nypelö T, Rodriguez-Abreu C, Rivas J, Dickey MD, Rojas OJ. Magneto-responsive hybrid materials based on cellulose nanocrystals. Cellulose. 2014;21:2557–66.

    Article  CAS  Google Scholar 

  158. Dhar P, Kumar A, Katiyar V. Magnetic cellulose nanocrystal based anisotropic polylactic acid nanocomposite films: influence on electrical, magnetic, thermal, and mechanical properties. ACS Appl Mater Interfaces. 2016;8:18393–409.

    Article  CAS  PubMed  Google Scholar 

  159. Marins JA, Soares BG, Barud HS, Ribeiro SJL. Flexible magnetic membranes based on bacterial cellulose and its evaluation as electromagnetic interference shielding material. Mater Sci Eng C Mater Biol Appl. 2013;33:3994–4001.

    Article  CAS  PubMed  Google Scholar 

  160. Zhang H, Luo X, Tang H, Zheng M, Huang F. A novel candidate for wound dressing: Transparent porous maghemite/ cellulose nanocomposite membranes with controlled release of doxorubicin from a simple approach. Mater Sci Eng, C. 2017;79:84–92.

    Article  CAS  Google Scholar 

  161. Neves MC, Freire CSR, Costa BFO, Pascoal Neto C, Trindade T. Cellulose/iron oxide hybrids as multifunctional pigments in thermoplastic starch based materials. Cellulose. 2013;20:861–71.

    Article  CAS  Google Scholar 

  162. Xiong R, Lu C, Wang Y, Zhou Z, Zhang X. Nanofibrillated cellulose as the support and reductant for the facile synthesis of Fe3O4/Ag nanocomposites with catalytic and antibacterial activity. J Mater Chem A. 2013;1:14910.

    Article  CAS  Google Scholar 

  163. Jiao Y, Wan C, Bao W, Gao H, Liang D, Li J. Facile hydrothermal synthesis of Fe3O4@cellulose aerogel nanocomposite and its application in Fenton-like degradation of Rhodamine B. Carbohydr Polym. 2018;189:371–8.

    Article  CAS  PubMed  Google Scholar 

  164. Wysokowski M, Motylenko M, Stöcker H, Bazhenov VV, Langer E, Dobrowolska A, Czaczyk K, Galli R, Stelling AL, Behm T, Klapiszewski Ł, Ambro D, Nowacka M, Molodtsov SL, Abendroth SL, Meyer DC, Kurzydłowski KJ, Jesionowski T, Ehrlich H. An extreme biomimetic approach: hydrothermal synthesis of β-chitin/ZnO nanostructured composites. J Mater Chem A Mater Energy Sustain. 2013;1:6469–76.

    CAS  Google Scholar 

  165. Kumar PTS, Lakshmanan V-K, Raj M, Biswas R, Hiroshi T, Nair SV, Jayakumar R. Evaluation of wound healing potential of β-chitin hydrogel/nano zinc oxide composite bandage. Pharm Res. 2013;30:523–7.

    Article  CAS  Google Scholar 

  166. Sahraee S, Ghanbarzadeh B, Milani JM, Hamishehkar H. Development of gelatin bionanocomposite films containing chitin and ZnO nanoparticles. Food Bioprocess Technol. 2017;10:1441–53.

    Article  CAS  Google Scholar 

  167. Oun AA, Rhim J-W. Preparation of multifunctional chitin nanowhiskers/ZnO-Ag NPs and their effect on the properties of carboxymethyl cellulose-based nanocomposite film. Carbohydr Polym. 2017;169:467–79.

    Article  CAS  PubMed  Google Scholar 

  168. Bazhenov VV, Wysokowski M, Petrenko I, Stawski D, Sapozhnikov P, Born R, Stelling AL, Kaiser S, Jesionowski T. Preparation of monolithic silica–chitin composite under extreme biomimetic conditions. Int J Biol Macromol. 2015;76:33–8.

    Article  CAS  PubMed  Google Scholar 

  169. Smolyakov G, Pruvost S, Cardoso L, Alonso B, Belamie E, Duchet-Rumeau J. PeakForce QNM AFM study of chitin-silica hybrid films. Carbohydr Polym. 2017;166:139–45.

    Article  CAS  PubMed  Google Scholar 

  170. Ramos MLP, González JA, Albornoz SG, Pérez CJ, Villanueva ME, Giorgieri SA, Copello GJ. Chitin hydrogel reinforced with TiO2 nanoparticles as an arsenic sorbent. Chem Eng J. 2016;285:581–7.

    Article  CAS  Google Scholar 

  171. Wang Y, Pei Y, Xiong W, Liu T, Li J, Liu S, Li B. New photocatalyst based on graphene oxide/chitin for degradation of dyes under sunlight. Int J Biol Macromol. 2015;81:477–82.

    Article  CAS  PubMed  Google Scholar 

  172. Luo Y, Zhou Z, Yue T. Synthesis and characterization of nontoxic chitosan-coated Fe3O4 particles for patulin adsorption in a juice-pH simulation aqueous. Food Chem. 2017;221:317–23.

    Article  CAS  PubMed  Google Scholar 

  173. Abdellaziz LM, Hosny MM. Development and validation of spectrophotometric, atomic absorption and kinetic methods for determination of moxifloxacin hydrochloride. Anal Chem Insights. 2018;13:1–13.

    Google Scholar 

  174. Ahmad R, Mirza A. Facile one pot green synthesis of chitosan-iron oxide (CS-Fe2O3) nanocomposite: removal of Pb(II) and Cd(II) from synthetic and industrial wastewater. J Clean Prod. 2018;186:342–52.

    Article  CAS  Google Scholar 

  175. Doğaç YI, Deveci İ, Teke M, Mercimek B. TiO2 beads and TiO2-chitosan beads for urease immobilization. Mater Sci Eng, C. 2014;42:429–35.

    Article  CAS  Google Scholar 

  176. Zhang Y, Chen L, Liu C, Feng X, Wei L, Shao L. Self-assembly chitosan/gelatin composite coating on icariin-modified TiO2 nanotubes for the regulation of osteoblast bioactivity. Mater Des. 2015;92:471–9.

    Article  CAS  Google Scholar 

  177. Du Y, Li Y, Wu T. A superhydrophilic and underwater superoleophobic chitosan–TiO2 composite membrane for fast oil-in-water emulsion separation. RSC Adv. 2017;7:41838–46.

    Article  CAS  Google Scholar 

  178. Bui V, Park D, Lee Y-C. Chitosan combined with ZnO, TiO2 and Ag nanoparticles for antimicrobial wound healing applications: a mini review of the research trends. Polymers. 2017;9:21.

    Article  CAS  PubMed Central  Google Scholar 

  179. Konwar A, Kalita S, Kotoky J, Chowdhury D. Chitosan–iron oxide coated graphene oxide nanocomposite hydrogel: a robust and soft antimicrobial biofilm. ACS Appl Mater Interfaces. 2016;8:20625–34.

    Article  CAS  PubMed  Google Scholar 

  180. Lin Y, Liu X, Xing Z, Geng Y, Wilson J, Wu D, Kong H. Preparation and characterization of magnetic Fe3O4–chitosan nanoparticles for cellulase immobilization. Cellulose. 2017;24:5541–50.

    Article  CAS  Google Scholar 

  181. Soares PIP, Machado D, Laia C, Pereira LCJ, Coutinho JT, Ferreira IMM, Novo CMM, Borges JP. Thermal and magnetic properties of chitosan-iron oxide nanoparticles. Carbohydr Polym. 2016;149:382–90.

    Article  CAS  PubMed  Google Scholar 

  182. Shukla S, Jadaun A, Arora V, Sinha RK, Biyani N, Jain VK. In vitro toxicity assessment of chitosan oligosaccharide coated iron oxide nanoparticles. Toxicol Rep. 2015;2:27–39.

    Article  CAS  PubMed  Google Scholar 

  183. Goudarzi V, Shahabi-Ghahfarrokhi I, Babaei-Ghazvini A. Preparation of ecofriendly UV-protective food packaging material by starch/TiO2 bio-nanocomposite: characterization. Int J Biol Macromol. 2017;95:306–13.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carmen Sofia da Rocha Freire Barros .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Vilela, C., Pinto, R.J.B., Pinto, S., Marques, P., Silvestre, A., da Rocha Freire Barros, C.S. (2018). Polysaccharides-Based Hybrids with Metal Oxide Nanoparticles. In: Polysaccharide Based Hybrid Materials. SpringerBriefs in Molecular Science(). Springer, Cham. https://doi.org/10.1007/978-3-030-00347-0_3

Download citation

Publish with us

Policies and ethics