Skip to main content

Left-Eigenvectors Are Certificates of the Orbit Problem

  • Conference paper
  • First Online:
Reachability Problems (RP 2018)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 11123))

Included in the following conference series:

Abstract

This paper investigates the connection between the Kannan-Lipton Orbit Problem and the polynomial invariant generator algorithm PILA based on eigenvectors computation. Namely, we reduce the problem of generating linear and polynomial certificates of non-reachability for the Orbit Problem for linear transformations with coefficients in \(\mathbb Q\) to the generalized eigenvector problem. Also, we prove the existence of such certificates for any transformation with integer coefficients, which is not the case with rational coefficients.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The existence of such a family with \(N>1\) is guaranteed by the non diagonalisability of A.

References

  1. Blazy, S., Bühler, D., Yakobowski, B.: Structuring abstract interpreters through state and value abstractions. In: Bouajjani, A., Monniaux, D. (eds.) VMCAI 2017. LNCS, vol. 10145, pp. 112–130. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-52234-0_7

    Chapter  MATH  Google Scholar 

  2. Bozga, M., Iosif, R., Konečný, F.: Fast acceleration of ultimately periodic relations. In: Touili, T., Cook, B., Jackson, P. (eds.) CAV 2010. LNCS, vol. 6174, pp. 227–242. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-14295-6_23

    Chapter  Google Scholar 

  3. Cousot, P., Cousot, R.: Abstract interpretation: a unified lattice model for static analysis of programs by construction or approximation of fixpoints. In: Proceedings of the 4th ACM SIGACT-SIGPLAN Symposium on Principles of Programming Languages, pp. 238–252. ACM (1977)

    Google Scholar 

  4. de Oliveira, S., Bensalem, S., Prevosto, V.: Polynomial invariants by linear algebra. In: Artho, C., Legay, A., Peled, D. (eds.) ATVA 2016. LNCS, vol. 9938, pp. 479–494. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46520-3_30

    Chapter  Google Scholar 

  5. de Oliveira, S., Bensalem, S., Prevosto, V.: Synthesizing invariants by solving solvable loops. In: D’Souza, D., Narayan Kumar, K. (eds.) ATVA 2017. LNCS, vol. 10482, pp. 327–343. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-68167-2_22

    Chapter  Google Scholar 

  6. de Oliveira, S., Prevosto, V., Habermehl, P., Bensalem, S.: Left-eigenvectors are certificates of the orbit problem. http://steven-de-oliveira.fr/content/publis/certificates_2018.pdf

  7. Ernst, M.D., Cockrell, J., Griswold, W.G., Notkin, D.: Dynamically discovering likely program invariants to support program evolution. IEEE Trans. Softw. Eng. 27(2), 99–123 (2001)

    Article  Google Scholar 

  8. Fijalkow, N., Ohlmann, P., Ouaknine, J., Pouly, A., Worrell, J.: Semialgebraic invariant synthesis for the Kannan-Lipton orbit problem. In: STACS 2017. LIPIcs, vol. 66, pp. 29:1–29:13. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik (2017)

    Google Scholar 

  9. Filliâtre, J.-C., Paskevich, A.: Why3—where programs meet provers. In: Felleisen, M., Gardner, P. (eds.) ESOP 2013. LNCS, vol. 7792, pp. 125–128. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-37036-6_8

    Chapter  Google Scholar 

  10. Kannan, R., Lipton, R.J.: The orbit problem is decidable. In: Proceedings of the Twelfth Annual ACM Symposium on Theory of Computing, pp. 252–261. ACM (1980)

    Google Scholar 

  11. Kannan, R., Lipton, R.J.: Polynomial-time algorithm for the orbit problem. J. ACM (JACM) 33(4), 808–821 (1986)

    Google Scholar 

  12. Kovács, L.: Reasoning algebraically about P-solvable loops. In: Ramakrishnan, C.R., Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 249–264. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-78800-3_18

    Chapter  Google Scholar 

  13. Rocha, H., Ismail, H., Cordeiro, L., Barreto, R.: Model checking embedded C software using k-induction and invariants. In: 2015 Brazilian Symposium on Computing Systems Engineering (SBESC), pp. 90–95. IEEE (2015)

    Google Scholar 

  14. Rodríguez-Carbonell, E., Kapur, D.: Generating all polynomial invariants in simple loops. J. Symb. Comput. 42(4), 443–476 (2007)

    Article  MathSciNet  Google Scholar 

  15. Schinzel, A., Zassenhaus, H.: A refinement of two theorems of Kronecker. Michigan Math. J 12, 81–85 (1965)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steven de Oliveira .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

de Oliveira, S., Prevosto, V., Habermehl, P., Bensalem, S. (2018). Left-Eigenvectors Are Certificates of the Orbit Problem. In: Potapov, I., Reynier, PA. (eds) Reachability Problems. RP 2018. Lecture Notes in Computer Science(), vol 11123. Springer, Cham. https://doi.org/10.1007/978-3-030-00250-3_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-00250-3_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-00249-7

  • Online ISBN: 978-3-030-00250-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics