Skip to main content

Virtual Guides for Redundant Robots Using Admittance Control for Path Tracking Tasks

  • Conference paper
  • First Online:
Advances in Service and Industrial Robotics (RAAD 2018)

Part of the book series: Mechanisms and Machine Science ((Mechan. Machine Science,volume 67))

Included in the following conference series:

Abstract

Virtual guides are used in human-robot cooperation to support a human performing manipulation tasks. They can act as guidance constrains to assist the user to move in the preferred direction or along desired path, or as forbidden-region constraint which prevent him to move into restricted region of the robot workspace. In this paper we proposed a novel framework that unifies virtual guides using virtual robot approach, which is represented with the admittance control, where a broad class of virtual guides and constraints can be implemented. The dynamic properties and the constraints of the virtual robot can be defined using three sets of parameters and variables: desired motion variables, dynamic parameters (stiffness, damping and inertia) and dead-zones. To validate the approach we implemented it on a KUKA LWR robot for the Buzz-Wire tasks, where the goal is to move a ring along a curved wire.

This work was supported by EU Horizon 2020 Programme grant 680431, ReconCell, and Slovenian Research Agency grant P2-0076.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    With subscript \((.)_d\) we denote the desired value of the variable.

References

  1. Abbott, J.J., Marayong, P., Okamura, A.M.: Haptic virtual fixtures for robot-assisted manipulation. In: Robotics Research, pp. 49–64 (2007)

    Google Scholar 

  2. Bettini, A., Marayong, P., Lang, S., Okamura, A., Hager, G.D.: Visual assisted control for manipulation using virtual fixtures. IEEE Trans. Robot. 20(6), 953–966 (2004)

    Article  Google Scholar 

  3. Bicchi, A., Peshkin, M.A., Colgate, J.E.: Safety for physical human robot interaction. In: Springer Handbook of Robotics, pp. 1335–1348. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  4. Bowyer, S.A., Davies, B.L., Rodriguez y Baena, F.: Active constraints/virtual fixtures: a survey. IEEE Trans. Robot. 30(1), 138–157 (2014)

    Article  Google Scholar 

  5. De Santis, A., Siciliano, B., De Luca, A., Bicchi, A.: An atlas of physical human-robot interaction. Mech. Mach. Theory 43(3), 253–270 (2008)

    Article  Google Scholar 

  6. Duchaine, V., Gosselin, C.M.: General model of human-robot cooperation using a novel velocity based variable impedance control. In: Proceedings of Second Joint EuroHaptics Conference and Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems, World Haptics 2007, pp. 445–451 (2007)

    Google Scholar 

  7. Duchaine, V., Mayer St-Onge, B., Gao, D., Gosselin, C.: Stable and intuitive control of an intelligent assist device. IEEE Trans. Haptics 5(2), 148–159 (2012)

    Article  Google Scholar 

  8. Haddadin, S., Croft, E.: Physical human robot interaction. In: Springer Handbook of Robotics, pp. 1835–1874. Springer, Cham (2016)

    Chapter  Google Scholar 

  9. Hager, G.D.: Human-machine cooperative manipulation with vision-based motion constraints. In: Lecture Notes in Control and Information Sciences 401, pp. 55–70 (2010)

    Chapter  Google Scholar 

  10. Ikemoto, S., Amor, H.H.H., Minato, T., Jung, B., Ishiguro, H.: Physical human-robot interaction: mutual learning and adaptation. IEEE Robot. Autom. Mag. 19(4), 24–35 (2012)

    Article  Google Scholar 

  11. Kragic, D., Marayong, P., Li, M., Okamura, A.M., Hager, G.D.: Human-machine collaborative systems for microsurgical applications. Int. J. Robot. Res. 24(9), 731–741 (2005)

    Article  Google Scholar 

  12. Lecours, A., Mayer-St-Onge, B., Gosselin, C.: Variable admittance control of a four-degree-of-freedom intelligent assist device. In: Proceedings of IEEE International Conference on Robotics and Automation, no. 2, pp. 3903–3908 (2012)

    Google Scholar 

  13. Mörtl, A., Lawitzky, M., Kucukyilmaz, A., Sezgin, M., Basdogan, C., Hirche, S.: The role of roles: physical cooperation between humans and robots. Int. J. Robot. Res. 31(13), 1656–1674 (2012)

    Article  Google Scholar 

  14. Nemec, B., Likar, N., Gams, A., Ude, A.: Human robot cooperation with compliance adaptation along the motion trajectory. Auton. Robots (2017)

    Google Scholar 

  15. Ott, C., Mukherjee, R., Nakamura, Y.: Unified impedance and admittance control. In: Proceedings of IEEE International Conference on Robotics and Automation, pp. 554–561 (2010)

    Google Scholar 

  16. Peternel, L., Petrič, T., Oztop, E., Babič, J.: Teaching robots to cooperate with humans in dynamic manipulation tasks based on multi-modal human-in-the-loop approach. Auton. Robots 36(1–2), 123–136 (2014)

    Article  Google Scholar 

  17. Petrič, T., Goljat, R., Babič, J.: Cooperative human-robot control based on Fitts’ law. In: 2016 IEEE-RAS 16th International Conference on Humanoid Robots (Humanoids), pp. 345–350. IEEE, November 2016

    Google Scholar 

  18. Pezzementi, Z., Okamura, A.M., Hager, G.D.: Dynamic guidance with pseudoadmittance virtual fixtures. In: Proceedings 2007 IEEE International Conference on Robotics and Automation, pp. 1761–1767. IEEE, April 2007

    Google Scholar 

  19. Raiola, G., Lamy, X., Stulp, F.: Co-manipulation with multiple probabilistic virtual guides. In: IEEE International Conference on Intelligent Robots and Systems 2015, pp. 7–13, December 2015

    Google Scholar 

  20. Ranatunga, I., Lewis, F., Popa, D.O., Tousif, S.M.: Adaptive admittance control for human-robot interaction using model reference design and adaptive inverse filtering. IEEE Trans. Control Syst. Technol. 1–10 (2016)

    Google Scholar 

  21. Rosenberg, L.: Virtual fixtures: perceptual tools for telerobotic manipulation. In: Proceedings of IEEE Virtual Reality Annual International Symposium, pp. 76–82 (1993)

    Google Scholar 

  22. Siciliano, B., Sciavicco, L., Villani, L., Oriolo, G.: Robotics - Modelling, Planning and Control. Springer, London (2009)

    Google Scholar 

  23. Žlajpah, L.: Kinematic control of redundant robots in changing task space. In: Proceedings of 25th International Workshop on Robotics in Alpe–Adria–Danube Region, Belgrade, Serbia (2016)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leon Žlajpah .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Žlajpah, L., Petrič, T. (2019). Virtual Guides for Redundant Robots Using Admittance Control for Path Tracking Tasks. In: Aspragathos, N., Koustoumpardis, P., Moulianitis, V. (eds) Advances in Service and Industrial Robotics. RAAD 2018. Mechanisms and Machine Science, vol 67. Springer, Cham. https://doi.org/10.1007/978-3-030-00232-9_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-00232-9_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-00231-2

  • Online ISBN: 978-3-030-00232-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics