Skip to main content

Reactive Synthesis for Robotic Swarms

  • Conference paper
  • First Online:
Book cover Formal Modeling and Analysis of Timed Systems (FORMATS 2018)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 11022))

Abstract

We consider the problem of reactive synthesis for systems with non-instantaneous actions, i.e., it may take an arbitrary amount of time for the actions of the system to complete, and meanwhile the input from the environment may also change, possibly requiring a different response from the system. The problem can be modeled as a typical reactive synthesis problem by introducing auxiliary propositions and fairness assumptions, at the expense of additional computational complexity. We develop new realizability and synthesis algorithms that address the problem without adding auxiliary propositions or assumptions. We discuss the complexity of both approaches. We then apply our algorithms to synthesize controllers for a swarm robotic system. We implement both approaches and compare them using a specific swarm task.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    If \(\mathcal {H}^\mathbf {a}(\mathbf {o})\) is undefined for any \(\mathbf {o} \in \varSigma _\mathcal {O}\), let \(\mathcal {H}^\mathbf {a}(\mathbf {o})=\mathtt{{False}}\) in the definition of \(\tau ^\mathcal {A}\).

References

  1. Raman, V., Piterman, N., Finucane, C., Kress-Gazit, H.: Timing semantics for abstraction and execution of synthesized high-level robot control. IEEE Trans. Robot. 31(3), 591–604 (2015)

    Article  Google Scholar 

  2. Brambilla, M., Ferrante, E., Birattari, M., Dorigo, M.: Swarm robotics: a review from the swarm engineering perspective. Swarm Intell. 7(1), 1–41 (2013)

    Article  Google Scholar 

  3. Nouyan, S., Campo, A., Dorigo, M.: Path formation in a robot swarm. Swarm Intell. 2(1), 1–23 (2008)

    Article  Google Scholar 

  4. Soysal, O., Sahin, E.: Probabilistic aggregation strategies in swarm robotic systems. In: Proceedings 2005 IEEE Swarm Intelligence Symposium, SIS 2005, pp. 325–332. IEEE (2005)

    Google Scholar 

  5. Labella, T.H., Dorigo, M., Deneubourg, J.L.: Division of labor in a group of robots inspired by ants’ foraging behavior. ACM Trans. Auton. Adapt. Syst. (TAAS) 1(1), 4–25 (2006)

    Article  Google Scholar 

  6. Bachrach, J., Beal, J., McLurkin, J.: Composable continuous-space programs for robotic swarms. Neural Comput. Appl. 19(6), 825–847 (2010)

    Article  Google Scholar 

  7. Balch, T., Hybinette, M.: Social potentials for scalable multi-robot formations. In: IEEE International Conference on Robotics and Automation 2000. Proceedings of ICRA 2000, vol. 1, pp. 73–80. IEEE (2000)

    Google Scholar 

  8. Moarref, S., Kress-Gazit, H.: Decentralized control of robotic swarms from high-level temporal logic specifications. In: International Symposium on Multi-Robot and Multi-Agent Systems. IEEE (2017, to appear)

    Google Scholar 

  9. Kress-Gazit, H., Fainekos, G.E., Pappas, G.J.: Temporal-logic-based reactive mission and motion planning. IEEE Trans. Robot. 25(6), 1370–1381 (2009)

    Article  Google Scholar 

  10. Wongpiromsarn, T., Topcu, U., Murray, R.M.: Receding horizon temporal logic planning. IEEE Trans. Autom. Control 57(11), 2817–2830 (2012)

    Article  MathSciNet  Google Scholar 

  11. Kress-gazit, H., Wongpiromsarn, T., Topcu, U.: Correct, reactive robot control from abstraction and temporal logic specifications. IEEE Robot. Autom. Mag. 18, 65–74 (2011)

    Article  Google Scholar 

  12. Wongpiromsarn, T., Ulusoy, A., Belta, C., Frazzoli, E., Rus, D.: Incremental synthesis of control policies for heterogeneous multi-agent systems with linear temporal logic specifications. In: IEEE International Conference on Robotics and Automation, pp. 5011–5018. IEEE (2013)

    Google Scholar 

  13. Kloetzer, M., Belta, C.: Automatic deployment of distributed teams of robots from temporal logic motion specifications. IEEE Trans. Robot. 26(1), 48–61 (2010)

    Article  Google Scholar 

  14. Nilsson, P., Ozay, N.: Control synthesis for large collections of systems with mode-counting constraints. In: Proceedings of the 19th International Conference on Hybrid Systems: Computation and Control, pp. 205–214. ACM (2016)

    Google Scholar 

  15. Kloetzer, M., Belta, C.: Hierarchical abstractions for robotic swarms. In: Proceedings 2006 IEEE International Conference on Robotics and Automation 2006. ICRA 2006, pp. 952–957. IEEE (2006)

    Google Scholar 

  16. Kloetzer, M., Ding, X.C., Belta, C.: Multi-robot deployment from LTL specifications with reduced communication. In: 2011 50th IEEE Conference on Decision and Control and European Control Conference (CDC-ECC), pp. 4867–4872. IEEE (2011)

    Google Scholar 

  17. Kress-Gazit, H., Lahijanian, M., Raman, V.: Synthesis for robots: guarantees and feedback for robot behavior. Ann. Rev. Control Robot. Auton. Syst. 1, 211–236 (2018)

    Article  Google Scholar 

  18. Church, A.: Logic, arithmetic and automata. In: Proceedings of the International Congress of Mathematicians, pp. 23–35 (1962)

    Google Scholar 

  19. Pnueli, A., Rosner, R.: On the synthesis of a reactive module. In: Proceedings of the 16th ACM Symposium on Principles of Programming Languages, pp. 179–190. ACM (1989)

    Google Scholar 

  20. Rosner, R.: Modular synthesis of reactive systems. Ph.D. thesis, Weizmann Institute of Science (1992)

    Google Scholar 

  21. Bloem, R., Jobstmann, B., Piterman, N., Pnueli, A., Sa’ar, Y.: Synthesis of reactive (1) designs. J. Comput. Syst. Sci. 78(3), 911–938 (2012)

    Article  MathSciNet  Google Scholar 

  22. Davoren, J.M., Coulthard, V., Markey, N., Moor, T.: Non-deterministic temporal logics for general flow systems. In: Alur, R., Pappas, G.J. (eds.) HSCC 2004. LNCS, vol. 2993, pp. 280–295. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24743-2_19

    Chapter  MATH  Google Scholar 

  23. Alur, R., Henzinger, T.A., Lafferriere, G., Pappas, G.J.: Discrete abstractions of hybrid systems. Proc. IEEE 88(7), 971–984 (2000)

    Article  Google Scholar 

  24. Dixon, C., Winfield, A.F., Fisher, M., Zeng, C.: Towards temporal verification of swarm robotic systems. Robot. Auton. Syst. 60(11), 1429–1441 (2012)

    Article  Google Scholar 

  25. Gjondrekaj, E., et al.: Towards a formal verification methodology for collective robotic systems. In: Aoki, T., Taguchi, K. (eds.) ICFEM 2012. LNCS, vol. 7635, pp. 54–70. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-34281-3_7

    Chapter  Google Scholar 

  26. Clarke, E.M., Grumberg, O., Peled, D.: Model Checking. MIT press, Cambridge (1999)

    Google Scholar 

  27. Bloem, R., Gabow, H.N., Somenzi, F.: An algorithm for strongly connected component analysis in n log n symbolic steps. Form. Methods Syst. Des. 28(1), 37–56 (2006)

    Article  Google Scholar 

  28. Piterman, N., Pnueli, A., Sa’ar, Y.: Synthesis of reactive (1) designs. In: Emerson, E.A., Namjoshi, K.S. (eds.) VMCAI 2006. LNCS, vol. 3855, pp. 364–380. Springer, Heidelberg (2005). https://doi.org/10.1007/11609773_24

    Chapter  Google Scholar 

  29. Raman, V., Kress-Gazit, H.: Synthesis for multi-robot controllers with interleaved motion. In: 2014 IEEE International Conference on Robotics and Automation (ICRA), pp. 4316–4321. IEEE (2014)

    Google Scholar 

  30. Vahidi, A.: JDD (2018). http://javaddlib.sourceforge.net/jdd/index.html. Accessed 16 June 2018

  31. Ehlers, R., Raman, V.: Slugs: extensible GR(1) synthesis. In: Chaudhuri, S., Farzan, A. (eds.) CAV 2016. LNCS, vol. 9780, pp. 333–339. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-41540-6_18

    Chapter  Google Scholar 

  32. Alur, R., Moarref, S., Topcu, U.: Compositional synthesis of reactive controllers for multi-agent systems. In: Chaudhuri, S., Farzan, A. (eds.) CAV 2016. LNCS, vol. 9780, pp. 251–269. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-41540-6_14

    Chapter  Google Scholar 

  33. Filiot, E., Jin, N., Raskin, J.F.: Antichains and compositional algorithms for LTL synthesis. Form. Methods Syst. Des. 39(3), 261–296 (2011)

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by DARPA N66001-17-2-4058.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Salar Moarref .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Moarref, S., Kress-Gazit, H. (2018). Reactive Synthesis for Robotic Swarms. In: Jansen, D., Prabhakar, P. (eds) Formal Modeling and Analysis of Timed Systems. FORMATS 2018. Lecture Notes in Computer Science(), vol 11022. Springer, Cham. https://doi.org/10.1007/978-3-030-00151-3_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-00151-3_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-00150-6

  • Online ISBN: 978-3-030-00151-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics