Skip to main content

Towards Cognitive Cities in the Energy Domain

  • Chapter
  • First Online:
Designing Cognitive Cities

Part of the book series: Studies in Systems, Decision and Control ((SSDC,volume 176))

Abstract

Current cities address efficiency challenges for optimizing the use of limited resources. City sustainability and resilience must also be improved through new learning and cognitive technologies that change citizen behavioural patterns and react to disruptive changes. These technologies will allow the evolution of current cities towards the so called “Cognitive Cities”. This chapter highlights the importance of Semantic Web and semantic ontologies as a foundation for learning and cognitive systems. Energy is one of the city domains where learning and cognitive systems are needed. This chapter reviews Information and Communication Technologies (ICT)-based energy management solutions developed to improve city energy efficiency, sustainability and resilience. The review focuses on learning and cognitive solutions that improve energy sustainability and resilience through Semantic Web technologies. In addition, these solutions are evaluated from level of acceptance and use of semantics perspectives. The evaluation highlights that the Cognitive City approach is in the early stages in the energy domain and demonstrates the need for a standard energy ontology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    http://www.eui.eu/Projects/THINK/Home.aspx.

  2. 2.

    http://www.ida.liu.se/~evabl45/defram.en.shtml.

  3. 3.

    http://www.mas2tering.eu/.

  4. 4.

    http://cordis.europa.eu/project/rcn/187015_en.html.

  5. 5.

    http://www.semergy.net/.

  6. 6.

    http://www.semanco-project.eu/index_htm_files/SEMANCO_D5.4_20131028.pdf.

  7. 7.

    http://semanco-project.eu/.

  8. 8.

    http://sesame-s.ftw.at/.

  9. 9.

    http://www.optimus-smartcity.eu/.

  10. 10.

    http://www.knoholem.eu/page.jsp?id=2.

  11. 11.

    https://www.smartgrid.gov/project/los_angeles_department_water_and_power_smart_grid_regional_demonstration.html.

References

  • Andreas Fernbach IP, Kastner W (2015) Linked data for building management

    Google Scholar 

  • Baring-Gould EI, Green H, Van Dijk V, Manwell J (1996) Hybrid2-the hybrid power system simulation model. Technical report, USDOE, Washington, DC, USA, National Renewable Energy Laboratory, Golden, CO, USA

    Google Scholar 

  • Batty M, Axhausen KW, Giannotti F, Pozdnoukhov A, Bazzani A, Wachowicz M, Ouzounis G, Portugali Y (2012) Smart cities of the future. Eur Phys J Special Topics 214(1):481–518

    Article  Google Scholar 

  • Berners-Lee T, Hendler J, Lassila O (2001) The semantic web. Sci Am 284(5):28–37

    Article  Google Scholar 

  • Bizer C, Heath T, Berners-Lee T (2009) Linked data-the story so far. In: Emerging concepts, semantic services, interoperability and web applications, pp 205–227

    Google Scholar 

  • Blomqvist E, Thollanderb P, Keskisärkkä R, Paramonovab S (2014) Energy efficiency measures as linked open data

    Google Scholar 

  • Burel G, Piccolo LS, Alani H (2016) Energyuse-a collective semantic platform for monitoring and discussing energy consumption. International semantic web conference. Springer, Heidelberg, pp 257–272

    Google Scholar 

  • Caragliu A, Del Bo C, Nijkamp P (2011) Smart cities in Europe. J Urban Technol 18(2):65–82

    Article  Google Scholar 

  • Cavanillas JM, Curry E, Wahlster W (2016) New horizons for a data-driven economy

    Google Scholar 

  • Corrado V, Ballarini I, Madrazo L, Nemirovskij G (2015) Data structuring for the ontological modelling of urban energy systems: the experience of the semanco project. Sustain Cities Soc 14:223–235

    Article  Google Scholar 

  • Corry E, Pauwels P, Hu S, Keane M, O’Donnell J (2015) A performance assessment ontology for the environmental and energy management of buildings. Autom Construct 57:249–259

    Article  Google Scholar 

  • Curry E, Hasan S, O’Riain S (2012) Enterprise energy management using a linked dataspace for energy intelligence. In: Sustainable internet and ICT for sustainability (SustainIT). IEEE, pp 1–6

    Google Scholar 

  • Curry E, Dustdar S, Sheng QZ, Sheth A (2016) Smart cities-enabling services and applications. J Internet Serv Appl 7(1):6

    Article  Google Scholar 

  • Daniele L, den Hartog F, Roes J (2015) Created in close interaction with the industry: the smart appliances reference (SAREF) ontology. In: International workshop formal ontologies meet industries. Springer, pp 100–112

    Google Scholar 

  • Daniele L, Solanki M, den Hartog F, Roes J (2016) Interoperability for smart appliances in the IoT world. International semantic web conference. Springer, Cham, pp 21–29

    Google Scholar 

  • Fang X, Misra S, Xue G, Yang D (2012) Smart grid: the new and improved power grid: a survey. IEEE Commun Surv Tutor 14(4):944–980

    Article  Google Scholar 

  • Fensel A, Tomic S, Kumar V, Stefanovic M, Aleshin SV, Novikov DO (2013) SESAME-S: semantic smart home system for energy efficiency. Informatik-Spektrum 36(1):46–57

    Article  Google Scholar 

  • Fensel A, Kumar V, Tomic SDK (2014) End-user interfaces for energy-efficient semantically enabled smart homes. Energy Effic 7(4):655–675

    Article  Google Scholar 

  • Fathima AH, Palanisamy K (2015) Optimization in microgrids with hybrid energy systems-a review. Renew Sustain Energy Rev 45:431–446

    Article  Google Scholar 

  • Field CB, Barros VR, Mach K, Mastrandrea M (2014) Climate change 2014: impacts, adaptation, and vulnerability, vol 1. Cambridge University Press, Cambridge, New York

    Book  Google Scholar 

  • Finger M, Portmann E (2016) What are cognitive cities? Towards cognitive cities. Springer, Cham, pp 1–11

    Google Scholar 

  • Gillani S, Laforest F, Picard G (2014) A generic ontology for prosumer-oriented smart grid. In: EDBT/ICDT workshops, pp 134–139

    Google Scholar 

  • Glover FW, Kochenberger GA (2006) Handbook of metaheuristics, vol 57. Springer Science & Business Media, Boston

    MATH  Google Scholar 

  • Gungor VC, Sahin D, Kocak T, Ergut S, Buccella C, Cecati C, Hancke GP (2011) Smart grid technologies: communication technologies and standards. IEEE Trans Ind Inf 7(4):529–539

    Article  Google Scholar 

  • Gungor VC, Sahin D, Kocak T, Ergut S, Buccella C, Cecati C, Hancke GP (2013) A survey on smart grid potential applications and communication requirements. IEEE Trans Ind Inf 9(1):28–42

    Article  Google Scholar 

  • Hebeler J, Fisher M, Blace R, Perez-Lopez A (2011) Semantic web programming. Wiley

    Google Scholar 

  • Hippolyte J, Howell S, Yuce B, Mourshed M, Sleiman H, Vinyals M, Vanhee L (2016) Ontology-based demand-side flexibility management in smart grids using a multi-agent system. In: 2016 IEEE International smart cities conference (ISC2). IEEE, pp 1–7

    Google Scholar 

  • Hu S, Corry E, Curry E, Turner WJ, O’Donnell J (2016) Building performance optimisation: a hybrid architecture for the integration of contextual information and time-series data. Autom Construct 70:51–61

    Article  Google Scholar 

  • Iqbal M, Azam M, Naeem M, Khwaja A, Anpalagan A (2014) Optimization classification, algorithms and tools for renewable energy: a review. Renew Sustain Energy Rev 39:640–654

    Article  Google Scholar 

  • Kastner W, Neugschwandtner G, Soucek S, Newman HM (2005) Communication systems for building automation and control. Proc IEEE 93(6):1178–1203

    Article  Google Scholar 

  • Kofler MJ, Reinisch C, Kastner W (2012) A semantic representation of energy-related information in future smart homes. Energy Build 47:169–179

    Article  Google Scholar 

  • Lambert T, Gilman P, Lilienthal P (2005) Micropower system modeling with homer. In: Farret FA, Godoy Simoes M (eds) Integration of alternative sources of energy

    Google Scholar 

  • Locke G, Gallagher PD (2010) NIST framework and roadmap for smart grid interoperability standards, release 1.0. National Institute of Standards and Technology, vol 33

    Google Scholar 

  • Luenberger DG, Ye Y, et al (1984) Linear and nonlinear programming, vol 2. Springer

    Google Scholar 

  • Mahmood A, Javaid N, Razzaq S (2015) A review of wireless communications for smart grid. Renew Sustain Energy Rev 41:248–260

    Article  Google Scholar 

  • Maree M, Belkhatir M (2015) Addressing semantic heterogeneity through multiple knowledge base assisted merging of domain-specific ontologies. Knowl-Based Syst 73:199–211

    Article  Google Scholar 

  • Moyser R, Uffer S (2016) From smart to cognitive: a roadmap for the adoption of technology in cities. In: Towards cognitive cities, Springer, pp 13–35

    Google Scholar 

  • Niknam M, Karshenas S (2015) Sustainable design of buildings using semantic BIM and semantic web services. Proc Eng 118:909–917

    Article  Google Scholar 

  • Pont UJ, Ghiassi N, Fenz S, Heurix J, Mahdavi A (2015) SEMERGY: application of semantic web technologies in performance-guided building design optimization. J Inf Technol Construct 20:107–120. http://www.itcon.org

  • Rusitschka S, Curry E (2016) Big data in the energy and transport sectors. In: New horizons for a data-driven economy. Springer, pp 225–244

    Google Scholar 

  • Salameh K, Chbeir R, Camblong H, Tekli G, Vechiu I (2015) A generic ontology-based information model for better management of microgrids. In: IFIP international conference on artificial intelligence applications and innovations. Springer, pp 451–466

    Google Scholar 

  • Serrano M, Barnaghi P, Carrez F, Cousin P, Vermesan O, Friess P (2015) Internet of things IoT semantic interoperability: research challenges, best practices, recommendations and next steps. In: European research cluster on the internet of things

    Google Scholar 

  • Shi W, Lee EK, Yao D, Huang R, Chu CC, Gadh R (2014) Evaluating microgrid management and control with an implementable energy management system. In: IEEE international conference on smart grid communications (SmartGridComm). IEEE, pp 272–277

    Google Scholar 

  • Sicilia Á, Costa G, Corrado V, Gorrino A, Corno F (2015) A semantic decision support system to optimize the energy use of public buildings

    Google Scholar 

  • Singer S, Nelder J (2009) Nelder-mead algorithm. Scholarpedia 4(7):2928

    Article  Google Scholar 

  • Snyman J (2005) Practical mathematical optimization: an introduction to basic optimization theory and classical and new gradient-based algorithms, vol 97. Springer Science & Business Media

    Google Scholar 

  • Stavropoulos TG, Vrakas D, Vlachava D, Bassiliades N (2012) Bonsai: a smart building ontology for ambient intelligence. In: Proceedings of the 2nd international conference on web intelligence, mining and semantics. ACM, p 30

    Google Scholar 

  • Stavropoulos TG, Koutitas G, Vrakas D, Kontopoulos E, Vlahavas I (2016) A smart university platform for building energy monitoring and savings. J Ambient Intell Smart Environ 8(3):301–323

    Article  Google Scholar 

  • Unamuno E, Barrena JA (2015) Hybrid ac/dc microgrids part I: review and classification of topologies. Renew Sustain Energy Rev 52:1251–1259

    Article  Google Scholar 

  • Wagner A, Speiser S, Harth A (2010) Semantic web technologies for a smart energy grid: Requirements and challenges. In: Proceedings of the 2010 international conference on posters & demonstrations track, vol 658, CEUR-WS.org, pp 33–36

    Google Scholar 

  • Yuce B, Rezgui Y (2015) An ANN-GA semantic rule-based system to reduce the gap between predicted and actual energy consumption in buildings

    Google Scholar 

  • Zhang J, Seet BC, Lie TT (2016) An event-based resource management framework for distributed decision-making in decentralized virtual power plants. Energies 9(8):595

    Article  Google Scholar 

  • Zhou Q, Natarajan S, Simmhan Y, Prasanna V (2012a) Semantic information modeling for emerging applications in smart grid. In: 2012 Ninth international conference on information technology: new generations (ITNG). IEEE, pp 775–782

    Google Scholar 

  • Zhou Q, Simmhan Y, Prasanna V (2012b) Incorporating semantic knowledge into dynamic data processing for smart power grids. In: International semantic web conference. Springer, pp 257–273

    Google Scholar 

  • Zhou Q, Simmhan Y, Prasanna V (2012c) SCEPter: semantic complex event processing over end-to-end data flows. Technical Report 12-926, Computer Science Department, University of Southern California

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Javier Cuenca .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Cuenca, J., Larrinaga, F., Eciolaza, L., Curry, E. (2019). Towards Cognitive Cities in the Energy Domain. In: Portmann, E., Tabacchi, M., Seising, R., Habenstein, A. (eds) Designing Cognitive Cities. Studies in Systems, Decision and Control, vol 176. Springer, Cham. https://doi.org/10.1007/978-3-030-00317-3_7

Download citation

Publish with us

Policies and ethics