Skip to main content

Optimal Design of Piezoelectric Microactuators: Linear vs Non-linear Modeling

  • Chapter
  • First Online:
Recent Advances in Differential Equations and Applications

Part of the book series: SEMA SIMAI Springer Series ((SEMA SIMAI,volume 18))

  • 741 Accesses

Abstract

The main point of this work is the comparison between linear and geometrically non-linear elasticity modeling in the field of piezoelectric actuators fabricated at the micro-scale. Manufacturing limitations such as non-symmetrical lamination of the structure or minimum length scale are taken into account during the optimization process. The robust approach implemented in the problem also reduces the sensitivity of the designs to small manufacturing errors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 44.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 59.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bruns, T.E., Tortorelli, D.A.: Topology optimization of non-linear elastic structures and compliant mechanisms. Comput. Methods Appl. Mech. Eng. 190, 3443–3459 (2001)

    Article  Google Scholar 

  2. Buhl, T., Pedersen, C., Sigmund, O.: Stiffness design of geometrically nonlinear structures using topology optimization. Struct. Multidiscip. Optim. 19, 93–104 (2000)

    Article  Google Scholar 

  3. Carbonari, R.C., Silva, E.C.N., Nishiwaki, S.: Optimum placement of piezoelectric material in piezoactuator design. Smart Mater. Struct. 16, 207–220 (2007)

    Article  Google Scholar 

  4. Díaz A.R., Kikuchi, N.: Solution to shape and topology eigenvalue optimization problems using a homogenization method. Int. J. Numer. Methods Eng. 35, 1487–1502 (1992)

    Article  MathSciNet  Google Scholar 

  5. Frecker, M.I., Ananthasuresh, G.K., Nishiwaki, S., Kota, S.: Topological synthesis of compliant mechanisms using multi-criteria optimization. Trans. ASME 199, 238–245 (1997)

    Article  Google Scholar 

  6. Gibbs, G., Fuller, C.: Excitation of thin beams using asymmetric piezoelectric actuators. J. Acoust. Soc. Am. 92, 3221–3227 (1992)

    Article  Google Scholar 

  7. Jensen, J., Sigmund, O.: Topology optimization for nano-photonics. Laser Photonics Rev. 5, 308–321 (2011)

    Article  Google Scholar 

  8. Kang, Z., Tong, L.: Integrated optimization of material layout and control voltage for piezoelectric laminated plates. J. Intell. Mater. Syst. Struct. 19, 889–904 (2008)

    Article  Google Scholar 

  9. Kang, Z., Tong, L.: Topology optimization-based distribution design of actuation voltage in static shape control of plates. Comput. Struct. 86, 1885–1893 (2008)

    Article  Google Scholar 

  10. Kang, Z., Wang, R., Tong, L.: Combined optimization of bi-material structural layout and voltage distribution for in-plane piezoelectric actuation. Comput. Methods Appl. Mech. Eng. 200, 1467–1478 (2011)

    Article  MathSciNet  Google Scholar 

  11. Kang, Z., Wang, X., Luo, Z.:. Topology optimization for static shape control of piezoelectric plates with penalization on intermediate actuation voltage. J. Mech. Des. 134, 051006 (2012)

    Article  Google Scholar 

  12. Kögl, M., Silva, E.C.N.: Topology optimization of smart structures: design of piezoelectric plate and shell actuators. Smart Mater. Struct. 14, 387–399 (2005).

    Article  Google Scholar 

  13. Kucera, M., Wistrela, E., Pfusterschmied, G., Ruiz-Díez, V., Manzaneque, T., Hernando-García, J., Sánchez-Rojas, J.L., Jachimowicz, A., Schalko, J., Bittner, A., Schmid, U.: Design-dependent performance of self-actuated and self-sensing piezoelectric-AlN cantilevers in liquid media oscillating in the fundamental in-plane bending mode. Sensors Actuators B Chem. 200, 235–244 (2014)

    Article  Google Scholar 

  14. Lazarov, B.S., Schevenels, M., Sigmund, O.: Robust design of large-displacement compliant mechanisms. Mech. Sci. 2, 175–182 (2011)

    Article  Google Scholar 

  15. Luo, Z., Gao, W., Song, C.: Design of multi-phase piezoelectric actuators. J. Intell. Mater. Syst. Struct. 21, 1851–1865 (2010)

    Article  Google Scholar 

  16. Maute, K., Frangopol, D.M.: Reliability-based design of MEMS mechanisms by topology optimization. Comput. Struct. 81, 813–824 (2003)

    Article  Google Scholar 

  17. Molter, A., Fonseca, J.S.O., dos Santos Fernandez, L.: Simultaneous topology optimization of structure and piezoelectric actuators distribution. Appl. Math. Model. 40, 5576–5588 (2016)

    Article  MathSciNet  Google Scholar 

  18. Oñate, E.: Cálculo de Estructuras por el Método de Elementos Finitos, Análisis estático lineal, 2nd edn. CIMNE, Barcelona (1995)

    Google Scholar 

  19. Pedersen, N.L.: Maximization of eigenvalues using topology optimization. Struct. Multidiscip. Optim. 20, 2–11 (2000)

    Article  Google Scholar 

  20. Pedersen, C.B.W., Buhl, T., Sigmund, O.: Topology synthesis of large-displacement compliant mechanism. Int. J. Numer. Methods Eng. 50, 2683–2705 (2001)

    Article  Google Scholar 

  21. Ruiz, D., Sigmund, O.: Optimal design of robust piezoelectric microgrippers undergoing large displacements. Struct. Multidiscip. Optim. 57, 71–82 (2018)

    Article  MathSciNet  Google Scholar 

  22. Ruiz, D., Bellido, J.C., Donoso, A.: Design of piezoelectric modal filters by simultaneously optimizing the structure layout and the electrode profile. Struct. Multidiscip. Optim. 53, 715–730 (2016)

    Article  MathSciNet  Google Scholar 

  23. Ruiz, D., Donoso, A., Bellido, J.C., Kucera, M., Schmid, U., Sánchez-Rojas, J.L.: Design of piezoelectric microtransducers based on the topology optimization method. Microsyst. Technol. 22, 1733–1740 (2016)

    Article  Google Scholar 

  24. Ruiz, D., Díaz-Molina, A., Sigmund, O., Donoso, A., Bellido, J.C., Sánchez-Rojas, J.L.: Optimal design of robust piezoelectric unimorph microgrippers. Appl. Mech. Eng. 55, 1–12 (2017)

    MathSciNet  Google Scholar 

  25. Sigmund, O.: On the design of compliant mechanisms using topology optimization. Mech. Struct. Mach. 25, 493–524 (1997)

    Article  Google Scholar 

  26. Sigmund, O.: Design of multiphysics actuators using topology optimization. Part I: one-material structures. Comput. Methods Appl. Mech. Eng. 190, 6577–6604 (2001)

    MATH  Google Scholar 

  27. Sigmund, O.: Design of multiphysics actuators using topology optimization. Part II: two-material structures. Comput. Methods Appl. Mech. Eng. 190, 6605–6627 (2001)

    Google Scholar 

  28. Sigmund, O.: Manufacturing tolerant topology optimization. Acta Mech. Sin. 25, 227–239 (2009)

    Article  Google Scholar 

  29. Sigmund, O., Jensen, J.S.: Systematic design of phononic band gap materials and structures by topology optimization. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 361, 1001–1019 (2003)

    Article  MathSciNet  Google Scholar 

  30. Sigmund, O., Torquato, S.: Design of materials with extreme thermal expansion using a three-phase topology optimization method. J. Mech. Phys. Solids 45, 1037–1067 (1997)

    Article  MathSciNet  Google Scholar 

  31. Sigmund, O., Torquato, S., Aksay, I.A.: On the design of 1–3 piezo-composites using topology optimization. J. Mater. Res. 13, 1038–1048 (1998)

    Article  Google Scholar 

  32. Silva, E.C.N., Kikuchi, N.: Design of piezoelectric transducers using topology optimization. Smart Mater. Struct. 8, 350–364 (1999)

    Article  Google Scholar 

  33. Silva, E.C.N., Fonseca, J.S.O., Kikuchi, N.: Optimal design of piezoelectric microstructures. Comput. Mech. 19, 397–410 (1997)

    Article  Google Scholar 

  34. Svanberg, K.: The method of moving asymptotes-a new method for structural optimization. Int. J. Numer. Meth. Eng. 24, 359–373 (1987)

    Article  MathSciNet  Google Scholar 

  35. Wang, F., Lazarov, B.S., Sigmund, O.: On projection methods, convergence and robust formulations in topology optimization. Struct. Multidiscip. Optim. 43, 767–784 (2011)

    Article  Google Scholar 

  36. Wang, F., Lazarov, B., Sigmund, O., Jensen, J.S.: Interpolation scheme for fictitious domain techniques and topology optimization of finite strain elastic problems. Comput. Methods Appl. Mech. Eng. 276, 453–472 (2014)

    Article  MathSciNet  Google Scholar 

  37. Zienkiewicz, O.C., Taylor, R.L., Fox, D.: The Finite Element Method for Solid and Structural Mechanics, 7th edn. Butterworth-Heinemann, Oxford (2014)

    MATH  Google Scholar 

Download references

Acknowledgements

This research has been founded through grant MTM2013-47053-P from the Spanish Ministerio de Economía y Competitividad. Special thanks to José Luis Sánchez-Rojas from Microsystems Actuators and Sensors Group (UCLM) and Ole Sigmund from the Department of Mechanical Engineering, Section of Solid Mechanics (DTU).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Ruiz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ruiz, D., Bellido, J.C., Donoso, A. (2019). Optimal Design of Piezoelectric Microactuators: Linear vs Non-linear Modeling. In: García Guirao, J., Murillo Hernández, J., Periago Esparza, F. (eds) Recent Advances in Differential Equations and Applications. SEMA SIMAI Springer Series, vol 18. Springer, Cham. https://doi.org/10.1007/978-3-030-00341-8_2

Download citation

Publish with us

Policies and ethics