Skip to main content

Polysaccharides-Based Hybrids with Metal Nanoparticles

  • Chapter
  • First Online:
Polysaccharide Based Hybrid Materials

Abstract

For over a century, metallic nanoparticles (mNPs) have fascinated scientists, however, they have been empirically used by man since the middle ages as decorative pigments for colouring glass, like for example the famous Lycurgus Cup [1]. In this case, its use was due to one of the most interesting aspects of metallic colloids, their optical properties. The colour variation occurs due to the change in the surface plasmon resonance frequency (SPR) that is dependent on the size, and morphology but also on the refractive index of dispersant medium and the distance between adjacent mNPs [2].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sciau P. Nanoparticles in ancient materials: the metallic lustre decorations of medieval ceramics. In: The delivery of nanoparticles. InTech; 2012. p. 525–40.

    Google Scholar 

  2. Liz-Marzán LM. Tailoring surface plasmons through the morphology and assembly of metal nanoparticles. Langmuir. 2006;22:32–41.

    Article  Google Scholar 

  3. Caseri W. Nanocomposites of polymers and metals or semiconductors: historical background and optical properties. Macromol Rapid Commun. 2000;21:705–22.

    Article  CAS  Google Scholar 

  4. You H, Yang S, Ding B, Yang H. Synthesis of colloidal metal and metal alloy nanoparticles for electrochemical energy applications. Chem Soc Rev. 2013;42:2880–904.

    Article  CAS  Google Scholar 

  5. Bhattacharya R, Mukherjee P. Biological properties of “naked” metal nanoparticles. Adv Drug Deliv Rev. 2008;60:1289–306.

    Article  CAS  Google Scholar 

  6. Islam MS, Chen L, Sisler J, Tam KC. Cellulose nanocrystal (CNC)–inorganic hybrid systems: synthesis, properties and applications. J Mater Chem B. 2018;6:864–83.

    Article  CAS  Google Scholar 

  7. Pinto RJB, Neves MC, Neto CP, Trindade T. Composites of cellulose and metal nanoparticles. In: Nanocomposites—new trends and developments. InTech; 2012. p. 73–96.

    Google Scholar 

  8. Foresti ML, Vázquez A, Boury B. Applications of bacterial cellulose as precursor of carbon and composites with metal oxide, metal sulfide and metal nanoparticles: a review of recent advances. Carbohydr Polym. 2017;157:447–67.

    Article  CAS  Google Scholar 

  9. Kaushik M, Moores A. Review: nanocelluloses as versatile supports for metal nanoparticles and their applications in catalysis. Green Chem. 2016;18:622–37.

    Article  CAS  Google Scholar 

  10. Ge S, Zhang L, Zhang Y, Lan F, Yan M, Yu J. Nanomaterials-modified cellulose paper as a platform for biosensing applications. Nanoscale. 2017;9:4366–82.

    Article  CAS  Google Scholar 

  11. Rajwade JM, Paknikar KM, Kumbhar JV. Applications of bacterial cellulose and its composites in biomedicine. Appl Microbiol Biotechnol. 2015;99:2491–511.

    Article  CAS  Google Scholar 

  12. Van Rie J, Thielemans W. Cellulose–gold nanoparticle hybrid materials. Nanoscale. 2017;9:8525–54.

    Article  Google Scholar 

  13. Chen Y, Chen S, Wang B, Yao J, Wang H. TEMPO-oxidized bacterial cellulose nanofibers-supported gold nanoparticles with superior catalytic properties. Carbohydr Polym. 2017;160:34–42.

    Article  CAS  Google Scholar 

  14. Wu X, Lu C, Zhou Z, Yuan G, Xiong R, Zhang X. Green synthesis and formation mechanism of cellulose nanocrystal-supported gold nanoparticles with enhanced catalytic performance. Environ Sci Nano. 2014;1:71–9.

    Article  CAS  Google Scholar 

  15. Li Y, Tseng Y, Unnikrishnan B, Huang C. Gold-Nanoparticles-modified cellulose membrane coupled with laser desorption/ionization mass spectrometry for detection of iodide in urine. ACS Appl Mater Interfaces. 2013;5:9161–6.

    Article  CAS  Google Scholar 

  16. Almeida A, Rosa AMM, Azevedo AM, Prazeres DMF. A biomolecular recognition approach for the functionalization of cellulose with gold nanoparticles. J Mol Recognit. 2017;30:e2634.

    Article  Google Scholar 

  17. Chu G, Wang X, Yin H, Shi Y, Jiang H, Chen T, Gao J, Qu D, Xu Y, Ding D. Free-standing optically switchable chiral plasmonic photonic crystal based on self-assembled cellulose nanorods and gold nanoparticles. ACS Appl Mater Interfaces. 2015;7:21797–806.

    Article  CAS  Google Scholar 

  18. Majoinen J, Hassinen J, Haataja JS, Rekola HT, Kontturi E, Kostiainen MA, Ras RHA, Törmä P, Ikkala O. Chiral plasmonics using twisting along cellulose nanocrystals as a template for gold nanoparticles. Adv Mater. 2016;28:5262–7.

    Article  CAS  Google Scholar 

  19. Basavaraja C, Kim JK, Huh DS. Characterization and temperature-dependent conductivity of polyaniline nanocomposites encapsulating gold nanoparticles on the surface of carboxymethyl cellulose. Mater Sci Eng, B. 2013;178:167–73.

    Article  CAS  Google Scholar 

  20. Faria-Tischer PCS, Costa CAR, Tozetti I, Dall’Antonia LH, Vidotti M. Structure and effects of gold nanoparticles in bacterial cellulose–polyaniline conductive membranes. RSC Adv. 2016;6:9571–80.

    Article  CAS  Google Scholar 

  21. Bumbudsanpharoke N, Choi J, Park I, Ko S. Facile biosynthesis and antioxidant property of nanogold-cellulose fiber composite. J Nanomater. 2015;2015:1–9.

    Article  Google Scholar 

  22. Li Y, Tian Y, Zheng W, Feng Y, Huang R, Shao J, Tang R, Wang P, Jia Y, Zhang J, Zheng W, Yang G, Jiang X. Composites of bacterial cellulose and small molecule-decorated gold nanoparticles for treating gram-negative bacteria-infected wounds. Small. 2017;13:1700130.

    Article  Google Scholar 

  23. Wu J, Zheng Y, Song W, Luan J, Wen X, Wu Z, Chen X, Wang Q, Guo S. In situ synthesis of silver-nanoparticles/bacterial cellulose composites for slow-released antimicrobial wound dressing. Carbohydr Polym. 2014;102:762–71.

    Article  CAS  Google Scholar 

  24. Singla R, Soni S, Kulurkar PM, Kumari A, Mahesh S, Patial V, Padwad YS, Yadav SK. In situ functionalized nanobiocomposites dressings of bamboo cellulose nanocrystals and silver nanoparticles for accelerated wound healing. Carbohydr Polym. 2017;155:152–62.

    Article  CAS  Google Scholar 

  25. Wang K, Ma Q, Wang SD, Liu H, Zhang SZ, Bao W, Zhang KQ, Ling LZ. Electrospinning of silver nanoparticles loaded highly porous cellulose acetate nanofibrous membrane for treatment of dye wastewater. Appl Phys A Mater Sci Process. 2016;122:1–10.

    Article  Google Scholar 

  26. Praveena SM, Karuppiah K, Than LTL. Potential of cellulose paper coated with silver nanoparticles: a benign option for emergency drinking water filter. Cellulose. 2018;25:2647–58.

    Article  CAS  Google Scholar 

  27. Tang J, Shi Z, Berry RM, Tam KC. Mussel-inspired green metallization of silver nanoparticles on cellulose nanocrystals and their enhanced catalytic reduction of 4-nitrophenol in the presence of β-cyclodextrin. Ind Eng Chem Res. 2015;54:3299–308.

    Article  CAS  Google Scholar 

  28. Liou P, Nayigiziki FX, Kong F, Mustapha A, Lin M. Cellulose nanofibers coated with silver nanoparticles as a SERS platform for detection of pesticides in apples. Carbohydr Polym. 2017;157:643–50.

    Article  CAS  Google Scholar 

  29. Zhou S, Wang M, Chen X, Xu F. Facile template synthesis of microfibrillated cellulose/polypyrrole/silver nanoparticles hybrid aerogels with electrical conductive and pressure responsive properties. ACS Sustain Chem Eng. 2015;3:3346–54.

    Article  CAS  Google Scholar 

  30. Solomon MM, Gerengi H, Umoren SA. Carboxymethyl cellulose/silver nanoparticles composite: synthesis, characterization and application as a benign corrosion inhibitor for St37 steel in 15% H2SO4 medium. ACS Appl Mater Interfaces. 2017;9:6376–89.

    Article  CAS  Google Scholar 

  31. Zhong T, Oporto GS, Jaczynski J, Jiang C. Nanofibrillated cellulose and copper nanoparticles embedded in polyvinyl alcohol films for antimicrobial applications. Biomed Res Int. 2015;2015:1–8.

    Google Scholar 

  32. Sadanand V, Rajini N, Varada Rajulu A, Satyanarayana B. Preparation of cellulose composites with in situ generated copper nanoparticles using leaf extract and their properties. Carbohydr Polym. 2016;150:32–9.

    Article  CAS  Google Scholar 

  33. Al-Enizi AM, Ahamad T, Al-hajji AB, Ahmed J, Chaudhary AA, Alshehri SM. Cellulose gum and copper nanoparticles based hydrogel as antimicrobial agents against urinary tract infection (UTI) pathogens. Int J Biol Macromol. 2018;109:803–9.

    Article  CAS  Google Scholar 

  34. Bajpai S, Das P, Soni B. Copper nanoparticles loaded cellulose-g-poly acrylic acid fibers with antibacterial properties. J Ind Text. 2016;45:495–515.

    Article  CAS  Google Scholar 

  35. Lv P, Wei A, Wang Y, Li D, Zhang J, Lucia LA, Wei Q. Copper nanoparticles-sputtered bacterial cellulose nanocomposites displaying enhanced electromagnetic shielding, thermal, conduction, and mechanical properties. Cellulose. 2016;23:3117–27.

    Article  CAS  Google Scholar 

  36. Baruah D, Pahari P, Konwar D. Synthesis of (E)-nitroolefins and substituted nitrobenzenes via decarboxylative nitration using cellulose supported copper nanoparticles. Tetrahedron Lett. 2015;56:2418–21.

    Article  CAS  Google Scholar 

  37. Rezayat M, Blundell RK, Camp JE, Walsh DA, Thielemans W. Green one-step synthesis of catalytically active palladium nanoparticles supported on cellulose nanocrystals. ACS Sustain Chem Eng. 2014;2:1241–50.

    Article  CAS  Google Scholar 

  38. Li G, Li Y, Wang Z, Liu H. Green synthesis of palladium nanoparticles with carboxymethyl cellulose for degradation of azo-dyes. Mater Chem Phys. 2017;187:133–40.

    Article  CAS  Google Scholar 

  39. Ahmar H, Keshipour S, Hosseini H, Fakhari AR, Shaabani A, Bagheri A. Electrocatalytic oxidation of hydrazine at glassy carbon electrode modified with ethylenediamine cellulose immobilized palladium nanoparticles. J Electroanal Chem. 2013;690:96–103.

    Article  CAS  Google Scholar 

  40. Sultana T, Mandal BH, Rahman ML, Sarkar SM. Bio-waste corn-cob cellulose supported poly(amidoxime) palladium nanoparticles for suzuki-miyaura cross-coupling reactions. Chem SELECT. 2016;1:4108–12.

    CAS  Google Scholar 

  41. Huang Y, Fang Y, Chen L, Lu A, Zhang L. One-step synthesis of size-tunable gold nanoparticles immobilized on chitin nanofibrils via green pathway and their potential applications. Chem Eng J. 2017;315:573–82.

    Article  CAS  Google Scholar 

  42. Singh R, Singh D. Chitin membranes containing silver nanoparticles for wound dressing application. Int Wound J. 2014;11:264–8.

    Article  Google Scholar 

  43. Nguyen VQ, Ishihara M, Mori Y, Nakamura S, Kishimoto S, Hattori H, Fujita M, Kanatani Y, Ono T, Miyahira Y, Matsui T. Preparation of size-controlled silver nanoparticles and chitin-based composites and their antimicrobial activities. J Nanomater. 2013;2013:1–7.

    Google Scholar 

  44. Ifuku S, Tsukiyama Y, Yukawa T, Egusa M, Kaminaka H, Izawa H, Morimoto M, Saimoto H. Facile preparation of silver nanoparticles immobilized on chitin nanofiber surfaces to endow antifungal activities. Carbohydr Polym. 2015;117:813–7.

    Article  CAS  Google Scholar 

  45. El Kadib A, Bousmina M, Brunel D. Recent progress in chitosan bio-based soft nanomaterials. J Nanosci Nanotechnol. 2014;14:308–31.

    Article  Google Scholar 

  46. Dutta PK, Srivastava R, Dutta J. Functionalized nanoparticles and chitosan-based functional nanomaterials. In: Multifaceted development and application of biopolymers for biology, biomedicine and nanotechnology. 2012. p. 349–59.

    Google Scholar 

  47. Ahmed T, Aljaeid B. Preparation, characterization, and potential application of chitosan, chitosan derivatives, and chitosan metal nanoparticles in pharmaceutical drug delivery. Drug Des Dev Ther. 2016;10:483.

    Article  CAS  Google Scholar 

  48. Bui V, Park D, Lee Y-C. Chitosan combined with ZnO, TiO2 and Ag nanoparticles for antimicrobial wound healing applications: a mini review of the research trends. Polymers. 2017;9:21.

    Article  Google Scholar 

  49. Lee M, Chen B-Y, Den W. Chitosan as a natural polymer for heterogeneous catalysts support: a short review on its applications. Appl Sci. 2015;5:1272–83.

    Article  CAS  Google Scholar 

  50. Dervisevic M, Dervisevic E, Çevik E, Şenel M. Novel electrochemical xanthine biosensor based on chitosan–polypyrrole–gold nanoparticles hybrid bio-nanocomposite platform. J Food Drug Anal. 2017;25:510–9.

    Article  CAS  Google Scholar 

  51. Güner A, Çevik E, Şenel M, Alpsoy L. An electrochemical immunosensor for sensitive detection of Escherichia coli O157:H7 by using chitosan, MWCNT, polypyrrole with gold nanoparticles hybrid sensing platform. Food Chem. 2017;229:358–65.

    Article  Google Scholar 

  52. Manivasagan P, Bharathiraja S, Bui NQ, Lim IG, Oh J. Paclitaxel-loaded chitosan oligosaccharide-stabilized gold nanoparticles as novel agents for drug delivery and photoacoustic imaging of cancer cells. Int J Pharm. 2016;511:367–79.

    Article  CAS  Google Scholar 

  53. Fathi M, Sahandi Zangabad P, Barar J, Aghanejad A, Erfan-Niya H, Omidi Y. Thermo-sensitive chitosan copolymer-gold hybrid nanoparticles as a nanocarrier for delivery of erlotinib. Int J Biol Macromol. 2018;106:266–76.

    Article  CAS  Google Scholar 

  54. Ahmed RA, Fadl-Allah SA, El-Bagoury N, El-Rab SMFG. Improvement of corrosion resistance and antibacterial effect of NiTi orthopedic materials by chitosan and gold nanoparticles. Appl Surf Sci. 2014;292:390–9.

    Article  CAS  Google Scholar 

  55. Tentor FR, de Oliveira JH, Scariot DB, Lazarin-Bidóia D, Bonafé EG, Nakamura CV, Venter SAS, Monteiro JP, Muniz EC, Martins AF. Scaffolds based on chitosan/pectin thermosensitive hydrogels containing gold nanoparticles. Int J Biol Macromol. 2017;102:1186–94.

    Article  CAS  Google Scholar 

  56. Kostevsek N, Locatelli E, Garrovo C, Arena F, Monaco I, Nikolov IP, Sturm S, Zuzek Rozman K, Lorusso V, Giustetto P, Bardini P, Biffi S, Comes Franchini M. The one-step synthesis and surface functionalization of dumbbell-like gold–iron oxide nanoparticles: a chitosan-based nanotheranostic system. Chem Commun. 2016;52:378–81.

    Article  CAS  Google Scholar 

  57. Holubnycha V, Kalinkevich O, Ivashchenko O, Pogorielov M. Antibacterial activity of in situ prepared chitosan/silver nanoparticles solution against methicillin-resistant strains of Staphylococcus aureus. Nanoscale Res Lett. 2018;13:71.

    Article  Google Scholar 

  58. Shao J, Yu N, Kolwijck E, Wang B, Tan KW, Jansen JA, Walboomers XF, Yang F. Biological evaluation of silver nanoparticles incorporated into chitosan-based membranes. Nanomedicine. 2017;12:2771–85.

    Article  CAS  Google Scholar 

  59. Potara M, Boca S, Licarete E, Damert A, Alupei M-C, Chiriac MT, Popescu O, Schmidt U, Astilean S. Chitosan-coated triangular silver nanoparticles as a novel class of biocompatible, highly sensitive plasmonic platforms for intracellular SERS sensing and imaging. Nanoscale. 2013;5:6013–22.

    Article  CAS  Google Scholar 

  60. Chen K, Shen Z, Luo J, Wang X, Sun R. Quaternized chitosan/silver nanoparticles composite as a SERS substrate for detecting tricyclazole and Sudan I. Appl Surf Sci. 2015;351:466–73.

    Article  CAS  Google Scholar 

  61. Ramalingam B, Khan MMR, Mondal B, Mandal AB, Das SK. Facile synthesis of silver nanoparticles decorated magnetic-chitosan microsphere for efficient removal of dyes and microbial contaminants. ACS Sustain Chem Eng. 2015;3:2291–302.

    Article  CAS  Google Scholar 

  62. Djerahov L, Vasileva P, Karadjova I, Kurakalva RM, Aradhi KK. Chitosan film loaded with silver nanoparticles—sorbent for solid phase extraction of Al(III), Cd(II), Cu(II), Co(II), Fe(III), Ni(II), Pb(II) and Zn(II). Carbohydr Polym. 2016;147:45–52.

    Article  CAS  Google Scholar 

  63. Xu P, Liang X, Chen N, Tang J, Shao W, Gao Q, Teng Z. Magnetic separable chitosan microcapsules decorated with silver nanoparticles for catalytic reduction of 4-nitrophenol. J Colloid Interface Sci. 2017;507:353–9.

    Article  CAS  Google Scholar 

  64. Frindy S, El Kadib A, Lahcini M, Primo A, García H. Copper nanoparticles stabilized in a porous chitosan aerogel as a heterogeneous catalyst for C-S cross-coupling. ChemCatChem. 2015;7:3307–15.

    Article  CAS  Google Scholar 

  65. Abiraman T, Balasubramanian S. Synthesis and characterization of large-scale (<2 nm) chitosan-decorated copper nanoparticles and their application in antifouling coating. Ind Eng Chem Res. 2017;56:1498–508.

    Article  CAS  Google Scholar 

  66. de Godoi FC, Rodriguez-Castellon E, Guibal E, Beppu MM. An XPS study of chromate and vanadate sorption mechanism by chitosan membrane containing copper nanoparticles. Chem Eng J. 2013;234:423–9.

    Article  Google Scholar 

  67. Gómez HG, Godina FR, Ortiz HO, Mendoza AB, Torres VR, De la Fuente MC. Use of chitosan-pva hydrogels with copper nanoparticles to improve the growth of grafted watermelon. Molecules. 2017;22:1031.

    Article  Google Scholar 

  68. Veisi H, Ghadermazi M, Naderi A. Biguanidine-functionalized chitosan to immobilize palladium nanoparticles as a novel, efficient and recyclable heterogeneous nanocatalyst for Suzuki-Miyaura coupling reactions. Appl Organomet Chem. 2016;30:341–5.

    Article  CAS  Google Scholar 

  69. Affrose A, Suresh P, Azath IA, Pitchumani K. Palladium nanoparticles embedded on thiourea-modified chitosan: a green and sustainable heterogeneous catalyst for the Suzuki reaction in water. RSC Adv. 2015;5:27533–9.

    Article  CAS  Google Scholar 

  70. Zeng M, Wang Y, Liu Q, Yuan X, Zuo S, Feng R, Yang J, Wang B, Qi C, Lin Y. Encaging palladium nanoparticles in chitosan modified montmorillonite for efficient, recyclable catalysts. ACS Appl Mater Interfaces. 2016;8:33157–64.

    Article  CAS  Google Scholar 

  71. Bharathiraja S, Bui NQ, Manivasagan P, Moorthy MS, Mondal S, Seo H, Phuoc NT, Vy Phan TT, Kim H, Lee KD, Oh J. Multimodal tumor-homing chitosan oligosaccharide-coated biocompatible palladium nanoparticles for photo-based imaging and therapy. Sci Rep. 2018;8:500.

    Article  Google Scholar 

  72. Ban DK, Pratihar SK, Paul S. Controlled modification of starch in the synthesis of gold nanoparticles with tunable optical properties and their application in heavy metal sensing. RSC Adv. 2015;5:81554–64.

    Article  CAS  Google Scholar 

  73. Vantasin S, Pienpinijtham P, Wongravee K, Thammacharoen C, Ekgasit S. Naked eye colorimetric quantification of protein content in milk using starch-stabilized gold nanoparticles. Sens Actuators B Chem. 2013;177:131–7.

    Article  CAS  Google Scholar 

  74. Wongmanee K, Khuanamkam S, Chairam S. Gold nanoparticles stabilized by starch polymer and their use as catalyst in homocoupling of phenylboronic acid. J King Saud Univ Sci. 2017;29:547–52.

    Article  Google Scholar 

  75. Chairam S, Konkamdee W, Parakhun R. Starch-supported gold nanoparticles and their use in 4-nitrophenol reduction. J Saudi Chem Soc. 2017;21:656–63.

    Article  CAS  Google Scholar 

  76. Pagno CH, Costa TMH, de Menezes EW, Benvenutti EV, Hertz PF, Matte CR, Tosati JV, Monteiro AR, Rios AO, Flôres SH. Development of active biofilms of quinoa (Chenopodium quinoa W.) starch containing gold nanoparticles and evaluation of antimicrobial activity. Food Chem. 2015;173:755–62.

    Article  CAS  Google Scholar 

  77. Mohan S, Oluwafemi OS, Songca SP, Jayachandran VP, Rouxel D, Joubert O, Kalarikkal N, Thomas S. Synthesis, antibacterial, cytotoxicity and sensing properties of starch-capped silver nanoparticles. J Mol Liq. 2016;213:75–81.

    Article  CAS  Google Scholar 

  78. Mandal A, Sekar S, Seeni Meera KM, Mukherjee A, Sastry TP, Mandal AB. Fabrication of collagen scaffolds impregnated with sago starch capped silver nanoparticles suitable for biomedical applications and their physicochemical studies. Phys Chem Chem Phys. 2014;16:20175–83.

    Article  CAS  Google Scholar 

  79. Kahrilas GA, Haggren W, Read RL, Wally LM, Fredrick SJ, Hiskey M, Prieto AL, Owens JE. Investigation of antibacterial activity by silver nanoparticles prepared by microwave-assisted green syntheses with soluble starch, dextrose, and arabinose. ACS Sustain Chem Eng. 2014;2:590–8.

    Article  CAS  Google Scholar 

  80. Zhao Y, Tian Y, Ma P, Yu A, Zhang H, Chen Y. Determination of melamine and malachite green by surface-enhanced Raman scattering spectroscopy using starch-coated silver nanoparticles as substrates. Anal Methods. 2015;7:8116–22.

    Article  CAS  Google Scholar 

  81. Kumar B, Smita K, Cumbal L, Debut A, Pathak RN. Sonochemical synthesis of silver nanoparticles using starch: a comparison. Bioinorg Chem Appl. 2014;2014:1–8.

    Google Scholar 

  82. Cheviron P, Gouanvé F, Espuche E. Green synthesis of colloid silver nanoparticles and resulting biodegradable starch/silver nanocomposites. Carbohydr Polym. 2014;108:291–8.

    Article  CAS  Google Scholar 

  83. Cheviron P, Gouanvé F, Espuche E. Effect of silver nanoparticles’ generation routes on the morphology, oxygen, and water transport properties of starch nanocomposite films. J Nanopart Res. 2015;17:364.

    Article  Google Scholar 

  84. Ortega F, Giannuzzi L, Arce VB, García MA. Active composite starch films containing green synthetized silver nanoparticles. Food Hydrocolloids. 2017;70:152–62.

    Article  CAS  Google Scholar 

  85. Gholinejad M, Saadati F, Shaybanizadeh S, Pullithadathil B. Copper nanoparticles supported on starch micro particles as a degradable heterogeneous catalyst for three-component coupling synthesis of propargylamines. RSC Adv. 2016;6:4983–91.

    Article  CAS  Google Scholar 

  86. Villanueva ME, Diez AMDR, González JA, Pérez CJ, Orrego M, Piehl L, Teves S, Copello GJ. Antimicrobial activity of starch hydrogel incorporated with copper nanoparticles. ACS Appl Mater Interfaces. 2016;8:16280–8.

    Article  CAS  Google Scholar 

  87. Baran T, Yılmaz Baran N, Menteş A. Sustainable chitosan/starch composite material for stabilization of palladium nanoparticles: synthesis, characterization and investigation of catalytic behaviour of Pd@chitosan/starch nanocomposite in Suzuki-Miyaura reaction. Appl Organomet Chem. 2018;32:e4075.

    Article  Google Scholar 

  88. Dewan A, Bharali P, Bora U, Thakur AJ. Starch assisted palladium(0) nanoparticles as in situ generated catalysts for room temperature Suzuki-Miyaura reactions in water. RSC Adv. 2016;6:11758–62.

    Article  CAS  Google Scholar 

  89. Patil AB, Bhanage BM. Solar energy assisted starch-stabilized palladium nanoparticles and their application in C—C coupling reactions. J Nanosci Nanotechnol. 2013;13:5061–8.

    Article  CAS  Google Scholar 

  90. Tukhani M, Panahi F, Khalafi-Nezhad A. Supported palladium on magnetic nanoparticles–starch substrate (Pd-MNPSS): highly efficient magnetic reusable catalyst for C-C coupling reactions in water. ACS Sustain Chem Eng. 2018;6:1456–67.

    Article  CAS  Google Scholar 

  91. Verma S, Tripathi D, Gupta P, Singh R, Bahuguna GM, Shivakumar KLN, Chauhan RK, Saran S, Jain SL. Highly dispersed palladium nanoparticles grafted onto nanocrystalline starch for the oxidation of alcohols using molecular oxygen as an oxidant. Dalton Trans. 2013;42:11522.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carmen Sofia da Rocha Freire Barros .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Vilela, C., Pinto, R.J.B., Pinto, S., Marques, P., Silvestre, A., da Rocha Freire Barros, C.S. (2018). Polysaccharides-Based Hybrids with Metal Nanoparticles. In: Polysaccharide Based Hybrid Materials. SpringerBriefs in Molecular Science(). Springer, Cham. https://doi.org/10.1007/978-3-030-00347-0_2

Download citation

Publish with us

Policies and ethics