Skip to main content

Qualitative Study of Security Resiliency Towards Threats in Future Internet Architecture

  • Conference paper
  • First Online:
Book cover Computational and Statistical Methods in Intelligent Systems (CoMeSySo 2018)

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 859))

Included in the following conference series:

  • 623 Accesses

Abstract

With the consistent evolution of distributed networks and cloud computing, the communication process of existing Internet architecture are not at par to offer comprehensive security; thereby fails to cater up the dynamic web security demands of online users. This leads to the evolution of Future Internet Architecture (FIA) that claims of enhanced security system. However, a closer look into both existing web security and security of existing FIA projects shows that there are enough security loopholes in both that demands a novel security solution. Therefore, this paper contributes to investigate the effectiveness of existing web security approaches as well as security approaches of FIA in order to explore the open research issues. The finding of the study shows that there is a significant research gap that demands extreme improvement of existing web security in order to fit for secure communication in FIA.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. van Schewick, B.: Internet Architecture and Innovation. MIT Press, Cambridge (2012)

    Google Scholar 

  2. Xu, K., Zhu, M., Wu, G.: Towards evolvable Internet architecture-design constraints and models analysis. Sci. Chin. Inf. Sci. 57(11), 1–24 (2014)

    Article  Google Scholar 

  3. Zhou, B., Shi, Q., Yang, P.: A survey on quantitative evaluation of web service security. In: 2016 IEEE Trustcom/BigDataSE/ISPA, pp. 715–721. Tianjin (2016)

    Google Scholar 

  4. Huang, H.C., Zhang, Z.K., Cheng, H.W., Shieh, S.W.: Web application security: threats, countermeasures, and pitfalls. Computer 50(6), 81–85 (2017)

    Article  Google Scholar 

  5. Buchanan, W.J., Helme, S., Woodward, A.: Analysis of the adoption of security headers in HTTP. IET Inf. Secur. 12(2), 118–126 (2018)

    Article  Google Scholar 

  6. Ambrosin, M., Compagno, A., Conti, M., Ghali, C., Tsudik, G.: Security and privacy analysis of national science foundation future internet architectures. IEEE Commun. Surv. Tutor. 20, 1418–1442 (2018). https://doi.org/10.1109/comst.2018.2798280

    Article  Google Scholar 

  7. Su, Z., Hui, Y., Yang, Q.: The next generation vehicular networks: a content-centric framework. IEEE Wirel. Commun. 24(1), 60–66 (2017)

    Article  Google Scholar 

  8. Venkataramani, A., Kurose, J., Raychaudhuri, D., Nagaraja, K., Mao, M., Banerjee, S.: Mobilityfirst: a mobility-centric and trustworthy internet architecture. ACM SIGCOMM Comput. Commun. Rev. 44(3), 74–80 (2014)

    Article  Google Scholar 

  9. Naylor, D., et al.: XIA: architecting a more trustworthy and evolvable internet. ACM SIGMOBILE Comput. Commun. Rev. 44(3), 50–57 (2014)

    Article  Google Scholar 

  10. Barrera, D., Reischuk, R.M., Szalachowski, P., Perrig, A.: SCION five years later: revisiting scalability, control, and isolation on next-generation networks. http://arxiv.org/abs/1508.01651 (2015)

  11. COAST: Content Aware Searching Retrieval and Streaming. http://www.synelixis.com/coast/. Accessed 9 Nov 2015

  12. Ding, W., Yan, Z., Deng, R.H.: A survey on future internet security architectures. IEEE Access 4, 4374–4393 (2016)

    Article  Google Scholar 

  13. Kotut, L., Wahsheh, L.A.: Survey of cyber security challenges and solutions in smart grids. In: 2016 Cybersecurity Symposium (CYBERSEC), pp. 32–37. Coeur d’Alene, ID (2016)

    Google Scholar 

  14. Stritter, B., et al.: Cleaning up Web 2.0’s security mess-at least partly. IEEE Secur. Priv. 14(2), 48–57 (2016)

    Article  Google Scholar 

  15. Kozik, R., Choraś, M., Hołubowicz, W.: Packets tokenization methods for web layer cyber security. Log. J. IGPL 25(1), 103–113 (2017)

    Article  MathSciNet  Google Scholar 

  16. Srinivasan, S.M., Sangwan, R.S.: Web App security: a comparison and categorization of testing frameworks. IEEE Softw. 34(1), 99–102 (2017)

    Article  Google Scholar 

  17. Tsalaportas, P.G., Kapinas, V.M., Karagiannidis, G.K.: Solar lab notebook (SLN): an ultra-portable web-based system for heliophysics and high-security labs. IEEE J. Select. Top. Appl. Earth Obs. Remote Sens. 8(8), 4141–4150 (2015)

    Article  Google Scholar 

  18. Amrutkar, C., Traynor, P., van Oorschot, P.C.: An empirical evaluation of security indicators in mobile web browsers. IEEE Trans. Mob. Comput. 14(5), 889–903 (2015)

    Article  Google Scholar 

  19. Grandison, T., Koved, L.: Security and privacy on the web [Guest editors’ introduction]. IEEE Softw. 32(4), 36–39 (2015)

    Article  Google Scholar 

  20. Tatli, Eİ., Urgun, B.: WIVET—benchmarking coverage qualities of web crawlers. Comput. J. 60(4), 555–572 (2017)

    Google Scholar 

  21. Mao, J., Tian, W., Li, P., Wei, T., Liang, Z.: Phishing-alarm: robust and efficient phishing detection via page component similarity. IEEE Access 5, 17020–17030 (2017)

    Article  Google Scholar 

  22. Marchal, S., Armano, G., Gröndahl, T., Saari, K., Singh, N., Asokan, N.: Off-the-hook: an efficient and usable client-side phishing prevention application. IEEE Trans. Comput. 66(10), 1717–1733 (2017)

    Article  MathSciNet  Google Scholar 

  23. Goldsteen, A., Kveler, K., Domany, T., Gokhman, I., Rozenberg, B., Farkash, A.: Application-screen masking: a hybrid approach. IEEE Softw. 32(4), 40–45 (2015)

    Article  Google Scholar 

  24. Phung, P.H., Monshizadeh, M., Sridhar, M., Hamlen, K.W., Venkatakrishnan, V.N.: Between worlds: securing mixed javascript/actionscript multi-party web content. IEEE Trans. Dependable Secure Comput. 12(4), 443–457 (2015)

    Article  Google Scholar 

  25. Medeiros, I., Neves, N., Correia, M.: Detecting and removing web application vulnerabilities with static analysis and data mining. IEEE Trans. Reliab. 65(1), 54–69 (2016)

    Article  Google Scholar 

  26. Antunes, N., Vieira, M.: Assessing and comparing vulnerability detection tools for web services: benchmarking approach and examples. IEEE Trans. Serv. Comput. 8(2), 269–283 (2015)

    Article  Google Scholar 

  27. Gillman, D., Lin, Y., Maggs, B., Sitaraman, R.K.: Protecting websites from attack with secure delivery networks. Computer 48(4), 26–34 (2015)

    Article  Google Scholar 

  28. Pan, J., Paul, S., Jain, R.: A survey of the research on future internet architectures. IEEE Commun. Mag. 49(7), 26–36 (2011)

    Article  Google Scholar 

  29. Chen, Z., Luo, H., Cui, J., Jin, M.: Security analysis of a future internet architecture. In: 2013 21st IEEE International Conference on Network Protocols (ICNP), pp. 1–6. Goettingen (2013)

    Google Scholar 

  30. Chen, Z., Luo, H., Zhang, M., Li, J.: Improving network security by dynamically changing path identifiers in future internet. In: 2015 IEEE Global Communications Conference (GLOBECOM), pp. 1–7. San Diego, CA (2015)

    Google Scholar 

  31. Malyuk, A., Miloslavskaya, N.: Information security theory for the future internet. In: 2015 3rd International Conference on Future Internet of Things and Cloud, pp. 150–157. Rome (2015)

    Google Scholar 

  32. Mesquita, D.G., Rosa, P.F.: Reconfigurable computing and future internet: considerations on flexibility and security. IEEE Latin Am. Trans. 15(7), 1326–1334 (2017)

    Article  Google Scholar 

  33. Aslam, M., Gehrmann, C., Björkman, M.: Security and trust preserving VM migrations in public clouds. In: 2012 IEEE 11th International Conference on Trust, Security and Privacy in Computing and Communications, pp. 869–876. Liverpool (2012)

    Google Scholar 

  34. Mao, Y., Chen, X., Luo, Y.: HVSM: an in-out-VM security monitoring architecture in IAAS cloud. In: International Conference on 2014–2014 Information and Network Security ICINS, pp. 185–192. Beijing (2014)

    Google Scholar 

  35. Ozcelik, I., Ozcelik, I., Akleylek, S.: TRCyberLab: an infrastructure for future internet and security studies. In: 2018 6th International Symposium on Digital Forensic and Security (ISDFS), pp. 1–5. Antalya (2018)

    Google Scholar 

  36. Rebahi, Y., Tcholtchev, N., Chaparadza, R., Merekoulias, V.N.: Addressing security issues in the autonomic future internet. In: 2011 IEEE Consumer Communications and Networking Conference (CCNC), pp. 517–518. Las Vegas, NV (2011)

    Google Scholar 

  37. Samad, J., Reed, K., Loke, S.W.: A risk aware development and deployment methodology for cloud enabled internet-of-things. In: 2018 IEEE 4th World Forum on Internet of Things (WF-IoT), pp. 433–438. Singapore (2018)

    Google Scholar 

  38. Ge, H., Zhao, Z.: Security analysis of energy internet with robust control approaches and defense design. IEEE Access 6, 11203–11214 (2018)

    Article  Google Scholar 

  39. Guo, H., Wang, X., Chang, K., Tian, Y.: Exploiting path diversity for thwarting pollution attacks in named data networking. IEEE Trans. Inf. Forensics Secur. 11(9), 2077–2090 (2016)

    Article  Google Scholar 

  40. Jhaveri, R.H., Patel, N.M., Zhong, Y., Sangaiah, A.K.: Sensitivity analysis of an attack-pattern discovery based trusted routing scheme for mobile ad-hoc networks in industrial IoT. IEEE Access 6, 20085–20103 (2018)

    Article  Google Scholar 

  41. Kang, J., et al.: Location privacy attacks and defenses in cloud-enabled internet of vehicles. IEEE Wirel. Commun. 23(5), 52–59 (2016)

    Article  Google Scholar 

  42. Li, G., Wu, J., Li, J., Guan, Z., Guo, L.: Fog computing-enabled secure demand response for internet of energy against collusion attacks using consensus and ACE. IEEE Access 6, 11278–11288 (2018)

    Article  Google Scholar 

  43. Perazzo, P., Vallati, C., Anastasi, G., Dini, G.: DIO suppression attack against routing in the internet of things. IEEE Commun. Lett. 21(11), 2524–2527 (2017)

    Article  Google Scholar 

  44. Sharma, P.K., Singh, S., Jeong, Y.S., Park, J.H.: DistBlockNet: a distributed blockchains-based secure SDN architecture for IoT networks. IEEE Commun. Mag. 55(9), 78–85 (2017)

    Article  Google Scholar 

  45. Xu, T., et al.: Mitigating the table-overflow attack in software-defined networking. IEEE Trans. Netw. Serv. Manag. 14(4), 1086–1097 (2017)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. S. Vidya .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Vidya, M.S., Patil, M.C. (2019). Qualitative Study of Security Resiliency Towards Threats in Future Internet Architecture. In: Silhavy, R., Silhavy, P., Prokopova, Z. (eds) Computational and Statistical Methods in Intelligent Systems. CoMeSySo 2018. Advances in Intelligent Systems and Computing, vol 859. Springer, Cham. https://doi.org/10.1007/978-3-030-00211-4_24

Download citation

Publish with us

Policies and ethics