Skip to main content

Tight Lower Bounds for the Number of Inclusion-Minimal st-Cuts

  • Conference paper
  • First Online:
Graph-Theoretic Concepts in Computer Science (WG 2018)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 11159))

Included in the following conference series:

  • 532 Accesses

Abstract

We study the number of inclusion-minimal cuts in an undirected connected graph G, also called \(st\)-cuts, for any two distinct nodes s and t: the \(st\)-cuts are in one-to-one correspondence with the partitions \(S \cup T\) of the nodes of G such that \(S \cap T = \emptyset \), \(s \in S\), \(t \in T\), and the subgraphs induced by S and T are connected. It is easy to find an exponential upper bound to the number of \(st\)-cuts (e.g. if G is a clique) and a constant lower bound. We prove that there is a more interesting lower bound on this number, namely, \(\varOmega (m)\), for undirected m-edge graphs that are biconnected or triconnected (2- or 3-node-connected). The wheel graphs show that this lower bound is the best possible asymptotically.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Since G is connected, also G[S] and G[T] are connected, otherwise we could remove at least one edge from the minimal cutset to reconnect G[S] or G[T].

References

  1. Abel, U., Bicker, R.: Determination of all minimal cut-sets between a vertex pair in an undirected graph. IEEE Trans. Reliab. 31(2), 167–171 (1982)

    Article  Google Scholar 

  2. Ball, M.O., Provan, J.S.: Calculating bounds on reachability and connectedness in stochastic networks. Networks 13(2), 253–278 (1983)

    Article  MathSciNet  Google Scholar 

  3. Bellmore, M., Jensen, P.A.: An implicit enumeration scheme for proper cut generation. Technometrics 12(4), 775–788 (1970)

    Article  Google Scholar 

  4. Berge, C.: La theorie des graphes. Presses Universitaires de France, Paris (1958)

    MATH  Google Scholar 

  5. Biedl, T.C., Kant, G.: A better heuristic for orthogonal graph drawings. Comput. Geom. 9(3), 159–180 (1998)

    Article  MathSciNet  Google Scholar 

  6. Bixby, R.E.: The minimum number of edges and vertices in a graph with edge connectivity n and m n-bonds. Networks 5(3), 253–298 (1975)

    Article  MathSciNet  Google Scholar 

  7. Brecht, T.B., Colbourn, C.J.: Lower bounds on two-terminal network reliability. Discrete Appl. Math. 21(3), 185–198 (1988)

    Article  MathSciNet  Google Scholar 

  8. Chandran, L.S., Ram, L.S.: On the number of minimum cuts in a graph. SIAM J. Discrete Math. 18(1), 177–194 (2004)

    Article  MathSciNet  Google Scholar 

  9. Shimon Even and Robert Endre Tarjan: Computing an st-numbering. Theor. Comput. Sci. 2(3), 339–344 (1976)

    Article  MathSciNet  Google Scholar 

  10. Gardner, M.L.: Algorithm to aid in the design of large scale networks. Large Scale Syst. 8(2), 147–156 (1985)

    MathSciNet  MATH  Google Scholar 

  11. Goldberg, L.A.: Efficient Algorithms for Listing Combinatorial Structures, vol. 5. Cambridge University Press, Cambridge (2009)

    MATH  Google Scholar 

  12. Hamacher, H.W., Picard, J.-C., Queyranne, M.: On finding the K best cuts in a network. Oper. Res. Lett. 2(6), 303–305 (1984)

    Article  MathSciNet  Google Scholar 

  13. Harada, H., Sun, Z., Nagamochi, H.: An exact lower bound on the number of cut-sets in multigraphs. Networks 24(8), 429–443 (1994)

    Article  MathSciNet  Google Scholar 

  14. Harary, F.: The maximum connectivity of a graph. Proc. Nat. Acad. Sci. 48(7), 1142–1146 (1962)

    Article  MathSciNet  Google Scholar 

  15. Jasmon, G.B., Foong, K.W.: A method for evaluating all the minimal cuts of a graph. IEEE Trans. Reliab. 36(5), 539–545 (1987)

    Article  Google Scholar 

  16. Katona, G.: A theorem for finite sets. In: Theory of Graphs, pp. 187–207 (1968)

    Google Scholar 

  17. Khachiyan, L., Boros, E., Borys, K., Elbassioni, K., Gurvich, V., Makino, K.: Generating cut conjunctions in graphs and related problems. Algorithmica 51(3), 239–263 (2008)

    Article  MathSciNet  Google Scholar 

  18. Kruskal, J.B.: The number of simplices in a complex. Math. Optim. Tech. 10, 251–278 (1963)

    MathSciNet  MATH  Google Scholar 

  19. Martelli, A.: A Gaussian elimination algorithm for the enumeration of cut sets in a graph. J. ACM 23(1), 58–73 (1976)

    Article  MathSciNet  Google Scholar 

  20. Picard, J.-C., Queyranne, M.: On the structure of all minimum cuts in a network and applications. Math. Program. 22(1), 121–121 (1982)

    Article  Google Scholar 

  21. Prasad, V.C., Sankar, V., Rao, K.S.P.: Generation of vertex and edge cutsets. Microelectron. Reliab. 32(9), 1291–1310 (1992)

    Article  Google Scholar 

  22. Provan, J.S., Ball, M.O.: Computing network reliability in time polynomial in the number of cuts. Oper. Res. 32(3), 516–526 (1984)

    Article  MathSciNet  Google Scholar 

  23. Provan, J.S., Shier, D.R.: A paradigm for listing (s, t)-cuts in graphs. Algorithmica 15(4), 351–372 (1996)

    MathSciNet  MATH  Google Scholar 

  24. Pierre Rosenstiehl and Robert Endre Tarjan: Rectilinear planar layouts and bipolar orientations of planar graphs. Discrete Comput. Geom. 1, 343–353 (1986)

    Article  MathSciNet  Google Scholar 

  25. Shier, D.R., Whited, D.E.: Iterative algorithms for generating minimal cutsets in directed graphs. Networks 16(2), 133–147 (1986)

    Article  MathSciNet  Google Scholar 

  26. Tamassia, R., Tollis, I.G.: A unified approach a visibility representation of planar graphs. Discrete Comput. Geom. 1, 321–341 (1986)

    Article  MathSciNet  Google Scholar 

  27. Tsukiyama, S., Shirakawa, I., Ozaki, H., Ariyoshi, H.: An algorithm to enumerate all cutsets of a graph in linear time per cutset. J. ACM (JACM) 27(4), 619–632 (1980)

    Article  MathSciNet  Google Scholar 

  28. Li, Y., Taha, H.A., Landers, T.L.: A recursive approach for enumerating minimal cutsets in a network. IEEE Trans. Reliab. 43(3), 383–388 (1994)

    Article  Google Scholar 

  29. Yeh, L.-P., Wang, B.-F., Hsin-Hao, S.: Efficient algorithms for the problems of enumerating cuts by non-decreasing weights. Algorithmica 56(3), 297–312 (2010)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work was partially supported by JST CREST, grant number JPMJCR1401, Japan, and MIUR, Italy.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luca Versari .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Conte, A., Grossi, R., Marino, A., Rizzi, R., Uno, T., Versari, L. (2018). Tight Lower Bounds for the Number of Inclusion-Minimal st-Cuts. In: Brandstädt, A., Köhler, E., Meer, K. (eds) Graph-Theoretic Concepts in Computer Science. WG 2018. Lecture Notes in Computer Science(), vol 11159. Springer, Cham. https://doi.org/10.1007/978-3-030-00256-5_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-00256-5_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-00255-8

  • Online ISBN: 978-3-030-00256-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics