Skip to main content

Additive Manufacturing-Oriented Redesign of Mantis 3.0 Hybrid Robot

  • Conference paper
  • First Online:
Advances in Service and Industrial Robotics (RAAD 2018)

Part of the book series: Mechanisms and Machine Science ((Mechan. Machine Science,volume 67))

Included in the following conference series:

  • 2333 Accesses

Abstract

The paper presents the third version of the hybrid leg-wheel ground mobile robot Mantis, a small-scale platform designed for inspection and surveillance tasks. The locomotion system is based on the cooperating action of a couple of actuated front legs and wheels, along with a passive rear carriage. The system performs wheeled locomotion on even grounds and hybrid locomotion in case of terrain irregularities or obstacles. This architecture combines high speed, energy efficiency, maneuverability and stable camera vision on flat terrains with good motion capabilities in unstructured environments. In the embodiment design presented hereafter, referred to as Mantis 3.0, the rear carriage has been equipped with four passive wheels, instead of two as in the previous versions, in order to improve the stability during steep stair climbing maneuvers; moreover, the legs, the main body and the rear carriage have been significantly redesigned in order to be realized by additive manufacturing techniques, with the final aim of obtaining a low-cost device suitable for Open Source distribution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Murphy, R.R.: Rescue robotics for homeland security. Commun. ACM Homeland Security 47(3), 66–68 (2004)

    Google Scholar 

  2. Playter, R., Buehler, M., Raibert, M.: BigDog. In: Proceedings of the SPIE Defense & Security Symposium, Unmanned Systems Technology (2006)

    Google Scholar 

  3. Semsch, E., Jakob, M., Pavlicek, D., Pechoucek, M.: Autonomous UAV surveillance in complex urban environments. In: IEEE/WIC/ACM International Joint Conferences on Web Intelligence and Intelligent Agent Technologies WI-IAT 2009, vol. 2, pp. 82–85 (2009)

    Google Scholar 

  4. Cetinsoy, E.: Design and flight tests of a holonomic quadrotor UAV with sub-rotor control surfaces. In: 2013 IEEE International Conference on Mechatronics and Automation, pp. 1197–1202 (2013)

    Google Scholar 

  5. Ikeda, M., Hikasa, S., Watanabe, K., Nagai, I.: Motion analysis of a manta robot for underwater exploration by propulsive experiments and the design of central pattern generator. Int. J. Autom. Technol. 8(2), 231–237 (2014)

    Article  Google Scholar 

  6. Le, K.D., Nguyen, H.D., Ranmuthugala, D.: Development and control of a low-cost, three-thruster, remotely operated underwater vehicle. Int. J. Autom. Technol. 9(1), 67–75 (2015)

    Article  Google Scholar 

  7. Siegwart, R., Nourbakhsh, I.R.: Introduction to Autonomous Mobile Robots. MIT Press, Cambridge (2011)

    Google Scholar 

  8. Bruzzone, L., Quaglia, G.: Locomotion systems for ground mobile robots in unstructured environments. Mech. Sci. 3(2), 49–62 (2012)

    Article  Google Scholar 

  9. Seeni, A., Schafer, B., Rebele, B., Tolyarenko, N.: Robot mobility concepts for extraterrestrial surface exploration. In: Proceedings of the IEEE Aerospace Conference (2008)

    Google Scholar 

  10. Siegwart, R., Lauria, M., Maeusli, P.A., Van Winnendael, M.: Design and implementation of an innovative micro rover. In: Proceedings of Robotics 1998, 3rd Conference and Exposition on Robotics in Challenging Environments (1998)

    Google Scholar 

  11. Quaglia, G., Bruzzone, L., Oderio, R., Razzoli, R.: Epi.Q mobile robots family. In: Proceedings of the ASME 2011 International Mechanical Engineering Congress & Exposition IMECE2011, Denver, CO, vol. 7, pp. 1165–1172 (2011)

    Google Scholar 

  12. Quaglia, G., Oderio, R., Bruzzone, L., Razzoli, R.: A modular approach for a family of ground mobile robots. Int. J. Adv. Robot. Syst. 10, 1–11 (2013)

    Google Scholar 

  13. Altendorfer, R., Moore, N., Komsuoglu, H., Buehler, M., Brown Jr., H.B., McMordie, D., Saranli, U., Full, R., Koditschek, D.E.: RHex: a biologically inspired hexapod runner. Auton. Robot. 11(3), 207–213 (2001)

    Article  Google Scholar 

  14. Quinn, R.D., Nelson, G.M., Bachmann, R.J., Kingsley, D.A., Offi, J.T., Allen, T.J., Ritzmann, R.E.: Parallel complementary strategies for implementing biological principles into mobile robots. Int. J. Robot. Res. 22(3), 169–186 (2003)

    Article  Google Scholar 

  15. Herbert, S.D., Drenner, A., Papanikolopoulos, N.: Loper: a quadruped-hybrid stair climbing robot. In: Proceedings of 2008 IEEE Conference on Robotics and Automation, Pasadena, CA (2008)

    Google Scholar 

  16. Huang, K.J., Chen, S.C., Chou, Y.C., Shen, S.-Y., Li, C.-H., Lin, P.-C.: Experimental validation of a leg-wheel hybrid mobile robot quattroped. In: 2011 IEEE International Conference on Robotics and Automation, Shanghai, China, pp. 2976–2977 (2011)

    Google Scholar 

  17. Kim, Y.-S., Jung, G.-P., Kim, H., Cho, K.-J., Chu, C.-N.: Wheel transformer: a wheel-leg hybrid robot with passive transformable wheels. IEEE Trans. Rob. 30(6), 1487–1498 (2014)

    Article  Google Scholar 

  18. Chou, J.-J., Yang, L.-S.: Innovative design of a claw-wheel transformable robot. In: 2013 IEEE International Conference on Robotics and Automation (ICRA), Karlsruhe, Germany, pp. 1337–1342 (2013)

    Google Scholar 

  19. Bruzzone, L., Fanghella, P.: Mantis: hybrid leg-wheel ground mobile robot. Ind. Robot. 41(1), 26–36 (2014)

    Article  Google Scholar 

  20. Bruzzone L., Fanghella, P.: Mantis hybrid leg-wheel robot: stability analysis and motion law synthesis for step climbing. In: Proceedings of MESA 2014, 10th IEEE/ASME International Conference on Mechatronic and Embedded Systems and Applications, Senigallia, Italy (2014)

    Google Scholar 

  21. Bruzzone, L., Fanghella, P.: Functional redesign of Mantis 2.0, a hybrid leg-wheel robot for surveillance and inspection. J. Intell. Rob. Syst. 81, 215–230 (2016)

    Article  Google Scholar 

  22. Bruzzone, L., Fanghella, P., Quaglia, G.: Experimental performance assessment of Mantis 2, hybrid leg-wheel mobile robot. Int. J. Autom. Technol. 11(3), 396–403 (2017)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luca Bruzzone .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bruzzone, L., Fanghella, P., Berselli, G., Bilancia, P. (2019). Additive Manufacturing-Oriented Redesign of Mantis 3.0 Hybrid Robot. In: Aspragathos, N., Koustoumpardis, P., Moulianitis, V. (eds) Advances in Service and Industrial Robotics. RAAD 2018. Mechanisms and Machine Science, vol 67. Springer, Cham. https://doi.org/10.1007/978-3-030-00232-9_28

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-00232-9_28

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-00231-2

  • Online ISBN: 978-3-030-00232-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics