Skip to main content

Diabetes in Kidney Transplant Recipients

  • Chapter
  • First Online:
Kidney Transplant Management

Abstract

Preexisting diabetes is common in kidney transplant recipients as it is a leading cause of end-stage renal disease. Hyperglycemia is present in nearly 90% of kidney transplant recipients in immediate postoperative period but it is not sustained in the majority. In addition to the general risk factors for diabetes, certain transplantation related variables (e.g. specific immunosuppressive agents, surgical stress and inflammation, nutritional interventions) place this patient population at elevated risk for hyperglycemia. Preexisting diabetes and posttransplantation diabetes confer reduced patient and graft survival in kidney transplant recipients.

Robust evidence base guiding precise glycemic goals is lacking in kidney transplant recipients. Management is largely guided by evidence from general diabetes population. Hospital management of hyperglycemia is primarily achieved through insulin regimen that takes into account rapid changes in glucocorticoid doses, nutritional modalities, renal function, during immediate posttransplantation period. There is an opportunity to use oral or non-insulin injectable agents in a considerable number of patients by the time of discharge from the hospital or in the long run. Use of specific oral or non-insulin injectable agent is guided by patient specifics and pharmacologic properties of medications. A comprehensive approach to addressing additional risk factors and comorbidities is required to reduce the micro- and macro-vascular complications from diabetes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. American Diabetes Association. Classification and Diagnosis of Diabetes: Standards of Medical Care in Diabetes—2018. Diabetes Care. 2018;41.(Supplement 1:S13–27.

    Article  Google Scholar 

  2. Davidson J, Wilkinson A, Dantal J, et al. New-onset diabetes after transplantation: 2003 international consensus guidelines. Transplantation. 2003;75(10):3–24.

    Google Scholar 

  3. Sharif A, Hecking M, de Vries APJ, et al. Proceedings from an international consensus meeting on posttransplantation diabetes mellitus: recommendations and future directions. Am J Transplant. 2014;14(9):1992–2000.

    Article  CAS  Google Scholar 

  4. Shivaswamy V, Boerner B, Larsen J. Post-transplant diabetes mellitus: causes, treatment, and impact on outcomes. Endocr Rev. 2016;37(1):37–61.

    Article  CAS  Google Scholar 

  5. Hart A, Smith JM, Skeans MA, et al. OPTN/SRTR 2015 annual data report: kidney. Am J Transplant. 2017;17(S1):21–116.

    Article  Google Scholar 

  6. Mourad G, Glyda M, Albano L, et al. Incidence of posttransplantation diabetes mellitus in de novo kidney transplant recipients receiving prolonged-release tacrolimus-based immunosuppression with 2 different corticosteroid minimization strategies. Transplantation. 2017;101(8):1924–34.

    Article  CAS  Google Scholar 

  7. Hecking M, Werzowa J, Haidinger M, et al. Novel views on new-onset diabetes after transplantation: development, prevention and treatment. Nephrol Dial Transplant. 2013;28(3):550–66.

    Article  Google Scholar 

  8. Ghisdal L, Van Laecke S, Abramowicz MJ, Vanholder R, Abramowicz D. New-onset diabetes after renal transplantation: risk assessment and management. Diabetes Care. 2012;35(1):181–8.

    Article  CAS  Google Scholar 

  9. Klaassen G, Corpeleijn E, Deetman NPE, Navis GJ, Bakker SJL, Zelle DM. Liver enzymes and the development of Posttransplantation diabetes mellitus in renal transplant recipients. Transplant Direct. 2017;3(9):e208.

    Article  CAS  Google Scholar 

  10. Shin J-I, Palta M, Djamali A, Astor BC. Higher pretransplantation hemoglobin A1c is associated with greater risk of posttransplant diabetes mellitus. Kidney Int Reports. 2017;2(6):1076–87.

    Article  Google Scholar 

  11. Visscher PM, Wray NR, Zhang Q, et al. 10 years of GWAS discovery: biology, function, and translation. Am J Hum Genet. 2017;101(1):5–22.

    Article  CAS  Google Scholar 

  12. Voight BF, Scott LJ, Steinthorsdottir V, et al. Twelve type 2 diabetes susceptibility loci identified through large-scale association analysis. Nat Genet. 2010;42(7):579–89.

    Article  CAS  Google Scholar 

  13. Fuchsberger C, Flannick J, Teslovich TM, et al. The genetic architecture of type 2 diabetes. Nature. 2016;536(7614):41–7.

    Article  CAS  Google Scholar 

  14. Benson KA, Maxwell AP, McKnight AJ. A HuGE Review and Meta-analyses of genetic associations in new onset diabetes after kidney transplantation. Stepkowski S, ed. PLoS One. 2016;11(1):e0147323.

    Article  Google Scholar 

  15. Dharnidharka VR, Naik AS, Axelrod DA, et al. Center practice drives variation in choice of US kidney transplant induction therapy: a retrospective analysis of contemporary practice. Transpl Int. 2018;31(2):198–211.

    Article  CAS  Google Scholar 

  16. Hwang JL, Weiss RE. Steroid-induced diabetes: a clinical and molecular approach to understanding and treatment. Diabetes Metab Res Rev. 2014;30(2):96–102. https://doi.org/10.1002/dmrr.2486.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Pirsch JD, Henning AK, First MR, et al. New-onset diabetes after transplantation: results from a double-blind early corticosteroid withdrawal trial. Am J Transplant. 2015;15(7):1982–90.

    Article  CAS  Google Scholar 

  18. Haller MC, Royuela A, Nagler EV, Pascual J, Webster AC. Steroid avoidance or withdrawal for kidney transplant recipients. Cochrane Database Syst Rev. 2016;8:CD005632.

    Google Scholar 

  19. Mayer AD, Dmitrewski J, Squifflet JP, et al. Multicenter randomized trial comparing tacrolimus (FK506) and cyclosporine in the prevention of renal allograft rejection: a report of the European Tacrolimus Multicenter Renal Study Group. Transplantation. 1997;64(3):436–43.

    Article  CAS  Google Scholar 

  20. Shapiro R, Jordan M, Fung J, et al. Kidney transplantation under FK 506 immunosuppression. Transplant Proc. 1991;23(1 Pt 2):920–3.

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Vincenti F, Friman S, Scheuermann E, et al. Results of an international, randomized trial comparing glucose metabolism disorders and outcome with cyclosporine versus tacrolimus. Am J Transplant. 2007;7(6):1506–14.

    Article  CAS  Google Scholar 

  22. Sharif A, Shabir S, Chand S, Cockwell P, Ball S, Borrows R. Meta-analysis of calcineurin-inhibitor-sparing regimens in kidney transplantation. J Am Soc Nephrol. 2011;22(11):2107–18.

    Article  CAS  Google Scholar 

  23. Øzbay L, Smidt K, Mortensen D, Carstens J, Jørgensen K, Rungby J. Cyclosporin and tacrolimus impair insulin secretion and transcriptional regulation in INS-1E beta-cells. Br J Pharmacol. 2011;162(1):136–46.

    Article  Google Scholar 

  24. Triñanes J, Rodriguez-Rodriguez AE, Brito-Casillas Y, et al. Deciphering tacrolimus-induced toxicity in pancreatic β cells. Am J Transplant. 2017;17(11):2829–40.

    Article  Google Scholar 

  25. Porrini E, Delgado P, Alvarez A, et al. The combined effect of pre-transplant triglyceride levels and the type of calcineurin inhibitor in predicting the risk of new onset diabetes after renal transplantation. Nephrol Dial Transplant. 2007;23(4):1436–41.

    Article  Google Scholar 

  26. Huang JW, Famure O, Li Y, Kim SJ. Hypomagnesemia and the risk of new-onset diabetes mellitus after kidney transplantation. J Am Soc Nephrol. 2016;27(6):1793–800.

    Article  CAS  Google Scholar 

  27. Montero N, Pascual J. Immunosuppression and post-transplant hyperglycemia. Curr Diabetes Rev. 2015;11(3):144–54.

    Article  CAS  Google Scholar 

  28. Johnston O, Rose CL, Webster AC, Gill JS. Sirolimus is associated with new-onset diabetes in kidney transplant recipients. J Am Soc Nephrol. 2008;19(7):1411–8.

    Article  Google Scholar 

  29. Cibrik D, Arcona S, Vasquez E, Baillie GM, Irish W. Long-term experience with everolimus in kidney transplantation in the United States. Transplant Proc. 2011;43(7):2562–7.

    Article  CAS  Google Scholar 

  30. Murakami N, Riella LV, Funakoshi T. Risk of metabolic complications in kidney transplantation after conversion to mTOR inhibitor: a systematic review and meta-analysis. Am J Transplant. 2014;14(10):2317–27.

    Article  CAS  Google Scholar 

  31. Vergès B, Cariou B. mTOR inhibitors and diabetes. Diabetes Res Clin Pract. 2015;110(2):101–8.

    Article  Google Scholar 

  32. Kidney Disease: Improving Global Outcomes (KDIGO) Transplant Work Group. Special issue: KDIGO clinical practice guideline for the care of kidney transplant recipients. Am J Transplant. 2009;9:S1–S155.

    Google Scholar 

  33. Stevens RB, Lane JT, Boerner BP, et al. Single-dose rATG induction at renal transplantation: superior renal function and glucoregulation with less hypomagnesemia. Clin Transpl. 2012;26(1):123–32.

    Article  CAS  Google Scholar 

  34. Aasebo W, Midtvedt K, Valderhaug TG, et al. Impaired glucose homeostasis in renal transplant recipients receiving basiliximab. Nephrol Dial Transplant. 2010;25(4):1289–93.

    Article  CAS  Google Scholar 

  35. Morgan RD, O’Callaghan JM, Knight SR, Morris PJ. Alemtuzumab induction therapy in kidney transplantation. Transp J. 2012;93(12):1179–88.

    Article  CAS  Google Scholar 

  36. Zheng J, Song W. Alemtuzumab versus antithymocyte globulin induction therapies in kidney transplantation patients. Medicine (Baltimore). 2017;96(28):e7151.

    Article  CAS  Google Scholar 

  37. Palermo NE, Gianchandani RY, McDonnell ME, Alexanian SM. Stress hyperglycemia during surgery and anesthesia: pathogenesis and clinical implications. Curr Diab Rep. 2016;16(3):33.

    Article  Google Scholar 

  38. Hotamisligil GS. Inflammation, metaflammation and immunometabolic disorders. Nature. 2017;542(7640):177–85.

    Article  CAS  Google Scholar 

  39. Baid-Agrawal S, Frei U, Reinke P, et al. Impaired insulin sensitivity as an underlying mechanism linking hepatitis C and posttransplant diabetes mellitus in kidney recipients. Am J Transplant. 2009;9(12):2777–84.

    Article  CAS  Google Scholar 

  40. Abou-Ayache R, Büchler M, Le Pogamp P, et al. The influence of cytomegalovirus infections on patient and renal graft outcome: a 3-year, multicenter, observational study (post-ECTAZ study). Transplant Proc. 2011;43(7):2630–5.

    Article  CAS  Google Scholar 

  41. Revanur VK, Jardine AG, Kingsmore DB, Jaques BC, Hamilton DH, Jindal RM. Influence of diabetes mellitus on patient and graft survival in recipients of kidney transplantation. Clin Transpl. 2001;15(2):89–94.

    Article  CAS  Google Scholar 

  42. Cosio FG, Pesavento TE, Kim S, Osei K, Henry M, Ferguson RM. Patient survival after renal transplantation: IV. Impact of post-transplant diabetes. Kidney Int. 2002;62(4):1440–6.

    Article  Google Scholar 

  43. Tillmann FP, Radtke A, Rump LC, Quack I. Effect of prediabetes on allograft survival and evolution of new-onset diabetes after transplant in deceased-donor kidney transplant recipients during long-term follow-up. Exp Clin Transplant. 2017;15(6):620–6.

    PubMed  Google Scholar 

  44. Valderhaug TG, Hjelmesæth J, Hartmann A, et al. The association of early post-transplant glucose levels with long-term mortality. Diabetologia. 2011;54(6):1341–9.

    Article  CAS  Google Scholar 

  45. Wauters RP, Cosio FG, Suarez Fernandez ML, Kudva Y, Shah P, Torres VE. Cardiovascular consequences of new-onset hyperglycemia after kidney transplantation. Transp J. 2012;94(4):377–82.

    Article  CAS  Google Scholar 

  46. Eide IA, Halden TAS, Hartmann A, Dahle DO, Åsberg A, Jenssen T. Associations between Posttransplantation diabetes mellitus and renal graft survival. Transplantation. 2017;101(6):1282–9.

    Article  Google Scholar 

  47. Burroughs TE, Swindle J, Takemoto S, et al. Diabetic complications associated with new-onset diabetes mellitus in renal transplant recipients. Transplantation. 2007;83(8):1027–34.

    Article  Google Scholar 

  48. American Diabetes Association AD. 10. Microvascular complications and foot care: standards of medical care in diabetes-2018. Diabetes Care. 2018;41(Suppl 1):S105–18.

    Article  Google Scholar 

  49. Lo C, Jun M, Badve SV, et al. Glucose-lowering agents for treating pre-existing and new-onset diabetes in kidney transplant recipients. Cochrane Database Syst Rev. 2017;2:CD009966.

    PubMed  Google Scholar 

  50. Sathya B, Davis R, Taveira T, Whitlatch H, Wu W-C. Intensity of peri-operative glycemic control and postoperative outcomes in patients with diabetes: a meta-analysis. Diabetes Res Clin Pract. 2013;102(1):8–15.

    Article  CAS  Google Scholar 

  51. American Diabetes Association. Diabetes care in the hospital: standards of medical care in diabetes-2018. Diabetes Care. 2018;41(Suppl 1):S144–51.

    Article  Google Scholar 

  52. Umpierrez GE, Hellman R, Korytkowski MT, et al. Management of hyperglycemia in hospitalized patients in non-critical care setting: an endocrine society clinical practice guideline. J Clin Endocrinol Metab. 2012;97(1):16–38.

    Article  CAS  Google Scholar 

  53. Smiley D, Rhee M, Peng L, et al. Safety and efficacy of continuous insulin infusion in noncritical care settings. J Hosp Med. 2010;5(4):212–7.

    Article  Google Scholar 

  54. Schmeltz L, DeSantis A, Schmidt K, et al. Conversion of intravenous insulin infusions to subcutaneously administered insulin glargine in patients with hyperglycemia. Endocr Pract. 2006;12(6):641–50.

    Article  Google Scholar 

  55. Hsia E, Seggelke S, Gibbs J, et al. Subcutaneous administration of glargine to diabetic patients receiving insulin infusion prevents rebound hyperglycemia. J Clin Endocrinol Metab. 2012;97(9):3132–7.

    Article  CAS  Google Scholar 

  56. Casaer MP, Ziegler TR. Nutritional support in critical illness and recovery. Lancet Diabetes Endocrinol. 2015;3(9):734–45.

    Article  Google Scholar 

  57. Garber AJ, Abrahamson MJ, Barzilay JI, et al. AACE/ACE comprehensive diabetes management algorithm 2015. Endocr Pract. 2015;21(4):438–47.

    Article  Google Scholar 

  58. O’Malley CW, Emanuele M, Halasyamani L, Amin AN, Society of Hospital Medicine Glycemic Control Task Force. Bridge over troubled waters: safe and effective transitions of the inpatient with hyperglycemia. J Hosp Med. 2008;3(5 Suppl):55–65.

    Article  Google Scholar 

  59. Umpierrez GE, Smiley D, Jacobs S, et al. Randomized study of basal-bolus insulin therapy in the inpatient management of patients with type 2 diabetes undergoing general surgery (RABBIT 2 surgery). Diabetes Care. 2011;34(2):256–61.

    Article  CAS  Google Scholar 

  60. Kwon S, Hermayer KL, Hermayer K. Glucocorticoid-induced hyperglycemia. Am J Med Sci. 2013;345(4):274–7.

    Article  Google Scholar 

  61. Dhital S, Shenker Y, Meredith M, Davis D. A retrospective study comparing neutral protamine hagedorn insulin with glargine as basal therapy in prednisone-associated diabetes mellitus in hospitalized patients. Endocr Pract. 2012;18(5):712–9.

    Article  Google Scholar 

  62. Inzucchi SE, Bergenstal RM, Buse JB, et al. Management of Hyperglycemia in type 2 diabetes, 2015: a patient-centered approach: update to a position statement of the American Diabetes Association and the European Association for the Study of Diabetes. Diabetes Care. 2015;38(1):140–9.

    Article  Google Scholar 

  63. American Diabetes Association. Pharmacologic approaches to glycemic treatment: standards of medical care in diabetes-2018. Diabetes Care. 2018;41(Suppl 1):S73–85.

    Article  Google Scholar 

  64. Stephen J, Anderson-Haag TL, Gustafson S, Snyder JJ, Kasiske BL, Israni AK. Metformin use in kidney transplant recipients in the United States: an observational study. Am J Nephrol. 2014;40(6):546–53.

    Article  CAS  Google Scholar 

  65. Halden TAS, Egeland EJ, Åsberg A, et al. GLP-1 restores altered insulin and glucagon secretion in posttransplantation diabetes. Diabetes Care. 2016;39(4):617–24.

    Article  CAS  Google Scholar 

  66. Pinelli NR, Patel A, Salinitri FD. Coadministration of liraglutide with tacrolimus in kidney transplant recipients: a case series. Diabetes Care. 2013;36(10):e171–2.

    Article  Google Scholar 

  67. Kharazmkia A, Ahmadpoor P, Ziaei S, et al. Effects of pioglitazone on blood glucose and inflammatory markers of diabetic kidney transplant patients: a randomized controlled trial. Iran J Kidney Dis. 2014;8(5):408–16.

    PubMed  Google Scholar 

  68. Werzowa J, Hecking M, Haidinger M, et al. Vildagliptin and pioglitazone in patients with impaired glucose tolerance after kidney transplantation: a randomized, placebo-controlled clinical trial. Transplantation. 2013;95(3):456–62.

    Article  CAS  Google Scholar 

  69. Pietruck F, Kribben A, Van TN, et al. Rosiglitazone is a safe and effective treatment option of new-onset diabetes mellitus after renal transplantation. Transpl Int. 2005;18(4):483–6.

    Article  CAS  Google Scholar 

  70. Haidinger M, Werzowa J, Hecking M, et al. Efficacy and safety of vildagliptin in new-onset diabetes after kidney transplantation-a randomized, double-blind, placebo-controlled trial. Am J Transplant. 2014;14(1):115–23.

    Article  CAS  Google Scholar 

  71. Lane JT, Odegaard DE, Haire CE, Collier DS, Wrenshall LE, Stevens RB. Sitagliptin therapy in kidney transplant recipients with new-onset diabetes after transplantation. Transplantation. 2011;92(10):e56–7.

    Article  Google Scholar 

  72. Strom Halden TA, Asberg A, Vik K, Hartmann A, Jenssen T. Short-term efficacy and safety of sitagliptin treatment in long-term stable renal recipients with new-onset diabetes after transplantation. Nephrol Dial Transplant. 2014;29(4):926–33.

    Article  CAS  Google Scholar 

  73. Boerner BP, Miles CD, Shivaswamy V. Efficacy and safety of sitagliptin for the treatment of new-onset diabetes after renal transplantation. Int J Endocrinol. 2014;2014:1–9.

    Article  Google Scholar 

  74. Chidester PD, Connito DJ. Interaction between glipizide and cyclosporine: report of two cases. Transplant Proc. 1993;25(2):2136–7.

    CAS  PubMed  Google Scholar 

  75. Sagedal S, Asberg A, Hartmann A, Bergan S, Berg KJ. Glipizide treatment of post-transplant diabetes does not interfere with cyclosporine pharmacokinetics in renal allograft recipients. Clin Transpl. 1998;12(6):553–6.

    CAS  Google Scholar 

  76. Tuerk TR, Bandur S, Nuernberger J, et al. Gliquidone therapy of new-onset diabetes mellitus after kidney transplantation. Clin Nephrol. 2008;70(1):26–32.

    Article  CAS  Google Scholar 

  77. Türk T, Pietruck F, Dolff S, et al. Repaglinide in the management of new-onset diabetes mellitus after renal transplantation. Am J Transplant. 2006;6(4):842–6.

    Article  Google Scholar 

  78. American Diabetes Association. Comprehensive medical evaluation and assessment of comorbidities: standards of medical care in diabetes-2018. Diabetes Care. 2018;41(Suppl 1):S28–37.

    Article  Google Scholar 

  79. American Diabetes Association. Lifestyle management: standards of medical care in diabetes-2018. Diabetes Care. 2018;41(Suppl 1):S38–50.

    Article  Google Scholar 

  80. Sharif A, Moore R, Baboolal K. Influence of lifestyle modification in renal transplant recipients with postprandial hyperglycemia. Transplantation. 2008;85(3):353–8.

    Article  Google Scholar 

  81. Diabetes Prevention Program Research Group, Knowler WC, Fowler SE, et al. 10-year follow-up of diabetes incidence and weight loss in the Diabetes Prevention Program Outcomes Study. Lancet. 2009;374(9702):1677–86.

    Article  Google Scholar 

  82. Lindström J, Ilanne-Parikka P, Peltonen M, et al. Sustained reduction in the incidence of type 2 diabetes by lifestyle intervention: follow-up of the Finnish Diabetes Prevention Study. Lancet. 2006;368(9548):1673–9.

    Article  Google Scholar 

  83. Li G, Zhang P, Wang J, et al. The long-term effect of lifestyle interventions to prevent diabetes in the China Da Qing Diabetes Prevention Study: a 20-year follow-up study. Lancet. 2008;371(9626):1783–9.

    Article  Google Scholar 

  84. American Diabetes Association. Prevention or delay of type 2 diabetes: standards of medical care in diabetes-2018. Diabetes Care. 2018;41(Suppl 1):S51–4.

    Article  Google Scholar 

  85. Gazzetta PG, Bissolati M, Saibene A, et al. Bariatric surgery to target obesity in the renal transplant population: preliminary experience in a single center. Transplant Proc. 2017;49(4):646–9.

    Article  CAS  Google Scholar 

  86. Viscido G, Gorodner V, Signorini FJ, et al. Sleeve gastrectomy after renal transplantation. Obes Surg. 2018;28:1587–94.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Subarna M. Dhital .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Dhital, S.M. (2019). Diabetes in Kidney Transplant Recipients. In: Parajuli, S., Aziz, F. (eds) Kidney Transplant Management. Springer, Cham. https://doi.org/10.1007/978-3-030-00132-2_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-00132-2_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-00131-5

  • Online ISBN: 978-3-030-00132-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics