Skip to main content

Introduction

  • Chapter
  • First Online:
Hybrid System Identification

Part of the book series: Lecture Notes in Control and Information Sciences ((LNCIS,volume 478))

  • 768 Accesses

Abstract

This chapter introduces the topic of the book with brief definitions of hybrid dynamical systems on the one hand and system identification on the other hand. It ends with a few general remarks and the outline of the book.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Note however that static phenomena can also be modeled by resorting to hybrid system identification methods as described in this book. In fact, due to the difficulty of hybrid system identification, the dynamical aspect of hybrid systems is mostly ignored in many dedicated approaches.

  2. 2.

    Note that the keywords “hybrid systems” can have different meanings in different contexts. Our motivations for using this terminology are detailed in the Preface.

References

  1. van der Schaft, A.J., Schumacher, J.M.: Complementarity modeling of hybrid systems. IEEE Trans. Autom. Control 43(4), 483–490 (1998)

    Google Scholar 

  2. de Schutter, B., de Moor, B.: The extended linear complementarity problem and the modeling and analysis of hybrid systems. Hybrid Systems V, Proceedings of the 5th International Hybrid Systems Workshop, Notre Dame, IN, USA. Lecture Notes in Computer Science, vol. 1567, pp. 70–85. Springer, Berlin (1999)

    Google Scholar 

  3. Heemels, W.P.M.H., Schumacher, J.M., Weiland, S.: Linear complementarity systems. SIAM J. Appl. Math. 60(4), 1234–1269 (2000)

    Article  MathSciNet  Google Scholar 

  4. Bemporad, A., Morari, M.: Control of systems integrating logic, dynamics, and constraints. Automatica 35(3), 407–427 (1999)

    Article  MathSciNet  Google Scholar 

  5. de Schutter, B., van den Boom T.J.J.: Model predictive control for max-min-plus-scaling systems. In: Proceedings of the 2001 American Control Conference (ACC), Arlington, VA, USA, pp. 319–324 (2001)

    Google Scholar 

  6. Heemels, W.P.M.H., de Schutter, B., Bemporad, A.: Equivalence of hybrid dynamical models. Automatica 37(7), 1085–1091 (2001)

    Google Scholar 

  7. Torrisi, F.D., Bemporad, A.: HYSDEL-A tool for generating computational hybrid models for analysis and synthesis problems. IEEE Trans. Control Syst. Technol. 12(2), 235–249 (2004)

    Article  Google Scholar 

  8. Cassandras, C.G., Lygeros, J.: Stochastic hybrid systems: research issues and areas. In: Cassandras, C.G., Lygeros, J. (eds.) Stochastic Hybrid Systems, pp. 1–14. CRC Press/Taylor & Francis, Boca Raton (2007)

    Google Scholar 

  9. Shi, P., Li, F.: Survey on Markovian jump systems: modeling and design. Int. J. Control Autom. Syst. 13(1), 1–16 (2015)

    Article  MathSciNet  Google Scholar 

  10. Toth, R.: Modeling and Identification of Linear Parameter-Varying Systems. Lecture Notes in Control and Information Sciences, vol. 403. Springer, Berlin (2010)

    Chapter  Google Scholar 

  11. Briat, C.: Introduction to LPV systems. Linear Parameter-Varying and Time-Delay Systems. Advances in Delays and Dynamics, vol. 3, pp. 3–36. Springer, Berlin (2015)

    Google Scholar 

  12. Babus̆ka, R.: Fuzzy Modeling for Control. International Series in Intelligent Technologies, vol. 12. Springer, Berlin (1998)

    Google Scholar 

  13. Babus̆ka R, Verbruggen H, : Neuro-fuzzy methods for nonlinear system identification. Ann. Rev. Control 27(1), 73–85 (2003)

    Google Scholar 

  14. Nelles, O.: Nonlinear System Identification: From Classical Approaches to Neural Networks and Fuzzy Models. Springer, Berlin (2001)

    Chapter  Google Scholar 

  15. Orjuela, R., Marx, B., Ragot, J., Maquin, D.: Nonlinear system identification using heterogeneous multiple models. J. Appl. Math. Comput. Sci. 23(1), 103–115 (2013)

    Google Scholar 

  16. Jacobs, R.A., Jordan, M.I., Nowlan, S.J., Hinton, G.E.: Adaptive mixtures of local experts. Neural Comput. 3(1), 79–87 (1991)

    Article  Google Scholar 

  17. van der Schaft, A.J., Schumacher, H.: An Introduction to Hybrid Dynamical Systems. Lecture Notes in Control and Information Sciences, vol. 251. Springer, Berlin (2000)

    Google Scholar 

  18. Branicky, M.S.: Introduction to hybrid systems. In: Hristu-Varsakelis, D., Levine, W.S. (eds.) Handbook of Networked and Embedded Control Systems, pp. 91–116. Birkhäuser, Basel (2005)

    Chapter  Google Scholar 

  19. Lunze, J., Lamnabhi-Lagarrigue, F. (eds.): Handbook of Hybrid Systems Control: Theory, Tools, Applications. Cambridge University Press, Cambridge (2009)

    MATH  Google Scholar 

  20. Sun, Z., Ge, S.S.: Switched Linear Systems - Control and Design. Communications and Control Engineering. Springer, Berlin (2005)

    Book  Google Scholar 

  21. Antsaklis, P.J.: A brief introduction to the theory and applications of hybrid systems. Proc. IEEE, Spec. Issue Hybrid Syst. Theory Appl. 88(7), 879–887 (2000)

    Article  Google Scholar 

  22. Garulli, A., Paoletti, S., Vicino, A.: A survey on switched and piecewise affine system identification. In: Proceedings of the 16th IFAC Symposium on System Identification (SYSID), Brussels, Belgium, IFAC Proceedings Volumes, vol. 45(16), pp. 344–355 (2012)

    Article  Google Scholar 

  23. Juloski, A.LJ., Heemels, W.P.M.H., Ferrari-Trecate, G.: Data-based hybrid modelling of the component placement process in pick-and-place machines. Control Eng. Pract. 12(10), 1241–1252 (2004)

    Article  Google Scholar 

  24. Juloski, A.Lj., Heemels, W.P.M.H., Ferrari-Trecate, G., Vidal, R., Paoletti, S., Niessen, J.H.G.: Comparison of four procedures for the identification of hybrid systems. In: Proceedings of the 8th International Workshop on Hybrid Systems: Computation and Control (HSCC), Zürich, Switzerland, Lecture Notes in Computer Science, vol. 3414, pp. 354–369 (2005)

    Chapter  Google Scholar 

  25. Maruta, I., Sugie, T.: Identification of PWA models via optimal data compression. In: Proceedings of the 16th Symposium on System Identification, Brussels, Belgium, IFAC Proceedings Volumes, vol. 45(16), pp. 368–373 (2012)

    Article  Google Scholar 

  26. Maruta, I., Ohlsson, H.: Compression based identification of PWA systems. In: Proceedings of the 19th IFAC World Congress, Cape Town, South Africa, IFAC Proceedings Volumes, vol. 47(3), pp. 4985–4992 (2014)

    Article  Google Scholar 

  27. Canty, N., O’Mahony, T.: Design considerations for piecewise affine system identification of nonlinear systems. In: Proceedings of the 17th Mediterranean Conference on Control and Automation (MED), Thessaloniki, Greece, pp. 157–162 (2009)

    Google Scholar 

  28. Baptista, R.D.S., Ishihara, J.Y., Borges, G.A.: A split and merge algorithm for identification of piecewise affine systems. In: Proceedings of the 2011 American Control Conference, San Francisco, CA, USA, pp. 2018–2023 (2011)

    Google Scholar 

  29. Vašak, M., Mladenović, L., Perić, N.: Clustering-based identification of a piecewise affine electronic throttle model. In: Proceedings of the 31st Annual Conference of the IEEE Industrial Electronics Society (IECON), Raleigh, NC, USA, pp. 177–182 (2005)

    Google Scholar 

  30. Vašak, M., Baotić, M., Petrović, I., Perić, N.: Hybrid theory-based time-optimal control of an electronic throttle. IEEE Trans. Ind. Electron. 54(3), 1483–1494 (2007)

    Article  Google Scholar 

  31. Canty, N., O’Mahony, T., Cychowski, M.T. : An output error algorithm for piecewise affine system identification. Control Eng. Pract. 20(4), 444–452 (2012)

    Article  Google Scholar 

  32. Gegundez, M.E., Aroba, J., Bravo, J.M.: Identification of piecewise affine systems by means of fuzzy clustering and competitive learning. Eng. Appl. Artif. Intell. 21(8), 1321–1329 (2008)

    Article  Google Scholar 

  33. Ferrari-Trecate, G., Muselli, M., Liberati, D., Morari, M.: A clustering technique for the identification of piecewise affine systems. Automatica 39(2), 205–217 (2003)

    Article  MathSciNet  Google Scholar 

  34. Morari, M., Beccuti, A.G., Mariéthoz, S., Papafotiou, G.: Energy management. In: Lunze, J., Lamnabhi-Lagarrigue, F. (eds.) Handbook of Hybrid Systems Control: Theory, Tools, Applications, pp. 377–404. Cambridge University Press, Cambridge (2009)

    Google Scholar 

  35. Li, L., Dong, W., Ji, Y., Zhang, Z.: An improved parameter identification approach for piecewise affine model. Control Eng. Pract. 21(1), 54–64 (2013)

    Article  Google Scholar 

  36. Forrai, A.: System identification and fault diagnosis of an electromagnetic actuator. IEEE Trans. Control Syst. Technol. 25(3), 1028–1035 (2017)

    Article  Google Scholar 

  37. Ernst, S.: Hinging hyperplane trees for approximation and identification. In: Proceedings of the 37th IEEE Conference on Decision and Control (CDC), Tampa, FL, USA, pp. 1266–1271 (1998)

    Google Scholar 

  38. Balluchi, A., Benvenuti, L., Di Benedetto, M.D., Pinello, C., Sangiovanni-Vincentelli, A.L.: Automotive engine control and hybrid systems: challenges and opportunities. Proc. IEEE Spec. Issue Hybrid Syst. Theory Appl. 88(7), 888–910 (2000)

    Article  Google Scholar 

  39. Benvenuti, L., Balluchi, A., Bemporad, A., Di Cairano, S., Johansson, B., Johansson, R., Sangiovanni Vincentelli, A.L., Tunestål, P.: Automotive control. In: Lunze, J., Lamnabhi-Lagarrigue, F. (eds.) Handbook of Hybrid Systems Control: Theory, Tools, Applications, pp. 439–470. Cambridge University Press, Cambridge (2009)

    Google Scholar 

  40. Vereshchaga, Y., Stadlbauer, S., Bako, L., del Re, L.: Piecewise affine modeling of NOx emission produced by a diesel engine. In: Proceedings of the 2013 European Control Conference (ECC), Zürich, Switzerland, pp. 167–172 (2013)

    Google Scholar 

  41. Taguchi, S., Suzuki, T., Hayakawa, S., Inagaki, S.: Identification of probability weighted multiple ARX models and its application to behavior analysis. In: Proceedings of the 48th IEEE Conference on Decision and Control (CDC), Shanghai, China, pp. 3952–3957 (2009)

    Google Scholar 

  42. Ripaccioli, G., Bemporad, A., Assadian, F., Dextreit, C., Di Cairano, S., Kolmanovsky, I.V.: Hybrid modeling, identification, and predictive control: an application to hybrid electric vehicle energy management. In: Proceedings of the 12th International Conference on Hybrid Systems: Computation and Control (HSCC), San Francisco, CA, USA. Lecture Notes in Computer Science, vol. 5469, pp. 321–335 (2009)

    Google Scholar 

  43. Böhme, T.J., Frank, B.: Hybrid Systems, Optimal Control and Hybrid Vehicles: Theory, Methods and Applications. Advances in Industrial Control. Springer, Berlin (2017)

    Book  Google Scholar 

  44. Ocampo-Martinez, C., Bemporad, A., Ingimundarson, A., Puig Cayuela, V.: On hybrid model predictive control of sewer networks. In: Sánchez Peña, R.S., Quevedo Casín, J., Puig Cayuela, V. (eds.) Identification and Control - The Gap between Theory and Practice, pp. 87–116. Springer, Berlin (2007)

    Google Scholar 

  45. Bako, L., Boukharouba, K., Duviella, E., Lecoeuche, S.: A recursive identification algorithm for switched linear/affine models. Nonlinear Anal. Hybrid Syst. 5(2), 242–253 (2011)

    MathSciNet  MATH  Google Scholar 

  46. Lassoued, Z., Abderrahim, K.: An experimental validation of a novel clustering approach to PWARX identification. Eng. Appl. Artif. Intell. 28, 201–209 (2014)

    Article  Google Scholar 

  47. Kenesei, T., Abonyi, J.: Hinging hyperplane based regression tree identified by fuzzy clustering and its application. Appl. Soft Comput. 13(2), 782–792 (2013)

    Article  Google Scholar 

  48. Tenazinha, N., Vinga, S.: A survey on methods for modeling and analyzing integrated biological networks. IEEE/ACM Trans. Comput. Biol. Bioinform. 8(4), 943–958 (2011)

    Article  Google Scholar 

  49. de Jong, H.: Modeling and simulation of genetic regulatory systems: a literature review. J. Comput. Biol. 9(1), 67–103 (2002)

    Google Scholar 

  50. Porreca, R., Ferrari-Trecate, G.: Identification of piecewise affine models of genetic regulatory networks: the data classification problem. In: Proceedings of the 17th IFAC World Congress on Automatic Control, Seoul, Korea, IFAC Proceedings Volumes, vol. 41(2), pp. 307–312 (2008)

    Article  Google Scholar 

  51. Bernot, G., Comet, J.P., Richard, A., Chaves, M., Gouzé, J.L., Dayan, F.: Modeling and analysis of gene regulatory networks. In: Cazals, F., Kornprobst, P. (eds.) Modeling in Computational Biology and Biomedicine, pp. 47–80. Springer, Berlin (2013)

    Google Scholar 

  52. Hartmann, A., Lemos, J.M., Costa, R.S., Xavier, J., Vinga, S.: Identification of switched ARX models via convex optimization and expectation maximization. J. Process Control 28, 9–16 (2015)

    Article  Google Scholar 

  53. Hartmann, A., Neves, A.R., Lemos, J.M., Vinga, S.: Identification and automatic segmentation of multiphasic cell growth using a linear hybrid model. Math. Biosci. 279, 83–89 (2016)

    Article  MathSciNet  Google Scholar 

  54. Liberati, D.: Biomedical applications of piece-wise affine identification for hybrid systems. Ann. Biomed. Eng. 37(9), 1871–1876 (2009)

    Article  Google Scholar 

  55. Aihara, K., Suzuki, H.: Theory of hybrid dynamical systems and its applications to biological and medical systems. Philos. Trans. R. Soc. A 368(1930), 4893–4914 (2010)

    Article  Google Scholar 

  56. Vidal, R., Soatto, S., Chiuso, A.: Application of hybrid system identification in computer vision. In: Proceedings of the European Control Conference (ECC), Kos, Greece, pp. 27–34 (2007)

    Google Scholar 

  57. Vidal, R.: Recursive identification of switched ARX systems. Automatica 44(9), 2274–2287 (2008)

    Article  MathSciNet  Google Scholar 

  58. Ozay, N., Sznaier, M., Lagoa, C., Camps, O.: A sparsification approach to set membership identification of a class of affine hybrid systems. In: Proceedings of the 47th IEEE Conference on Decision and Control (CDC), Cancun, Mexico, pp. 123–130 (2008)

    Google Scholar 

  59. Bertsekas, D.P., Tsitsiklis, J.N.: Introduction to Probability, 2nd edn. Athena Scientific, Belmont (2008)

    Google Scholar 

  60. Golub, G.H., Van Loan, C.F.: Matrix Computations, 4th edn. John Hopkins University Press, Baltimore (2013)

    Google Scholar 

  61. Horn, R.A., Johnson, C.R.: Matrix Analysis, 2nd edn. Cambridge University Press, Cambridge (2013)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fabien Lauer .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Lauer, F., Bloch, G. (2019). Introduction. In: Hybrid System Identification. Lecture Notes in Control and Information Sciences, vol 478. Springer, Cham. https://doi.org/10.1007/978-3-030-00193-3_1

Download citation

Publish with us

Policies and ethics