Skip to main content

Quantitative Mapping of Fish Habitat: From Knowledge to Spatialised Fishery Management

  • Conference paper
  • First Online:
Oceanography Challenges to Future Earth
  • 635 Accesses

Abstract

The delineation of essential fish habitats is necessary to identify, design and prioritize efficient marine protected area (MPA) networks with fishery objectives, capable, in addition to other possible objectives and functions of MPAs, of sustaining the renewal of marine living resources. Generally, the first step to obtain maps of essential fish habitats consists in choosing one of the numerous existing statistical approaches to build robust habitat suitability models linking relevant descriptors of the marine environment to the spatial distribution of fish presence or density. When these descriptors are exhaustively known, i.e. maps are available for each of them, geo-referenced predictions from these models and their related uncertainty may be imported into Geographic Information Systems for the quantitative identification and characterization of key sites for the marine living resources. The usefulness of such quantitative maps for management purposes is endless. These maps allow for the quantitative identification of the different habitats that are required for these marine resources to complete their life cycles and enable to measure their respective importance for population renewal and conservation. The consequences of anthropogenic pressures, not only fishing but also land reclamation, aggregate extractions or degradation of habitat quality (e.g. nutrient excess or xenobiotics loadings, invasive species or global change), on living resources, may also be simulated from such habitat models. These quantitative maps may serve as input in specific spatial planning software or to spatialise population or fishery dynamics, ecosystem or trophic models that may then be used to simulate various scenarios. Fish habitat maps thus may help decision makers to select relevant protection areas and design coherent MPA networks and management levels which objectives are to sustain fishing resources and fisheries.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ashcroft M, French K, Chisholm L (2010) An evaluation of environmental factors affecting species distributions. Ecol Model 222(3):524–531

    Google Scholar 

  • Austin MP (2007) Species distribution models and ecological theory: a critical assessment and some possible new approaches. Ecol Model 200:1–19

    Article  Google Scholar 

  • Brown K, Buja K, Jury S, Monaco M, Banner A (2000) Habitat suitability index models for eight fish and invertebrate species in Casco and sheepscot bays, Maine. N Am J Fish Manag 20:408–435

    Article  Google Scholar 

  • Brownman H, Stergiou K, Cury P, Hilborn R, Jennings S, Lotze H, Mace P, Murawski S, Pauly D, Sissenwine M, Stergiou KI, Zeller D (2004) Perspectives on ecosystem based approaches to the management of marine resources. Mar Ecol Prog Ser 274:269–303

    Article  Google Scholar 

  • Carpentier A, Martin CS, Vaz S (eds) (2009) Atlas des Habitats des resources Marines de la Manche Orientale—CHARM II/Channel Habitat Atlas for marine Resource Management—CHARM II. http://archimer.ifremer.fr/doc/00000/7377/

  • Chase JM, Leibold M (2003) Ecological niches: linking classical and contemporary approaches. University of Chicago Press, Chicago and London

    Book  Google Scholar 

  • Cheung W, Lam V, Sarmiento J, Kearney K, Watson R, Pauly D (2009) Projecting global marine biodiversity impacts under climate change scenarios. Fish Fish 10:235–251

    Article  Google Scholar 

  • Cheung WL, Lam VWY, Sarmiento JL, Kearney K, Watson R, Zeller D, Pauly D (2010) Large-scale redistribution of maximum fisheries catch potential in the global ocean under climate change. Glob Change Biol 16:24–35

    Article  Google Scholar 

  • Cordier M, Pérez Agúndez JA, O’Connor M, Rochette S, Hecq W (2011) Quantification of interdependencies between economic systems and ecosystem services: an input-output model applied to the Seine estuary. Ecol Econ 70(9):1660–1671

    Article  Google Scholar 

  • David C, Vaz S, Loots C, Antajan E, Van Der Molen J, Travers-Trolet M (2015) Understanding winter distribution and transport pathways of the invasive ctenophore Mnemiopsis leidyi in the North Sea: coupling habitat and dispersal modelling approaches. Biol Invasions 17(9):2605–2619

    Article  Google Scholar 

  • De Jonge VN, Pinto R, Turner RK (2012) Integrating ecological, economic and social aspects to generate useful management information under the EU Directives’ ‘ecosystem approach’. Ocean Coast Manag 68:169–188

    Article  Google Scholar 

  • Delavenne J, Metcalfe K, Smith RJ, Vaz S, Martin CS, Dupuis L, Coppin F, Carpentier A (2012) Systematic conservation planning in the eastern English Channel: comparing the Marxan and Zonation decision-support tools. ICES J Mar Sci 69:75–83

    Article  Google Scholar 

  • Eastwood PD, Meaden GJ, Grioche A (2001) Modelling spatial variations in spawning habitat suitability for the sole Solea solea using regression quantiles and GIS procedures. Mar Ecol Prog Ser 224:251–266

    Article  Google Scholar 

  • Elith J, Leathwick J (2009) The contribution of species distribution modelling to conservation prioritization. In: Moilanen A, Wilson KA, Possignham H (eds) Quantitative methods and computational tools. University Press, Oxford, UK, pp 196–210

    Google Scholar 

  • Grüss A, Kaplan D, Guénette S, Roberts CM, Botsford L (2011a) Consequences of adult and juvenile movement for marine protected areas. Biol Conserv 144:692–702

    Article  Google Scholar 

  • Grüss A, Kaplan DM, Hart DR (2011b) Relative impacts of adult movement, larval dispersal and harvester movement on the effectiveness of reserve networks. PLOS One 6(5):e19960

    Article  Google Scholar 

  • Guisan A, Zimmermann NE (2000) Predictive habitat distribution models in ecology. Ecol Model 135:147–186

    Article  Google Scholar 

  • Guisan A, Thuiller W (2005) Predicting species distribution: offering more than simple habitat models. Ecol Lett 8:993–1009

    Article  Google Scholar 

  • Guisan A, Lehman A, Ferrier S, Austin M, Overton J, Aspinall R, Hastie T (2006) Making better biogeographical predictions of species distribution. J Appl Ecol 43:386–392

    Article  Google Scholar 

  • Harden J (1968) Fish migration. Edward Arnold, London, UK

    Google Scholar 

  • Hayes DB, Ferreri CP, Taylor WW (1996) Linking fish habitat to their recruitment dynamics. Can J Fish Aquat Sci 53(1):383–390

    Article  Google Scholar 

  • Hattab T, Ben RaisLasram F, Albouy C, Sammari C, Romdhane MS, Cury P, Leprieur F, Le Loc’h F (2013) The use of a predictive habitat model and a fuzzy logic approach for marine management and planning. PLoS ONE 8(10):e76430. https://doi.org/10.1371/journal.pone.0076430

    Article  Google Scholar 

  • Heikkinen RK, Luoto M, Araujo MB, Virkkala R, Thuiller W, Sykes MT (2006) Methods and uncertainties in bioclimatic envelope modelling under climate change. Prog Phys Geog 30:751–777

    Article  Google Scholar 

  • Le Pape O, Chauvet F, Mahévas S, Lazure L, Guérault G, Désaunay Y (2003) Quantitative description of habitat suitability for the juvenile common sole (Soleasolea, L.) and contribution of different habitats to the adult population in the Bay of Biscay (France). J Sea Res 50(2–3):139–149

    Article  Google Scholar 

  • Le Pape O, Delavenne J, Vaz S (2014) Quantitative mapping of fish habitat: a useful tool to design spatialised management measures and Marine Protected Area with fishery objectives. Ocean Coast Manag 87:8–19

    Article  Google Scholar 

  • Leathwick J, Moilanen A, Francis M, Elith J, Taylor P, Julian K, Hastie T (2008) Novel methods for the design and evaluation of marine protected areas in offshore waters. Conserv Lett 1:91–102

    Article  Google Scholar 

  • Lelievre S, Vaz S, Martin CS, Loots C (2014) Delineating recurrent fish spawning habitats in the North Sea. J Sea Res 91:1–14

    Article  Google Scholar 

  • Loots C, Vaz S, Planque B, Koubbi P (2010) What controls the spatial distribution of North Sea plaice spawning population? Confronting ecological hypotheses through a model selection framework. ICES J Mar Sci 67:244–257

    Article  Google Scholar 

  • Margules CR, Pressey RL (2000) Systematic conservation planning. Nature 405:243–253

    Article  Google Scholar 

  • Martin CS, Carpentier A, Vaz S, Coppin F, Curet L, Dauvin JC, Delavenne J, Dewarumez JM, Dupuis L, Engelhard G, Ernande B, Foveau A, Garcia C, Gardel L, Harrop S, Just R, Koubbi P, Lauria V, Meaden GJ, Morin J, Ota Y, Rostiaux E, Smith R, Spilmont N, Vérin Y, Villanueva C, Warembourg C (2009) The Channel habitat atlas for marine resource management (CHARM): an aid for planning and decision-making in an area under strong anthropogenic pressure. Aquat Living Resour 22:499–508

    Article  Google Scholar 

  • Mello LGS, Rose GA (2005) Using geostatistics to quantify seasonal distribution and aggregation patterns of fishes: an example of Atlantic cod (Gadusmorhua). Can J Fish Aquat Sci 62:659–670

    Article  Google Scholar 

  • Meng L, Cicchetti G, Raciti S (2005) Relationships between juvenile winter flounder and multiple scale habitat variation in Narraganset Bay, Rhode Island. Trans Am Fish 134:1509–1519

    Article  Google Scholar 

  • Metcalfe K, Vaz S, Engelhard GH, Villanueva CM, Smith RJ, Mackinson S (2015) Evaluating conservation and fisheries management strategies by linking spatial prioritization software and ecosystem and fisheries modelling tools. J Appl Ecol 52(3):665–674

    Article  Google Scholar 

  • Mills CE (2001) Chapter 4 C Pelagic Cnidaria and Ctenophora. pp 23–38. In: Hines AH, Ruiz GM (eds) Marine invasive species and biodiversity of south central Alaska. Final project report, submitted to the regional citizens’ advisory council of Prince William Sound, Anchorage, Alaska 74 p

    Google Scholar 

  • Murawski SA (1993) Climate change and marine fish distributions: forecasting from analogy. Trans Am Fish Soc 122:647–658

    Article  Google Scholar 

  • Planque B, Loots C, Petitgas P, Lindstrom U, Vaz S (2011) Understanding what controls the spatial distribution of fish populations using a multi-model approach. Fish Oceanogr 20(1):1–17

    Article  Google Scholar 

  • Reecht Y, Gasche L, Lehuta S, Vaz S, Smith RJ, Mahévas S, Marchal P (2015) Toward a Dynamical approach for systematic conservation planning of Eastern English Channel fisheries. In: Marine productivity: perturbations and resilience of socio-ecosystems, pp 175–185. Springer International Publishing

    Google Scholar 

  • Rochette S, Rivot E, Morin J, Mackinson S, Riou P, Le Pape O (2010) Effect of nursery habitat destruction on flatfish population renewal. Application to common sole (Soleasolea, L.) in the Eastern Channel (Western Europe). J Sea Res 64:34–44

    Article  Google Scholar 

  • Rubec PJ, Bexley JCW, Norris H, Coyne MS, Monaco ME, Smith SG, Ault JS (1999) Suitability modeling to delineate habitat essential to sustainable fisheries. Am Fish Soc Symp 22:108–133

    Google Scholar 

  • Sale PF, Cowen RK, Danilowicz BS, Jones GP, Kritzer JP, Lindeman KC, Planes S, Polunin NV, Russ GR, Sadovy YJ (2005) Critical science gaps impede use of no-take fishery reserves. Trends Ecol Evol 20:74–80

    Article  Google Scholar 

  • Spalding MD, Fish L, Wood LJ (2008) Toward representative protection of the world’s coasts and oceans—progress, gaps, and opportunities. Conserv Lett 1(5):217–226

    Article  Google Scholar 

  • Store R, Jokimäki J (2003) A Gis-based multi-scale approach to habitat suitability modeling. Ecol Model 169:1–15

    Article  Google Scholar 

  • Ter Hofstede R, Hiddink JG, Rijnsdorp AD (2010) Regional warming changes fish species richness in the eastern North Atlantic Ocean. Mar Ecol Prog Ser 414:1–9

    Article  Google Scholar 

  • Van de Wolfshaar K, HilleRisLambers R, Gardmark A (2011) Effect of habitat productivity and exploitation on populations with complex life cycles. Mar Ecol Prog Ser 438:175–184

    Article  Google Scholar 

  • Vaz S, Vermard Y, Gardel L (2011) Predicting species distributions: the impact of exploitation and climate change (on plaice). World Conference on Marine Biodiversity, Aberdeen, 26–30 Sep 2011

    Google Scholar 

  • Wood LJ, Fish L, Laughren J, Pauly D (2008) Assessing progress towards global marine protection targets: shortfalls in information and action. Oryx 42(03):340–351

    Article  Google Scholar 

Download references

Acknowledgements

We wish to acknowledge the many colleagues who were involved in fruitful collaborations and helpful discussions and who generated many of the thoughts and results cited here.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sandrine Vaz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Vaz, S., Le Pape, O. (2019). Quantitative Mapping of Fish Habitat: From Knowledge to Spatialised Fishery Management. In: Komatsu, T., Ceccaldi, HJ., Yoshida, J., Prouzet, P., Henocque, Y. (eds) Oceanography Challenges to Future Earth. Springer, Cham. https://doi.org/10.1007/978-3-030-00138-4_25

Download citation

Publish with us

Policies and ethics