Skip to main content

Abstract

In 1957 chromium(Cr) was proposed as an essential element, vital for the life and normal development of animals and humans. In the natural environment, the activity of compounds containing chromium in the third and the sixth oxidation states differs substantially, Cr(III) and Cr(VI), respectively. Trivalent Cr is essential for humans and animals; it shapes the proper glucose metabolism through participation in the glucose tolerance factor (GTF) and is involved in metabolism of hydrocarbons, proteins, and lipids. Chromium supplementation brings positive results only at small doses though. Chromium-deficient nutrition impairs glucose tolerance and insulin function, alters protein metabolism, and negatively affects both growth and reproduction.

Hexavalent Cr is a strong oxidant, easily penetrating into living organisms, being reduced to Cr(III) in cells. Industrial production is a source of Cr-containing wastes, which contaminate the water and air and, in consequence, the soil. Emission of chromium to the atmosphere is mainly due to combustion of coal and other fossil fuels but also results from iron and nonferrous metal smelting. Hexavalent Cr, which acts oxidatively, is very toxic. Anthropogenic Cr soil contamination is a result of atmospheric deposition of dust but also industrial wastes discharged into the soil from paint factories, tanneries, sewage treatment plants, and chrome-steel scrap piles. Chromium is toxic to plants and accumulated in the roots and is to a limited extent transferred to overground parts of plants. In the cells of mammals and birds, Cr(VI) is reduced to Cr(III), which produces highly toxic-free radicals. Hexavalent Cr is carcinogenic to homeothermic vertebrates. Reproduction disorders were observed in mammals. In males, exposure to high Cr level deteriorates the quality of semen, leads to testicular disorders, and reduces libido. In females, Cr negatively affects fertility. A high level of Cr in the environment is mutagenic, carcinogenic, and teratogenic to birds; concentration of chromium in avian lungs increases with age, which implies equivalence of diet and air as sources of Cr intoxication. Studies show that chromium exhibits no biomagnification. On the contrary, with an increase in the trophic level, the concentration of Cr considerably decreases. This is referred to as “biominification.” In this chapter are presented the effect of exposure to hexavalent Cr and chromium content in avian and mammalian soft tissues as well as in feathers and hair.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abraham AS, Brooks BA, Eylath U (1992) The effects of chromium supplementation on serum glucose and lipids in patients with and without non-insulin dependent diabetes. Metabolism 41:768–771

    Article  CAS  Google Scholar 

  • Adema DMM, Henzen L (1989) A comparison of plant toxicities of some industrial chemicals in soil culture and soilless culture. Ecotoxicol Environ Saf 18:19–229

    Article  Google Scholar 

  • Aghdasi S, Mansoori J, Mashayekhi HA (2013) To study the amount of cadmium and chromium in the feathers of emigrant birds in Fereydoonkenar International Wetland. Int J Agri Crop Sci 5:1730–1734

    Google Scholar 

  • Aldrich MV, Gardea-Torresdey JL, Peralta-Videa JR, Parsons JG (2003) Uptake and reduction of Cr(VI) to Cr(III) by mesquite (Prosopis spp.): chromate-plant interaction in hydroponics and solid media studied using XAS. Environ Sci Technol 37:1859–1864

    Article  CAS  Google Scholar 

  • Alhashemi AS, Karbassi AR, Kiabi BH, Monavari SM, Nabavi SM, Sekhavatjou MS (2011) Bioaccumulation of trace elements in trophic levels of wetland plants and waterfowl birds. Biol Trace Elem Res 142:500–516

    Article  CAS  Google Scholar 

  • Alleva E, Francia N, Pandolfi M, De Marinis AM, Chiarotti F, Santucci D (2006) Organochlorine and heavy-metal contaminants in wild mammals and birds of Urbino-Pesaro Province, Italy: an analytic overview for potential bioindicators. Arch Environ Contam Toxicol 51:123–134

    Article  CAS  Google Scholar 

  • Ambeskovic M, Fuchs E, Beaumier P, Gerken M, Metz GA (2013) Hair trace elementary profiles in aging rodents and primates: links to altered cell homeodynamics and disease. Biogerontology 14:557–567

    Article  CAS  Google Scholar 

  • Amici A, Danieli PP, Russo C, Primi R, Ronchi B (2012) Concentrations of some toxic and trace elements in wild boar (Sus scrofa) organs and tissues in different areas of the Province of Viterbo, Central Italy. Ital J Anim Sci 11(4):e65

    Article  Google Scholar 

  • Anderson RA (1988) Chromium. In: Smith K (ed) Trace minerals in food. Marcel Dekker, New York, pp 231–247

    Google Scholar 

  • Anderson RA (1993) Recent advances in clinical and biochemical effect sod chromium deficiency. Prog Clin Biol Res 380:221–234

    CAS  Google Scholar 

  • Anderson RA (1995) Chromium and parenteral nutrition. Nutrition 11:83–86

    CAS  Google Scholar 

  • Anderson RA (1997) Chromium as an essential nutrient for humans. Regul Toxicol Pharmacol 26:35–41

    Article  Google Scholar 

  • Anderson RA (1998) Chromium, glucose intolerance and diabetes. J Am Coll Nutr 17:548–555

    Article  CAS  Google Scholar 

  • Anderson RA, Bryden NA, Polansky MM, Richards MP (1989) Chromium supplementation of turkeys: effect on tissue chromium. J Agric Food Chem 37:131–134

    Article  CAS  Google Scholar 

  • Anderson RA, Polansky MM, Bryden NA, Canary JJ (1991) Supplemental-chromium effects on glucose, insulin, glucagon and urinary chromium losses in subjects consuming controlled low-chromium diets. Am J Clin Nutr 54:909–916

    Article  CAS  Google Scholar 

  • Anderson RA, Bryden NA, Polansky MM, Gautschi K (1996) Dietary chromium effects on tissue chromium concentrations and chromium absorption in rats. J Trace Elem Exp Med 9:11–25

    Article  CAS  Google Scholar 

  • Anderson RA, Bryden NA, Polansky MM (1997) Lack of toxicity of chromium chloride and chromium picolinate in rats. J Am Coll Nutr 16:273–279

    Article  CAS  Google Scholar 

  • Ani M, Moshtaghie AA (1992) The effect of chromium on parameters related to iron metabolism. Biol Trace Elem Res 32:57–64

    Article  CAS  Google Scholar 

  • Anke M, Jaritz M, Holzinger S, Arnhold W, Müller R, Angelow L, Choppe C (2001) Nutrients, macro-, trace-, and ultratrace elements in the food chain of mouflons and their mineral status. In: Nahlik A, Uloth W (eds), Proceedings of the third international symposium on Mouflon, Sopron, pp 262–280

    Google Scholar 

  • Anke M, Schäfer U, Jaritz M, Seifert M, Müller R (2005) Chromium in the food chain – essentiality, metalopharmaceutical effects and toxicity. Proceedings of the 5th international symposium on trace elements in human: new perspectives, Athens/Greece, pp 554–581 (www.med.uoa.gr)

  • Aruldhas MM, Subramanian S, Sehkar P, Venkatesh G, Chandrakasan G, Govindarajulu P et al (2005) Chronic chromium exposure induced changes in testicular histoarchitechture are associated with oxidative stress: study in a non-human primate (Macaca radiata Geoffrey). Hum Reprod 20:801–2813

    Article  CAS  Google Scholar 

  • Arunkumar RI, Rajasekaran P, Michael RD (2000) Differential effect of chromium compounds on the immune response of the African mouth breeder Oreochromis mossambicus (Peters). Fish Shellfish Immunol 10:667–676

    Article  CAS  Google Scholar 

  • Arvizu RR, Domínguez IA, Rubio MS, Bórquez JL, Pinos-Rodríguez JM, González M, Jaramillo G (2011) Effects of genotype, level of supplementation, and organic chromium on growth performance, carcass and meat traits grazing lamb. Meat Sci 88:404–408

    Article  CAS  Google Scholar 

  • Asano R, Suzuki K, Otsuka M, Sakurai H (2002) Concentrations of toxic metals and essential minerals in the mane hair of healthy racing horses and their relation to age. J Vet Med Sci 64:607–610

    Article  CAS  Google Scholar 

  • Aslan A, Yavuz M, Kaska Y, Erdoğan A, Kiziroğlu I (2006) Preliminary study on feeding ecology and heavy metal accumulation of white-spectacled bulbul (Pycnonotus xanthopygos), Antalya - Turkey. Fresenius Environ Bull 15:1174–1181

    CAS  Google Scholar 

  • ATSDR (Agency for Toxic Substances and Disease Registry) (2000) Toxicological Profile for Chromium, U.S. Department of Health and Human Services, Washington, DC

    Google Scholar 

  • ATSDR (Agency for Toxic Substances and Disease Registry) (2008) Draft Toxicological Profile for Chromium: for public comment. U.S. Department of Health and Human Services. http://www.atsdr.cdc.gov/toxprofiles/tp7.pdf. Accessed 13 Jan 2012

  • ATSDR (Agency for Toxic Substances and Disease Registry) (2012) Toxicological profile for chromium. Atlanta, GA, U.S. Department of Health and Human Services, Public Health Service, Agency for Toxic Substances and Disease Registry (http://www.atsdr.cdc.gov/toxprofiles/tp7.pdf)

  • Azam I, Afsheen S, Zia A, Javed M, Saeed R, Sarwar MK et al (2015) Evaluating insects as bioindicators of heavy metal contamination and accumulation near industrial area of Gujrat, Pakistan. BioMed Res Int. Article ID 942751. doi:https://doi.org/10.1155/2015/942751

    Article  CAS  Google Scholar 

  • Bagchi D, Stohs SJ, Downs BW, Bagchi M, Preuss HG (2002) Cytotoxicity and oxidative mechanisms of different forms of chromium. Toxicology 180:5–22

    Article  CAS  Google Scholar 

  • Bagchi D, Downs BW, Preuss HG (2003) Reply to the editor (cytotoxicity and oxidative mechanisms of different forms of chromium). Toxicology 186:175–177

    Article  CAS  Google Scholar 

  • Barałkiewicz D, Siepak J (1999) Chromium, nickel and cobalt in environmental samples and existing legal norms. Pol J Environ Stud 8(4):201–208

    Google Scholar 

  • Barceloux DG (1999) Chromium. Clin Toxicol 37:173–194

    CAS  Google Scholar 

  • Barnhart J (1997) Occurrences, uses, and properties of chromium. Regul Toxicol Pharm 26:S3–S7

    Article  CAS  Google Scholar 

  • Bartlett RJ (1991) Chromium cycling in soils and water: links, gaps and methods. Environ Health Perspect 92:17–24

    Article  CAS  Google Scholar 

  • Batic M, Raspor P (1998) Uptake and bioaccumulation of Cr (III) in yeast Saccharomyces cerevisiae. Food Technol Biotechnol 36:291–297

    CAS  Google Scholar 

  • Bequer T, Quantin C, Sicot M, Boudot JP (2003) Chromium availability in ultramafic soil from New Caledonia. Sci Total Environ 301:251–261

    Article  Google Scholar 

  • Beyer WN, Day D (2004) Role of manganese oxides in the exposure of mute swans (Cygnus olor) to Pb and other elements in the Chesapeake Bay, USA. Environ Pollut 129:229–235

    Article  CAS  Google Scholar 

  • Beyer WN, Miller G, Simmers JW (1990) Trace elements in soil and biota in confined disposal facilities for dredged material. Environ Pollut 65:19–32

    Article  CAS  Google Scholar 

  • Bielicka A, Bojanowska I, Wiśniewski A (2005) Two faces of chromium-pollutant and bioelement. Pol J Environ Stud 14:5–10

    CAS  Google Scholar 

  • Bojar H, Bojar I (2009) Monitoring of contamination of the Lublin region wetlands using mallards (Anas platyrhynchos) as a vector of the contamination by various conditionally toxic elements. Ann Anim Sci 9:195–204

    Google Scholar 

  • Borel JS, Anderson RA (1984) Chromium. In: Frieden E (ed) Biochemistry of the essential ultratrace elements. Plenum Press, New York and London, pp 175–199

    Chapter  Google Scholar 

  • Brady D, Letebele B, Duncan JR, Rose PD (1994) Bioaccumulation of metals by Scenedesmus, Selenastrum and Chlorella algae. Water SA 20:213–218

    CAS  Google Scholar 

  • Brown M (2003) Harnessing chromium in the fight against diabetes. Drug Discov Today 8:962–963

    Article  Google Scholar 

  • Bruckwicki P, Giggleman C, Lewis J (2006) An investigation of contaminant levels in white-tailed deer (Odocoileus virginianus) collected from Caddo Lake National Wildlife Refuge, Harrison County, Texas 2005 Project ID Nos.: DEC No. 200520002; FFS No. 2N53

    Google Scholar 

  • Brzezinski M, Zalewski A, Niemczynowicz A, Jarzyna I, Suska-Malawska M (2014) The use of chemical markers for the identification of farm escapees in feral mink populations. Ecotoxicology 23:767–778

    Article  CAS  Google Scholar 

  • Buerge IB, Hug SJ (1999) Influence of mineral surfaces on chromium (VI) reduction by iron (II). Environ Sci Technol 33:4285–4291

    Article  CAS  Google Scholar 

  • Burger J (1993) Metals in avian feathers: bioindicators of environmental pollution. Rev Environ Toxicol 5:203–311

    Google Scholar 

  • Burger J (1996) Heavy metals and selenium levels in feathers of Franklin’s Gulls in interior North America. Auk 113:399–407

    Article  Google Scholar 

  • Burger J (2013) Temporal trends (1989-2011) in levels of mercury and other heavy metals in feathers of fledgling great egrets nesting in Barnegat Bay, NJ. Environ Res 122:11–17

    Article  CAS  Google Scholar 

  • Burger J, Gochfeld M (1985) Comparisons of nine heavy metals in salt gland and liver of greater scaup (Aythya marila), black duck (Anas rubripes) and mallard (A. platyrhynchos). Comp Biochem Physiol 81C:287–292

    CAS  Google Scholar 

  • Burger J, Seyboldt S, Morganstein N, Clark K (1993) Heavy metals and selenium in feathers of three shorebird species from Delaware Bay. Environ Monit Assess 28:189–198

    Article  CAS  Google Scholar 

  • Burger J, Marquez M, Gochfeld M (1994) Heavy metals in the hair of opossum from Palo Verde, Costa Rica. Arch Environ Contam Toxicol 27:472–476

    Article  CAS  Google Scholar 

  • Burger J, Gaines KF, Lord CG, Brisbin IL, Shukla S, Gochfeld M (2002) Metal levels in raccoon tissues: differences on and off the Department of Energy’s Savannah River site in South Carolina. Environ Monit Assess 74:67–84

    Article  CAS  Google Scholar 

  • Burger J, Gochfeld M, Jeitner C, Burke S, Volz CD, Snigaroff R et al (2009) Mercury and other metals in eggs and feathers of glaucous-winged gulls (Larus glaucescens) in the Aleutians. Environ Monit Assess 152:179–194

    Article  CAS  Google Scholar 

  • Burger J, Gochfeld M, Niles L, Dey A, Jeitner C, Pittfield T, Tsipoura N (2014) Metals in tissues of migrant semipalmated sandpipers (Calidris pusilla) form Delaware Bay, New Jersey. Environ Res 133:362–370

    Article  CAS  Google Scholar 

  • Burger J, Tsipoura N, Niles LJ, Gochfeld M, Dey A, Mizrahi D (2015) Mercury, lead, cadmium, arsenic, chromium and selenium in feathers of shorebirds during migrating through Delaware Bay, New Jersey: comparing the 1990s and 2011/2012. Toxics 3:63–74

    Article  CAS  Google Scholar 

  • Burton JL (1995) Supplemental chromium: its benefits to the bovine immune system. Anim Feed Sci Tech 53:117–133

    Article  CAS  Google Scholar 

  • Cantu Y, Remes A, Reyna A, Martinez D, Villarreal J, Ramos H et al (2014) Thermodynamics, kinetics and activation energy studies of the sorption of chromium (III) and chromium (VI) to a Mn3O4 nanomaterial. Chem Eng J 254:374–383

    Article  CAS  Google Scholar 

  • Carmichael DB, Baker OE (1989) Pesticide, PCB and heavy metal residues in South Carolina mink. Proc Annu Conf Southeast Assoc Fish Wildl Agencies 43:444–451

    Google Scholar 

  • Casalegno C, Schifanella O, Zennaro E, Marroncelli S, Briant R (2015) Collate literature data on toxicity of chromium (Cr) and nickel (Ni) in experimental animals and humans. EFSA Supp Publ 12:1–287. www.efsa.europa.eu/publications

  • CCME (Canadian Council of Ministers of the Environment) (1999) Canadian Water Quality Guidelines for the Protection of Aquatic Life Factsheet. http://ceqg-rcqe.ccme.ca/; Canadian soil quality guidelines for the protection of environmental and human health: chromium (total 1997) (VI 1999). http://ceqgrcqe.ccme.ca/

  • Cefalu WT, Hu FB (2004) Role of chromium in human health and in diabetes. Diabetes Care 27:2741–2751

    Article  CAS  Google Scholar 

  • Cervantes C, Campos-García J, Devars S, Gutiérrez-Corona F, Loza-Tavera H, Torres-Guzmán JC, Moreno-Sánchez R (2001) Interactions of chromium with microorganisms and plants. FEMS Microbiol Rev 25:335–347

    Article  CAS  Google Scholar 

  • Chen G, Liu P, Pattar GR, Tackett L, Bhonagiri P, Strawbridge AB, Elmendorf JS (2006) Chromium activates glucose transporter 4 trafficking and enhances insulin-stimulated glucose transport in 3T3-L1 adipocytes via a cholesterol-dependent mechanism. Mol Endocrinol 20:857–870

    Article  CAS  Google Scholar 

  • Cheng H, Zhou T, Li Q, Lu L, Lin C (2014) Anthropogenic chromium emissions in China from 1990 to 2009. PLoS One 9(2):e87753

    Article  CAS  Google Scholar 

  • Cholewa R, Mleczek M, Kołodziejczyk D, Socha S (2014) Concentration of minerals in the coat of red fox (Vulpes vulpes L.) of various color morphs and their crossbreds vs. hair strength properties. Acta Sci Pol Zootech 13:35–44

    Google Scholar 

  • Chrysochoou M, Johnston CP (2012) Reduction of chromium (VI) in saturated zone sediments by calcium polysulfide and nanoscale zerovalent iron derived from green tea extract. In: Hryciw RD, Athanasopoulos-Zekkos A, Yesiller N (eds) GeoCongress 2012: state of the art and practice in geotechnical engineering, pp 3959–3967

    Google Scholar 

  • Ciftci N, Cicik B, Erdem C, Ay O, Gunalp C (2010) Accumulation of chromium in liver, gill and muscle tissue of Oreochromis niloticus. J Anim Vet Adv 9:1958–1960

    Article  CAS  Google Scholar 

  • Clodfelder BJ, Vincent JB (2005) The time-dependent transport of chromium in adult rats from the bloodstream to the urine. J Biol Inorg Chem 10:383–393

    Article  CAS  Google Scholar 

  • Coeurdassier M, de Vaufleury A, Crini N, Scheifler R, Badot PM (2005) Assessment of whole effluent toxicity on aquatic snails: bioaccumulation of Cr, Zn, and Fe, and individual effects in bioassays. Environ Toxicol Chem 24:198–204

    Article  CAS  Google Scholar 

  • Cohen MD, Kargacin B, Klein CB, Costa M (1993) Mechanisms of chromium carcinogenicity and toxicity. Crit Rev Toxicol 23:255–281

    Article  CAS  Google Scholar 

  • Cohen JB, Barclay JS, Major AR, Fisher JP (2000) Wintering greater scaup as biomonitors of metal contamination in federal wildlife refuges in the Long Island Region. Arch Environ Contam Toxicol 38:83–92

    Article  CAS  Google Scholar 

  • Collins BJ, Stout MD, Levine KE, Kissling GE, Melnick RL, Fennell TR et al (2010) Exposure to hexavalent chromium resulted in significantly higher tissue chromium burden compared with trivalent chromium following similar oral doses to male F344/N rats and female B6C3F1 mice. Toxicol Sci 118:368–379

    Article  CAS  Google Scholar 

  • Connors PG, Anderlini VC, Risebaough RW, Martin JH, Schreiber RW, Anuerson DW (1972) Heavy metal concentrations in brown pelicans from Florida and California. Trans Wildl Sot, Cal-Neva Wildl, pp 56–64

    Google Scholar 

  • Coogan TP, Squibb KS, Motz J (1991) Distribution of chromium within cells of blood. Toxicol Appl Pharmacol 108:157–166

    Article  CAS  Google Scholar 

  • Copat C, Bella F, Castaing M, Fallico R, Sciacca S, Ferrante M (2012) Heavy metals concentration in fish from Sicily (Mediterranean Sea) and evaluation of possible health risks to consumers. Bull Environ Contam Toxicol 88:78–83

    Article  CAS  Google Scholar 

  • Corbi JJ, dos Santos FA, Zerlin R, dos Santos A, Froehlich CG, Trivinho-Strixino S (2011) Assessment of chromium contamination in the Monte Alegre stream: a case study. Braz Arch Biol Technol 54:613–620

    Article  Google Scholar 

  • Costa M, Klein CB (2006) Toxicity and carcinogenicity of chromium compounds in humans. Crit Rev Toxicol 36:155–163

    Article  CAS  Google Scholar 

  • Cotton FA, Wilkinson G, Murillo CA, Bochmann M (1999) Advanced inorganic chemistry, 6th edn. John Wiley & Sons, Inc, Hoboken, NJ, p 1356

    Google Scholar 

  • D’Havé H, Scheirs J, Mubiana VK, Verhagen R, Blust R, De Coen W (2006) Non-destructive pollution exposure assessment in the European hedgehog (Erinaceus europaeus): II. Hair and spines as indicators of endogenous metal and as concentrations. Environ Pollut 142:438–448

    Article  CAS  Google Scholar 

  • Dailey RN, Raisbeck MF, Siemon RS, Cornish TE (2008) Liver metal concentrations in greater sage-grouse (Centrocercus urophasianus). J Wildl Dis 44:494–498

    Article  CAS  Google Scholar 

  • Danieli PP, Serrani F, Primi R, Ponzetta MP, Ronchi B, Amici A (2012) Cadmium, lead, and chromium in large game: a local-scale exposure assessment for hunters consuming meat and liver of wild boar. Arch Environ Contam Toxicol 63:612–627

    Article  CAS  Google Scholar 

  • Das AP, Singh S (2011) Occupational health assessment of chromite toxicity among Indian miners. Indian J Occup Environ Med 15:6–13

    Article  Google Scholar 

  • Dauwe T, Janssens E, Bervoets L, Blust R, Eens M (2005) Heavy-metal concentrations in female laying great tits (Parus major) and their clutches. Arch Environ Contam Toxicol 49:249–256

    Article  CAS  Google Scholar 

  • Davison G, Lambie CL, James WM, Skene ME, Skene KR (1999) Metal content in insects associated with ultramafic and non-ultramafic sites in the Scottish Highlands. Ecol Entomol 24:396–401

    Article  Google Scholar 

  • De Flora S (2000) Threshold mechanisms and site specificity in chromium(VI) carcinogenesis. Carcinogenesis 21:533–541

    Article  Google Scholar 

  • De Flora S, Bagnasco M, Serra D, Zanacchi P (1990) Genotoxicity of chromium compounds: a review. Mutat Res 238:99–172

    Article  Google Scholar 

  • Dębski B, Zalewski W, Gralak AM (2001) Effect of different dietary chromium sources on broiler glycogen and glucose level. In: Anke M, Muller R, Schafer U (eds) Mineralstoffe, Mengen-, Spuren-, and Ultraspurenelemente in der Prävention. Wiss Verlag, Stuttgart, pp 302–308

    Google Scholar 

  • Deng H, Zhang Z, Chang C, Yong W (2007) Trace metal concentration in great tit (Parus major) and greenfinch (Carduelis sinica) at the Western Mountains of Beijing, China. Environ Pollut 148:620–626

    Article  CAS  Google Scholar 

  • Dey S, Stafford R, Deb Roy MK, Bhattacharjee CR, Khating DT, Bhattacharjee PC et al (1999) Metal toxicity and trace element deficiency in some wild animal species from north-east India, as revealed by cellular, bio-inorganic and behavioural studies. Curr Sci 77:276–280

    CAS  Google Scholar 

  • Dhal B, Thatoi HN, Das NN, Pandey BD (2013) Chemical and microbial remediation of hexavalent chromium from contaminated soil and mining metallurgical solid waste: a review. J Hazard Mater 250–251:272–291

    Article  CAS  Google Scholar 

  • Di Bona KR, Love S, Rhodes NR, McAdory D, Sinha SH, Kern N et al (2011) Chromium is not an essential trace element for mammals: effects of a “low-chromium” diet. J Biol Inorg Chem 16:381–390

    Article  CAS  Google Scholar 

  • Długaszek M, Kopczynski K (2011) Comparative analysis of liver mineral status of wildlife. Probl Hig Epidemiol 9:859–863

    Google Scholar 

  • Długaszek M, Kopczyński K (2012) Application of atomic absorption spectrometry in environmental monitoring based on comparative analysis of element contents in red fox tissues. Proc Electrotech Inst 255:19–28

    Google Scholar 

  • Długaszek M, Kopczyński K (2013) Elemental composition of muscle tissue of wild animals from central region of Poland. Int J Environ Res 7:973–978

    Google Scholar 

  • Długaszek M, Kopczyński K (2014) Correlations between elements in the fur of wild animals. Bull Environ Contam Toxicol 93:25–30

    Article  CAS  Google Scholar 

  • Dogra RKS, Murthy RC, Srivastava AK, Gaur JS, Shukla LJ, Varmani BML (1996) Cattle mortality in the Thane district, India: a study of cause/effect relationships. Arch Environ Contam Toxicol 30(2):292–297

    Article  CAS  Google Scholar 

  • Dowling HJ, Offenbacher EG, Pi-Sunyer FX (1989) Absorption of inorganic trivalent chromium from the vascular perfused rat small intestine. J Nutr 119:1138–1145

    Article  CAS  Google Scholar 

  • Drbal K, Elster J, Komarek J (1992) Heavy metals in water, ice and biological material from Spitsbergen, Svalbard. Polar Res 11:99–101

    Article  Google Scholar 

  • Dube BK, Tewari K, Chatterjee J, Chatterjee C (2003) Excess chromium alters uptake and translocation of certain nutrients in citrullus. Chemosphere 53:1147–1153

    Article  CAS  Google Scholar 

  • Ducros V (1992) Chromium metabolism, a literature review. Biol Trace Elem Res 32:65–77

    Article  CAS  Google Scholar 

  • Ebdon L, Pitts L, Cornelis R, Crews H, Donard OFX, Quevauviller P (eds) (2001) Trace element speciation for environment, food, and health. Royal Society of Chemistry, Cambridge, UK

    Google Scholar 

  • EEA (2015) European Union emission inventory report 1990–2013 under the UNECE Convention on Long-range Transboundary Air Pollution (LRTAP). European Environment Agency (EEA), Publications Office of the European Union, Luxembourg, 69 pp

    Google Scholar 

  • EFSA (2009) Safety and efficacy of chromium methionine as feed additive for all species. EFSA J 1043:9–69

    Google Scholar 

  • Eisler R (1986) Chromium hazards of fish, wildlife, and invertebrates: a synoptic review. U.S. Fish and Wildlife Service. Biological report No. 6 (1.6), 85 pp

    Google Scholar 

  • Eisler R (2000) Chromium. Handbook of chemical risk assessment: health hazards to humans, plants, and animals. Lewis Publishers, Boca Raton, FL, pp 45–92

    Book  Google Scholar 

  • Elbetieha A, Al-Hamood MH (1997) Long-term exposure of male and female mice to trivalent and hexavalent chromium compounds: effect on fertility. Toxicology 116:39–47

    Article  CAS  Google Scholar 

  • Emsley J (2011) Nature’s building blocks. Oxford, Oxford University Press

    Google Scholar 

  • EPA (2000) Method 3060A: Alkaline digestion for hexavalent chromium. SW-846: test methods for evaluating solid waste, physical/chemical methods, US EPA, Washington, DC

    Google Scholar 

  • EPA (2010) Toxicological review of hexavalent chromium. External Review draft. CAS No. 18540-29-9

    Google Scholar 

  • Ernst E, Bonde JP (1992) Sex hormones and epididymal sperm parameters in rats following subchronic treatment with hexavalent chromium. Hum Exp Toxicol 11:255–258

    Article  CAS  Google Scholar 

  • Falandysz J, Ichihashi H, Mizera T, Yamasaki S (2000) Mineral composition of selected tissues and organs of white-tailed eagle. Rocz Panstw Zakl Hig 51:1–5 (in Polish)

    Google Scholar 

  • Farag AM, May T, Marty GD, Easton M, Harper DD, Little EE et al (2006) The effect of chronic chromium exposure on the health of Chinook salmon (Oncorhynchus tshawytscha). Aquat Toxicol 76:246–257

    Article  CAS  Google Scholar 

  • Favas PJC, Pratas J, Varun M, D’Souza R, Paul MS (2014) Phytoremediation of soils contaminated with metals and metalloids at mining areas: potential of native flora. In: Hernandez-Soriano MC (ed) Environmental risk assessment of soil contamination. InTech Europe, Rijeka, Croatia

    Google Scholar 

  • Feng W, Ding W, Qian Q, Chai Z (1999) Comparison of the chromium distribution in organs and subcellular fractions of normal and diabetic rats by using enriched stable isotope Cr-50 tracer technique. Biol Trace Elem Res 71:121–129

    Article  Google Scholar 

  • Feng W, Li B, Liu J, Chai Z, Zhang P, Gao Y (2003) Study of chromium-containing proteins in subcellular fractions of rat liver by enriched stable isotopic tracer technique and gel filtration chromatography. Anal Bioanal Chem 375:363–368

    Article  CAS  Google Scholar 

  • Feng XH, Zhai LM, Tan WF, Liu F, He JZ (2007) Adsorption and redox reactions of heavy metals on synthesized mn oxide minerals. Environ Pollut 147:366–373

    Article  CAS  Google Scholar 

  • Filistowicz A, Przysiecki P, Nowicki S, Filistowicza A, Durkalec M (2012) Contents of copper, chromium, nickel, lead, and zinc in hair and skin of farm foxes. Pol J Environ Stud 21:865–869

    CAS  Google Scholar 

  • Frank A, Anke M, Danielsson R (2000) Experimental copper and chromium deficiency and additional molybdenum supplementation in goats. I. Feed consumption and weight development. Sci Total Environ 249:133–142

    Article  CAS  Google Scholar 

  • Friis RH (2012) Essentials of environmental health, 2nd edn. Jones & Bartlett Learning, LLC Publishers, Washington, DC

    Google Scholar 

  • Gabryszuk M, Sloniewski K, Metera E, Sakowski T (2010) Content of mineral elements in milk and hair of cows from organic farms. J Elementol 15:259–267

    Google Scholar 

  • Gad SC (1989) Acute and chronic systemic chromium toxicity. Sci Total Environ 86:149–157

    Article  CAS  Google Scholar 

  • Gagelli E, Berti F, D’Amelio N, Gagelli N, Valensin G, Bovalini L et al (2002) Metabolic pathways of carcinogenic chromium. Environ Health Perspect 110(Suppl. 5):733–738

    Article  Google Scholar 

  • Gaines RV, Skinner CW, Foord EE, Mason B, Rosenzweig AR (1997) Dana’s new mineralogy, 8th edn. Wiley, New York, 1819 pp

    Google Scholar 

  • Gamberg M, Braune B, Davey E, Elkin B, Hoekstra PF, Kennedy D et al (2005) Spatial and temporal trends of contaminants in terrestrial biota from the Canadian Arctic. Sci Total Environ 351–352:148–164

    Article  CAS  Google Scholar 

  • Gammelgaard B, Jensen K, Steffansen B (1999) In vitro metabolism and permeation studies on rat jejunum: organic chromium compared to inorganic chromium. J Trace Elements Med Biol 13:82–88

    Article  CAS  Google Scholar 

  • Gardea-Torresdey JL, de la Rosa G, Peralta-Videa JR, Montes M, Cruz-Jimenez G, Cano-Aguilera I (2005) Differential uptake and transport of trivalent and hexavalent chromium by tumbleweed (Salsola kali). Arch Environ Contam Toxicol 48:225–232

    Article  CAS  Google Scholar 

  • Gasparik J, Massányi P, Slamecka J, Fabis M, Jurcik R (2004) Concentration of selected metals in liver, kidney, and muscle of the red deer (Cervus elaphus). J Environ Sci Health Part A 39:2105–2111

    Article  CAS  Google Scholar 

  • Gheju M, Balcu I (2010) Hexavalent chromium reduction with scrap iron in continuous-flow system. Part 2: effect of scrap iron shape and size. J Hazard Mater 182:484–493

    Article  CAS  Google Scholar 

  • Ginsberg HN (2000) Insulin resistance and cardiovascular disease. J Clin Invest 106:453–458

    Article  CAS  Google Scholar 

  • Gochfeld M, Belant JL, Shukla T, Benson T, Burger J (1996) Heavy metals in laughing gulls: gender, age and tissue differences. Environ Toxicol Chem 15:2275–2283

    Article  CAS  Google Scholar 

  • Golden NH, Rattner BA, McGowan PC, Parsons KC, Ottinger MA (2003) Concentrations of metals in feathers and blood of nestling black-crowned night-herons (Nycticorax nycticorax) in Chesapeake and Delaware Bays. Bull Environ Contam Toxicol 7:385–393

    Article  CAS  Google Scholar 

  • Govind P, Madhuri S (2014) Heavy metals causing toxicity in animals and fishes. Res J Animal Vet Fishery Sci 2:17–23

    Google Scholar 

  • Greenwood NN, Earnshaw A (1997) Chemistry of the elements, 2nd edn. Butterworth-Heinemann. ISBN 0-08-037941-9

    Google Scholar 

  • Grela ER, Studziński T, Rabos A (1997) The role of chromium in human and animals nutrition. Med Wet 53:312–315 (in Polish)

    Google Scholar 

  • Grúz A, Szemerédy G, Kormos E, Budai P, Majoros S, Tompai E, Lehel J (2015) Monitoring of heavy metal burden in mute swan (Cygnus olor). Environ Sci Pollut Res 22:15903–15909

    Article  CAS  Google Scholar 

  • Halbrook RS, Woolf A, Hubert GF Jr, Ross S, Braselton WE (1996) Contaminant concentrations in Illinois mink and otter. Ecotoxicology 5:103–114

    Google Scholar 

  • Hammond CR (2005) The elements. In: Linde DR (ed) CRC Handbook of chemistry and physics. CRC Press, Boca Raton, FL, pp 4/1–4/34

    Google Scholar 

  • Han FX, Sridhar BBM, Monts DL, Su Y (2004) Phytoavailability and toxicity of trivalent and hexavalent chromium to Brassica juncea. New Phytol 162:489–499

    Article  CAS  Google Scholar 

  • Harding LE (2004) Environmental contaminants in wild martens (Martes americana) and wolverines (Gulo luscus). Bull Environ Contam Toxicol 73:98–105

    Article  CAS  Google Scholar 

  • Harding L, Harris ML, Elliott JE (1998) Heavy and trace metals in wild mink (Mustela vison) and river otter (Lutra canadensis) captured on rivers receiving metals discharges. Bull Environ Contam Toxicol 61:600–607

    Article  CAS  Google Scholar 

  • Hassan AA, Rylander C, Sandanger TM, Brustad M (2013) Copper, cobalt and chromium in meat, liver, tallow and bone marrow from semi-domesticated reindeer (Rangifer tarandus tarandus L.) in Northern Norway. Food Publ Health 3:154–160

    Google Scholar 

  • Hood P (2010) Trace elements in soils. John Wiley & Sons (part 19.5)

    Google Scholar 

  • Horai S, Watanabe I, Takada H, Iwamizu Y, Hayashi T, Tanabe S et al (2007) Trace element accumulations in 13 avian species collected from the Kanto area, Japan. Sci Total Environ 373:512–525

    Article  CAS  Google Scholar 

  • Howe JA, Loeppert RH, Derose VJ, Hunter DB, Bertsch PM (2003) Localization and speciation of chromium in subterranean clover using XRF, XANES, and EPR spectroscopy. Environ Sci Technol 37:4091–4097

    Article  CAS  Google Scholar 

  • Hua Y, Clark S, Ren J, Sreejayan N (2012) Molecular mechanisms of chromium in alleviating insulin resistance. J Nutr Biochem 23:313–319

    Article  CAS  Google Scholar 

  • Huang S-H, Peng B, Yang Z-H, Chai L-Y, Zhou L-C (2008) Chromium accumulation, microorganism population and enzyme activities in soils around chromium-containing slag heap of steel alloy factory. Trans Nonferrous Met Soc China 19:241–248

    Article  CAS  Google Scholar 

  • Hubbart JA (2012) Elemental hair analysis of the California ground squirrel (Otospermophilus beecheyi): an investigation of age class, gender, seasons and habitats. J Biol Life Sci 3:20–34

    Google Scholar 

  • Huffman EWD, Allaway WH (1973) Chromium in plants: distribution in tissues, organelles, and extracts and availability of bean leaf Cr to animals. J Agric Food Chem 21:982–984

    Article  Google Scholar 

  • Hui CA (2002) Concentrations of chromium, manganese, and lead in air and in avian eggs. Environ Pollut 120:201–206

    Article  CAS  Google Scholar 

  • IARC (1990) Chromium, nickel and welding. IARC, International Agency for Research on Cancer, Monographs on the Evaluation of Carcinogenic Risks to Humans. WHO IARC, Lyon, France, 49:49–256

    Google Scholar 

  • IARC (1999) Re-evaluation of some organic chemicals, hydrazine and hydrogen peroxide. IARC, International Agency for Research on Cancer, Monographs on the Evaluation of Carcinogenic Risks to Humans. IARC Scientific Publications, Lyon, France, 71:1–3

    Google Scholar 

  • Imam Khasim D, Nanda Kumar NV, Hussain RC (1989) Environmental contamination of chromium in agricultural and animal products near a chromate industry. Bull Environ Contam Toxicol 43:742–746

    Article  Google Scholar 

  • Irwin RJ (1997) Environmental contaminants encyclopedia chromium VI. National Park Service Water Resource Division, Fort Collins, CO

    Google Scholar 

  • Islam E, Yang X, He Z, Mahmood Q (2007) Assessing potential dietary toxicity of heavy metals in selected vegetables and food crops. J Zhejiang Univ Sci B 8:1–13

    Article  CAS  Google Scholar 

  • Izbicki JA, Ball JW, Bullen TD, Suttley SJ (2008) Chromium, chromium isotopes and selected trace elements, western Mojave desert, USA. Appl Geochem 23:1325–1352

    Article  CAS  Google Scholar 

  • Jacobs JA, Testa SM (2005) Overview of chromium (VI) in the environment: background and history. In: Guertin J, Jacobs A, Avakian CP (eds) Chromium (VI) handbook. CRC Press, Boca Raton, FL, pp 1–21

    Google Scholar 

  • Jenkins DW (1979) Toxic trace metals in mammalian hair and nails. EPA-600/4-79-049

    Google Scholar 

  • Jeyasingh J, Philip L (2005) Bioremediation of chromium contaminated soil: optimization of operating parameters under laboratory conditions. J Hazard Mater 118:113–120

    Article  CAS  Google Scholar 

  • Jianlong W, Zeyu M, Xuan Z (2004) Response of Saccharomyces cerevisiae to chromium stress. Process Biochem 39:1231–1235

    Article  CAS  Google Scholar 

  • Juhnke S, Peitsch N, Hübener N, Grosse C, Nies DH (2002) New genes involved in chromate resistance in Ralstonia metallidurans strain CH34. Arch Microbiol 179:15–25

    Article  CAS  Google Scholar 

  • Juturu V, Komorowski JR (2003) Chromium compounds: cytotoxicity and carcinogenesis. Letter to the Editor. Toxicology 186:171–173

    Article  CAS  Google Scholar 

  • Kabata-Pendias A (2011) Trace elements in soils and plants, 4th edn. CRC Press, Boca Taton, FL, pp 181–190

    Google Scholar 

  • Kabata-Pendias A, Mukherjee AB (2007) Trace elements from soil to human. Springer, Berlin, Heidelberg, pp 173–183

    Book  Google Scholar 

  • Kamaludeen SP, Arunkumar KR, Avudainayagam S, Ramasamy K (2003) Bioremediation of chromium contaminated environments. Indian J Exp Biol 41:972–985

    CAS  Google Scholar 

  • Kanojia RK, Junaid M, Murthy RC (1998) Embryo and fetotoxicity of hexavalent chromium: a long-term study. Toxicol Lett 95:165–172

    Article  CAS  Google Scholar 

  • Kargacin B, Squibb KS, Cosentino S, Zhitkovich A, Costa M (1993) Comparison of the uptake and distribution of chromate in rats and mice. Biol Trace Elem Res 36:307–318

    Article  CAS  Google Scholar 

  • Kasprzak KS (1991) The role of oxidative damage in metal carcinogenicity. Chem Res Toxicol 4:604–615

    Article  CAS  Google Scholar 

  • Kaszycki P, Fedorovych D, Ksheminska H, Babyak L, Wójcik D, Koloczek H (2004) Chromium accumulation by living yeast at various environmental conditions. Microbiol Res 159:11–17

    Article  CAS  Google Scholar 

  • Kimborough DE, Cohen Y, Winer AM, Creelman L, Mabuni C (1999) A critical assessment of chromium in the environment. Crit Rev Environ Sci Technol 29(1):1–46

    Article  Google Scholar 

  • Kimura T, Okumura F, Onodera A, Nakanishi T, Itoh N, Isobe M (2010) Chromium (VI) inhibits mouse metallothionein-I gene transcription by modifying transactivation potential of the co-activator p300. Toxicol Lett 196S: S37–S351 (S301)

    Google Scholar 

  • Kirklin DR (1999) Properties of materials and systems of importance to environmental fates and remediation. III. Review of previous thermodynamic property values for chromium and some of its compounds. J Phys Chem Ref Data 28:1675–1704

    Article  CAS  Google Scholar 

  • Kirman CR, Aylward LL, Suh M, Harris MA, Thompson CM, Haws LC et al (2013) Physiologically based pharmacokinetic model for humans orally exposed to chromium. Chem Biol Interact 204:13–27

    Article  CAS  Google Scholar 

  • Kler TK, Vashishat N, Kumar M (2014) Heavy metal contamination in excreta of avian species from Ludhiana district of Punjab. Int J Adv Res 2:873–879

    CAS  Google Scholar 

  • Koivula MJ, Eeva T (2010) Metal-related oxidative stress in birds. Environ Pollut 158:2359–2370

    Article  CAS  Google Scholar 

  • Krejpcio Z (2001) Essentiality of chromium for human nutrition and health. Pol J Environ Stud 10:399–404

    CAS  Google Scholar 

  • Krejpcio Z, Kurył T, Dębski B, Wójciak RW (2007) Effith fructans and chromium(III) on blood glucose and insulin and beta-oxidation in lymphocytes of type 1 diabetes rats. Med Wet 63(Supp):1494–1496 (in Polish)

    Google Scholar 

  • Krzysik M, Grajeta H (2010) The role of chromium in etiopathogenesis of selected diseases. Bromatol Chem Toksykol 43:428–435 (in Polish)

    Google Scholar 

  • Krzysik M, Grajeta H, Prescha A (2008) Chromium content in selected convenience and fast foods in Poland. Food Chem 107:208–212

    Article  CAS  Google Scholar 

  • Ksheminska H, Fedorovych D, Babyak L, Yanovych D, Kaszycki P, Koloczek H (2005) Chromium (III) and (VI) tolerance and bioaccumulation in yeast: a survey of cellular chromium content in selected strains of representative genera. Process Biochem 40:1565–1572

    Article  CAS  Google Scholar 

  • Kurył T, Dębski B (2001) Is metabolism of fatty acids in broiler chicken affected by chromium? Ateroskleroza 5:132–133

    Google Scholar 

  • Kuryl T, Krejpcio Z, Wójciak RW, Lipko M, Debski B, Staniek H (2006) Chromium(III) propionate and dietary fructans supplementation stimulate erytrocyte glucose uptake and beta-oxidation in lymphocytes of rats. Biol Trace Elem Res 114:237–248

    Article  CAS  Google Scholar 

  • Lebedeva NV (1997) Accumulation of heavy metals by birds in the southwest of Russia. Russ J Ecol 28:41–46

    Google Scholar 

  • Lee JI, Jung WY, Lee G, Kim MS, Kim YS, Park CG et al (2012) Heavy metal concentrations in hair of newly imported China-origin rhesus macaques (Macaca mulatta). Lab Anim Res 28:151–154

    Article  Google Scholar 

  • Lewicki S, Rattman D, Kurył T, Snochowski M, Dębski B (2009) The effect of chromium (III) on fatty acid metabolism and insulin path related gene expression in mouse myocytes cells line C2C12. Zywn Nauk Technol 4:183–194 (in Polish)

    Google Scholar 

  • Lewicki S, Zdanowski R, Krzyżowska M, Lewicka A, Dębski B, Niemcewicz M et al (2014) The role of chromium III in the organism and its possible use in diabetes and obesity treatment. Ann Agric Environ Med 21:331–335

    Article  CAS  Google Scholar 

  • Lind BB, Fallman AM, Larsson LB (2001) Environmental impact of ferrochrome slag in road construction. Water Manag 21:255–264

    CAS  Google Scholar 

  • Liu KJ, Jiang J, Shi X, Gabrys H, Walczak T, Swatz HM (1995) Low frequency EPR study of chromium (V) formation from chromium (VI) in living plants. Biochem Biophys Res Commun 206(3):829–834

    Article  CAS  Google Scholar 

  • Liu J, Duan C, Zhang X, Zhu Y, Lu X (2011) Potential of Leersia hexandra Swartz for phytoextraction of Cr from soil. J Hazard Mater 188:85–91

    Article  CAS  Google Scholar 

  • Lytle CM, Lytle FW, Yang N, Qian J-H, Hansen D, Zayed A et al (1998) Reduction of Cr(VI) to Cr(III) by wetland plants: potential for in situ heavy metal detoxification. Environ Sci Technol 32:3087–3093

    Article  CAS  Google Scholar 

  • Ma WC (1982) The influence of soil properties and worm-related factors on the concentration of heavy metals in earthworms. Pedobiologia 24:109–119

    CAS  Google Scholar 

  • Malik RN, Zeb N (2009) Assessment of environmental contamination using feathers of Bubulcus ibis L., as a biomonitor of heavy metal pollution, Pakistan. Ecotoxicolology 18:522–536

    Article  CAS  Google Scholar 

  • Mallard BA, Borgs P (1997) Effects of supplemental trivalent chromium on hormone and immune responses of cattle. In: Lyons TP, Jacques KA (eds) Proceedings of the 13th alltech annual symposium on the biotechnology in the feed industry. Nottingham University Press, Loughborough, UK

    Google Scholar 

  • Mancuso TF (1997) Chromium as an industrian carcinogen. Part II. Chromium in human tissues. Am J Ind Med 2:140–147

    Article  Google Scholar 

  • Manjula M, Mohanraj R, Devi MP (2015) Biomonitoring of heavy metals in feathers of eleven common bird species in urban and rural environments of Tiruchirappalli, India. Environ Monit Assess 187:267

    Article  CAS  Google Scholar 

  • Mansouri B, Pourkhabbaz A, Babaei H, Houshyari E (2012) Heavy metal contamination in feathers of Western Reef Heron (Egretta gularis) and Siberian gull (Larus heuglini) from Hara biosphere reserve of Southern Iran. Environ Monit Ass 184:6139–6145

    Article  CAS  Google Scholar 

  • Marchese M, Gagneten AM, Parma MJ, Pave PJ (2008) Accumulation and elimination of chromium by freshwater species exposed to spiked sediments. Arch Environ Contam Toxicol 55:603–609

    Article  CAS  Google Scholar 

  • Marcheselli M, Sala L, Mauri M (2010) Bioaccumulation of PGEs and other traffic-related metals in populations of the small mammal Apodemus sylvaticus. Chemosphere 80:1247–1254

    Article  CAS  Google Scholar 

  • Martello L, Fuchsman P, Sorensen M, Magar V, Wenning RJ (2007) Chromium geochemistry and bioaccumulation in sediments from the lower Hackensack River, New Jersey. Arch Environ Contam Toxicol 53:337–350

    Article  CAS  Google Scholar 

  • Mason CF, Stephenson A (2001) Metals in tissues of European otters (Lutra lutra) from Denmark, Great Britain and Ireland. Chemosphere 44:351–353

    Article  CAS  Google Scholar 

  • Mazanec O (1996) The content of risk elements in farm land throughout the Czech Republik. In: Microelements. Ceska spolecnost chemicka. Prague, pp 56–59 (in Czech)

    Google Scholar 

  • McGrath SP, Smith S (1990) Chromium and nickel. In: Alloway BJ (ed) Heavy metals in soils. Wiley, New York, pp 125–150

    Google Scholar 

  • McNeill L, McLean J (2012) State of the science of hexavalent chromium in drinking water, Water Research Foundation

    Google Scholar 

  • Mei B, Puryear JD, Newton RJ (2002) Assessment of Cr tolerance and accumulation in selected plant species. Plant Soil 247:223–231

    Article  CAS  Google Scholar 

  • Mertz W (1993) Chromium in human nutrition: a review. J Nutr 123:626–633

    Article  CAS  Google Scholar 

  • Mertz W, Schwarz K (1957) Relation of glucose tolerance factor to impaired glucose tolerance in stock diets. Am J Physiol 1196:614–618

    Google Scholar 

  • Mertz W, Roginski EE, Reba RC (1965) Biological activity and fate of trace quantities of intravenous chromium (III) in the rat. Am J Physiol 209:489–494

    Article  CAS  Google Scholar 

  • Micera G, Dessi A (1988) Chromium adsorption by plant roots and formation of long-lived Cr(V) species: an ecological hazard? J Inorg Biochem 34:157–166

    Article  CAS  Google Scholar 

  • Miksche LW, Lewalter J (1997) Health surveillance and biological effect monitoring for chromium-exposed workers. Regul Toxicol Pharm 26:S94–S99

    Article  CAS  Google Scholar 

  • Mining Watch Canada (2012) Potential toxic effects of chromium, chromite mining and ferrochrome production: a literature review. MiningWatch Canada, Mines Alerte, 43 pp (http://www.miningwatch.ca/sites/ www.miningwatch.ca/files/Chromite%20Review.pdf). Accessed 6 Dec 2015

  • Mishra AK, Mohanty B (2009a) Chronic exposure to sublethal hexavalent chromium affects organ histopathology and serum cortisol profile of a teleost, Channa punctatus (Bloch). Sci Total Environ 407:5031–5038

    Article  CAS  Google Scholar 

  • Mishra AK, Mohanty B (2009b) Effect of hexavalent chromium exposure on the pituitary – interrenal axis of a teleost, Channa punctatus (Bloch). Chemosphere 76:982–988

    Article  CAS  Google Scholar 

  • Mishra S, Singh V, Srivastava S, Srivatava R, Dass S, Satsangi GP et al (1995) Studies on uptake of trivalent and hexavalent chromium by maize (Zea mays). Food Chem Toxicol 33:393–397

    Article  CAS  Google Scholar 

  • MOE: Ministry of the Environment, Government of Ontario (2011) Ontario air standards for hexavalent chromium compounds and chromium and chromium compounds (metallic, trivalent and divalent)

    Google Scholar 

  • Mooney KW, Cromwell GL (1997) Efficacy of chromium picolinate and chromium chloride as potential carcass modifiers in swine. J Anim Sci 75:2661–2671

    Article  CAS  Google Scholar 

  • Moonsie-Shageer S, Mowat DN (1993) Effect of level of supplemental chromium on performance, serum constituents and immune status of stressed feeder cakves. J Anim Sci 71:232–238

    Article  CAS  Google Scholar 

  • Mora MA, Skiles R, McKinney B, Paredes M, Buckler D, Papoulias D et al (2002) Environmental contaminants in prey and tissues of the peregrine falcon in the Big Bend Region, Texas, USA. Environ Pollut 116:169–176

    Article  CAS  Google Scholar 

  • Mordenti A, Piva G (1997) Chromium in animal nutrition and possible effects on human health. In: Canali S, Tittarelli F, Sequi P (eds) Chromium environmental issues. Franco Angeli s.r.l., pp 131–151

    Google Scholar 

  • Morris GS, Guidry KA, Hegsted M, Hasten DL (1995) Effects of dietary chromium supplementation on cardiac mass, metabolic enzymes and contractile proteins. Nutr Res 15:1045–1052

    Article  CAS  Google Scholar 

  • Movalli PA (2000) Heavy metal and other residues in feathers of Laggar Falcon (Falco biarmicus juggar) from six districts of Pakistan. Environ Pollut 109:267–275

    Article  CAS  Google Scholar 

  • Muter O, Patmalnieks A, Rapoport A (2001) Interactions of the yeast Candida utilis and Cr (VI): metal reduction and its distribution in the cell and medium. Process Biochem 36:963–970

    Article  CAS  Google Scholar 

  • Nam D-H, Anan Y, Ikemoto T, Okabe Y, Kim E-Y, Subramanian A et al (2005a) Specific accumulation of 20 trace elements in great cormorants (Phalacrocorax carbo) from Japan. Environ Pollut 134:503–514

    Article  CAS  Google Scholar 

  • Nam D-H, Anan Y, Ikemoto T, Tanabe S (2005b) Multielemental accumulation and its intracellular distribution in tissues of some aquatic birds. Mar Pollut Bull 50:1347–1362

    Article  CAS  Google Scholar 

  • Nam D-H, Rutkiewicz J, Basu N (2012) Multiple metals exposure and neurotoxic risk in bald eagles (Haliaeetus leucocephalus) from two Great Lakes states. Environ Toxicol Chem 31:623–631

    Article  CAS  Google Scholar 

  • National Toxicology Program (2008) NTP Toxicology and Carcinogenesis Studies of Sodium Dichromate Dihydrate (CAS No. 7789-12-0) in F344/N Rats and B6C3F1Mice (Drinking Water Studies). Natl Toxicol Program Tech Rep Ser 546:1–192

    Google Scholar 

  • Navarro J, Oro D, Bertolero A, Genovart M, Delgado A, Forer MG (2010) Age and sexual differences in the exploitation of two anthropogenic food resources for an opportunistic seabird. Mar Biol 157:2453–2459

    Article  CAS  Google Scholar 

  • Nielsen FH (2007) Summary: the clinical and nutritional importance of chromium – still debated after 50 years of research. The Nutritional Biochemistry of Chromium (III) Elsevier, pp 265–276

    Google Scholar 

  • Nies DH (2004) Essential and toxic effects of elements on microorganisms. In: Merian E, Anke M, Ihnat M, Stoeppler M (eds) Elements and their compounds in the environment. Wiley-VCH Verlag GmbH&Co.KGaA, Weinheim, pp 257–276

    Google Scholar 

  • NJDEP (1996) New Jersey Department of Environmental Protection. Soil Cleanup Criteria. Proposed Cleanup Standards for Contaminated Sites. NJAC 7:26D

    Google Scholar 

  • NRC (1989) Recommended dietary allowance, National Research Council, 10th edn. National Academy of Sciences, National Academy Press, Washington, DC

    Google Scholar 

  • NRC (1996) Nutrient requirements of beef cattle. National Research Council, 7th edn. National Academy of Sciences, National Academy Press, Washington, DC

    Google Scholar 

  • NRC (1997) The role of chromium in animal nutrition. National Research Council. In: National Academy of Sciences. National Academy Press, Washington, DC

    Google Scholar 

  • NRC (2005) Mineral tolerance of animals, 2nd rev edn. National Academic Press, Washington, DC

    Google Scholar 

  • Nriagu JO, Kabir A (1995) Chromium in the Canadian environment. Environ Rev 3:121–144

    Article  CAS  Google Scholar 

  • O’Shea TJ, Everette AL, Ellison LE (2001) Cyclodiene insecticides, DDE, DDT, arsenic and mercury contamination of big brown batts (Eptesicus fuscus) foraging at a Colorado Superfund site. Arch Environ Contam Tox 40:112–120

    Article  Google Scholar 

  • OEHHA (The Office of Environmental Health Hazard Assessment) (2000) Technical support document for exposure assessment and stochastic analysis. Appendix H: Fish Bioconcentration Factors (BCF)

    Google Scholar 

  • Oh SJ, Lee JY (2005) Dietary chromium-methionine chelate supplementation and animal performance. Asian-Aust J Anim Sci 18:898–907

    Article  Google Scholar 

  • Oliveira H (2012) Chromium as an environmental pollutant: Insights on induced plant toxicity. J Bot 2012:375843

    Google Scholar 

  • Orłowski G, Polechoński R, Dobicki W, Dolata PT, Bednarska M (2006) Heavy metal concentrations in feathers of white storks Ciconia ciconia nesting in Central Poland: methodological implications for further ecotoxicological studies. In: Tryjanowski P, Sparks TH, Jerzak L (eds) White Stork study in Poland: biology, ecology and conservation. Bogucki Wydawnictwo Naukowe, Poznań, pp 51–61

    Google Scholar 

  • OSHA – Occupational Safety and Health Administration (2006) Occupational exposure to hexavalent chromium, Final rule. Fed Regist 71:10099–10385

    Google Scholar 

  • Outridge PM, Scheuhammer AM (1993) Bioaccumulation and toxicology of chromium: implications for wildlife. Rev Environ Contam Toxicol 130:31–77

    CAS  Google Scholar 

  • Papp JF (1994) Chromium life cycle study. U.S. Department of Interior, Bureau of Mines, Information Circular 9411, Washington, DC

    Google Scholar 

  • Papp JF (2005) Minerals yearbook. Chromium [advance release] USGS Science for a changing world, pp 17.1–17.24

    Google Scholar 

  • Papp JF (2011) 2011 Minerals yearbook. Chromium [advance release] USGS Science for a changing world, pp 17.1–17.24

    Google Scholar 

  • Papp JF (2016) USGS 2013 Minerals Yearbook, US Departament of the Interior, US Geological Survey

    Google Scholar 

  • Papp JF, Lipin BR (2006) Chromite. In: Kogel JE, Trivedi NC, Barker JM, Krukowski ST (eds) Industrial minerals and rocks—Commodities, markets, and uses, 7th edn. Society for Mining, Metallurgy, and Exploration, Inc., Littleton, CO, pp 309–333

    Google Scholar 

  • Park SH, Lee MH, Kim SK (2005) Studies on Cd, Pb, Hg and Cr values in dog hairs from urban Korea. Asian-Austr J Anim Sci 18:1135–1140

    Article  CAS  Google Scholar 

  • Paßlack N, Mainzer B, Lahrssen-Wiederholt M, Schafft H, Palavinskas R, Breithaupt A et al (2014) Concentrations of strontium, barium, cadmium, copper, zinc, manganese, chromium, antimony, selenium and lead in the equine liver and kidneys. SpringerPlus 3:343

    Article  CAS  Google Scholar 

  • Pati A, Chaudhary R, Subramani S (2014) A review on management of chrome-tanned leather shavings: a holistic paradigm to combat the environmental issues. Environ Sci Pollut Res 21:11266–11284

    Article  CAS  Google Scholar 

  • Pattar GR, Tackett L, Liu P, Elmendorf JS (2006) Chromium picolinate positively influences the glucose transporter system via affecting cholesterol homeostasis in adipocytes cultured under hyperglycemic diabetic conditions. Mutat Res 610:93–100

    Article  CAS  Google Scholar 

  • Pawlisz AV, Kent RA, Schneider UA, Jefferson C (1997) Canadian water quality guidelines for chromium. Environ Toxicol Water Quality 12:185–193

    Article  Google Scholar 

  • Pechova A, Pavlata L (2007) Chromium as an essential nutrient: a review. Vet Med Czech 52:1–18

    CAS  Google Scholar 

  • Peitzsch N, Eberz G, Nies DH (1998) Alcaligenes eutrophus as a bacterial chromate sensor. Appl Environ Microbiol 64:453–458

    CAS  Google Scholar 

  • Pena-Fernández A, González-Munoz MJ, Lobo-Bedmar MC (2014) “Reference values” of trace elements in the hair of a sample group of Spanish children (aged 6–9 years) – are urban top soils a source of contamination? Environ Toxicol Pharmacol 38:141–152

    Article  CAS  Google Scholar 

  • Peralta-Videa JR, Lopez ML, Narayan M, Saupe G, Gardea-Torresdey J (2009) The biochemistry of environmental heavy metal uptake by plants: implications for the food chain. Int J Biochem Cell Biol 41:1665–1677

    Article  CAS  Google Scholar 

  • Pereira R, Pereira ML, Ribeiro R, Gonçalves F (2006) Tissues and hair residues and histopathology in wild rats (Rattus rattus L.) and Algerian mice (Mus spretus Lataste) from an abandoned mine area (Southeast Portugal). Environ Pollut 139:561–575

    Article  CAS  Google Scholar 

  • Peterson RL, Banker KJ, Garcia TY, Works CF (2008) Isolation of a novel chromium (III) binding protein from bovine liver tissue after chromium (VI) exposure. J Inorg Biochem 102:833–841

    Article  CAS  Google Scholar 

  • Petrie SA, Badzinski SS, Drouillard KG (2007) Contaminants in lesser and greater scaup staging on the lower Great Lakes. Arch Environ Contam Toxicol 52:580–589

    Article  CAS  Google Scholar 

  • Piskorova L, Vasilkova Z, Krupicer I (2003) Heavy metal residues in tissues of wild boar (Sus scrofa) and red fox (Vulpes vulpes) in the Central Zemplin region of the Slovak Republic. Czech J Anim Sci 48:134–138

    CAS  Google Scholar 

  • Piva A, Meola E, Gatta PP, Biagi G, Castellani G, Mordenti AL et al (2003) The effect of dietary supplementation with trivalent chromium on production performance of laying hens and the chromium content in the yolk. Anim Feed Sci Technol 106:149–163

    Article  CAS  Google Scholar 

  • Pollard GV, Richardson CR, Karnezos TP (2002) Effects of supplemental organic chromium on growth, feed efficiency and carcass characteristics of feedlot steers. Anim Feed Sci Technol 98:121–128

    Article  CAS  Google Scholar 

  • Polti MA, García RO, Amoroso MJ, Abate CM (2009) Bioremediation of chromium(VI) contaminated soil by Streptomyces sp. MC1. J Basic Microb 49:285–292

    Article  CAS  Google Scholar 

  • Polti MA, Atjián MC, Amoroso MJ, Abate CM (2011) Soil chromium bioremediation: synergic activity of actinobacteria and plants. Int Biodeterior Biodegrad 65:1175–1181

    Article  CAS  Google Scholar 

  • Press RI, Geller J, Evans GW (1990) The effect of chromium picolinate on serum cholesterol and apolipoprotein fractions in human subjects. West J Med 152:41–45

    CAS  Google Scholar 

  • Puls R (1994) Mineral levels in animal health. Diagnostic data, 2nd edn. Sherpa International, Clearbrook, BC

    Google Scholar 

  • Rauch JN and Pacyna JM (2009) Earth’s global Ag, Al, Cr, Cu, Fe, Ni, Pb, and Zn cycles, Global Biogeochem Cycles, 23, GB2001 doi:https://doi.org/10.1029/2008GB003376, 1–16

    Article  CAS  Google Scholar 

  • Reeve RN (1994) Environmental analysis. Wiley, Chichester

    Google Scholar 

  • Riley RG, Zachara JM, Wobber FJ (1992) Chemical contaminants on DOE lands and selection of contaminated mixtures for subsurface science research. US-DOE, Energy Resource Subsurface Science Program, Washington, DC

    Google Scholar 

  • Rosman KJR, Taylor PDP (1998) Isotopic compositions of the elements 1997. Pure Appl Chem 70:217–235

    Article  CAS  Google Scholar 

  • Ruiz-Olmo J, Lafontaine L, Prigioni C, López-Martín JM, Santos-Reis M (2000) Pollution and its effects on otter populations in south-western Europe. In: Conroy JWH, Yoxon P, Gutleb AC (eds) Proceedings of the first otter toxicology conference. J Internat Otter Survival Fund 1:63–82

    Google Scholar 

  • Şahin K, Küçük O, Şahin N, Ozbey O (2001) Effects of dietary chromium picolinate supplementation on egg production, egg quality and serum concentrations of insulin, corticosterone and some metabolites of Japanese quails. Nutr Res 21:1315–1321

    Article  Google Scholar 

  • Salnikow K, Zhitkovich A (2008) Genetic and epigenetic mechanisms in metal carcinogenesis and cocarcinogenesis: nickel, arsenic and chromium. Chem Res Toxicol 21:28–44

    Article  Google Scholar 

  • Samantaray S, Ranjan Rout G, Das P (1998) Role of chromium on plant growth and metabolism. Acta Physiol Plant 20:201–2012

    Article  CAS  Google Scholar 

  • Sampaio CH (2002) Beneficiamento de carvões. In: Teixeira EC (ed) Meio Ambiente e Carvão: Impactos da Exploração e Utilização. Fepam, Porto Alegre, 497 pp

    Google Scholar 

  • Sample BE, Faitbrother A, Kaiser A, Law S, Adams B (2014) Sensitivity of ecological soil-screening levels for metals to exposure model parameterization and toxicity reference values. Environ Toxicol Chem 33:2386–2398

    Article  CAS  Google Scholar 

  • Sánchez-Chardi A, Oliveira-Ribeiro C, Nadal J (2009) Metals in liver and kidneys and the effects of chronic exposure to pyrite mine pollution in the shrew Crocidura russula inhabiting the protected wetland of Doñana. Chemosphere 76:387–394

    Article  CAS  Google Scholar 

  • Sanyal T, Kaviraj A, Saha S (2015) Deposition of chromium in aquatic ecosystem from effluents of handloom textile industries in Ranaghat–Fulia region of West Bengal, India. J Adv Res 6:995–1002

    Article  CAS  Google Scholar 

  • Saxena DK, Murthy RC, Lal B, Srivastava RS, Chandra SV (1990) Effect of hexavalent chromium on testicular maturation in the rat. Reprod Toxicol 4:223–228

    Article  CAS  Google Scholar 

  • Schwarz K, Mertz Z (1959) Chromium (III) and glucose tolerance factor. Arch Biochem Biophys 85:292–295

    Article  CAS  Google Scholar 

  • Shanker AK, Cervantes C, Loza-Tavera H, Avudainayaagam S (2005) Chromium toxicity in plants. Environ Int 31:739–753

    Article  CAS  Google Scholar 

  • Sharma DC, Sharma CP, Tripathi RD (2003) Phytotoxic lesions of chromium in maize. Chemosphere 51:63–68

    Article  CAS  Google Scholar 

  • Shi X, Dalal NS (1989) Chromium(V) and hydroxyl radical formation during the glutathione reductase-catalyzed reduction of chromium(VI). Biochem Biophys Res Commun 163:627–634

    Article  CAS  Google Scholar 

  • Shi X, Dalal NS (1990) On the hydroxyl radical formation in the reaction between hydrogen peroxide and biologically generated chromium (V) species. Arch Biochem Biophys 277:342–350

    Article  CAS  Google Scholar 

  • Singh HP, Mahajan P, Kaur S, Batish DR, Kohli RK (2013) Chromium toxicity and tolerance in plants. Environ Chem Lett 11:229–254

    Article  CAS  Google Scholar 

  • Singh N, Uppal H, Chawla S, Singh S, Tripathy S (2015) An efficient and fast process for the removal of trivalent and hexavalent chromium from contaminated water using zinc peroxide nanomaterial. Pharm Anal Acta 6:412

    Google Scholar 

  • Sivertsen T, Daae HL, Godal A, Sand G (1995) Ruminant uptake of nickel and other elements from industrial air pollution in the Norwegian-Russian border area. Environ Pollut 90:75–81

    Article  CAS  Google Scholar 

  • Skoric S, Visnjić-Jeftic Z, Jaric I, Djikanovic V, Mickovic B, Nikcevic M et al (2012) Accumulation of 20 elements in great cormorant (Phalacrocorax carbo) and its main prey, common carp (Cyprinus carpio) and Prussian carp (Carassius gibelio). Ecotoxicol Environ Saf 80:244–251

    Article  CAS  Google Scholar 

  • Sobański L, Sprzęczka-Niedolaz M, Łebek G (2007) The role of chromium in human nutrition. Bromat Chem Toksykol – XL 2:113–119 (in Polish)

    Google Scholar 

  • Sobieraj S, Laskowski J (1973) Flotation of chromite: 1-early research and recent trends; 2-flotation of chromite and surface properties of spinel minerals. Trans Inst Min Metall Sect C 82:C207–C213

    Google Scholar 

  • Solomon F (2008) Impacts of metals on aquatic ecosystems and human health. http://www.infomine.com/publications/docs/mining.com/Apr2008c.pdf

  • Song RX, Barnes CJ, Zhang Z, Bao Y, Kumar R, Santen RJ (2004) The role of Shc and insulin-like growth factor 1 receptor in mediating the translocation of estrogen receptor alpha to the plasma membrane. Proc Natl Acad Sci USA 101:2076–2081

    Article  CAS  Google Scholar 

  • Spears JW, Kegley EB, Mullis LA (2004) Bioavailability of copper from tribasic copper chloride and copper sulfate in growing cattle. Anim Feed Sci Technol 116:1–13

    Article  CAS  Google Scholar 

  • Speranza A, Ferri P, Battistelli M, Falcieri E, Crinelli R, Scoccianti V (2007) Both trivalent and hexavalent chromium strongly alter in vitro germination and ultrastructure of kiwifruit pollen. Chemosphere 66:1165–1174

    Article  CAS  Google Scholar 

  • Standeven AM, Wetterhahn KE (1992) Ascorbate is the principal reductant of chromium(VI) in rat lung ultrafiltrates and cytosols, and mediates chromium-DNA binding in vitro. Carcinogenesis 13:1319–1324

    Article  CAS  Google Scholar 

  • Staniek H, Kostrzewska-Poczekaj M, Arndt M, Szyfter K (2010) Genotoxicity assessment of chromium (III) propionate complex in the rat model using the comet assay. Food Chem Toxicol 48:89–92

    Article  CAS  Google Scholar 

  • Stearns DM, Wise JP Sr, Patierno SR, Wetterhahn KE (1995) Chromium (III) picolinate produces chromosomal damage in Chinese hamster ovary cells. J Fed Am Soc Exp Biol 9:1643–1649

    CAS  Google Scholar 

  • Stern MB, Mansdorf SZ (1998) Applications and computational elements of industrial hygiene. CRC Press, Taylor & Francis Group, Boca Raton, FL

    Google Scholar 

  • Stoecker B (2004) Chromium. In: Merian E, Anke M, Ihnat M, Stoeppler M (eds) Elements and their compounds in the environment, 2nd edn. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, pp 709–729

    Chapter  Google Scholar 

  • Stout JH, Trust KA (2002) Elemental and organochlorine residues in bald eagles from Adak Island, Alaska. Wildl Dis 38:511–517

    Article  CAS  Google Scholar 

  • Su C, Jiang LQ, Zhang WJ (2014) A review on heavy metal contamination in the soil worldwide. Environ Skep Crit 3:24–38

    Google Scholar 

  • Subramanian S, Rajendiran G, Sekhar P, Gowri C, Govindarajulu P, Aruldhas MM (2006) Reproductive toxicity of chromium in adult bonnet monkeys (Macaca radiata Geoffrey). Reversible oxidative stress in the semen. Toxicol Appl Pharm 215:237–249

    Article  CAS  Google Scholar 

  • Sugden KD, Stearns DM (2000) The role of chromium(V) in the mechanism of chromate-induced oxidative DNA damage and cancer. J Environ Pathol Toxicol Oncol 19:215–230

    CAS  Google Scholar 

  • Suwalsky M, Castro R, Villena F, Sotomayor CP (2008) Cr (III) exerts stronger structural effects than Cr (VI) on the human erythrocyte membrane and molecular models. J Inorg Biochem 102:842–849

    Article  CAS  Google Scholar 

  • Suzuki Y, Fukuda K (1990) Reduction of hexavalent chromium by ascorbic acid and glutathione with special reference to the rat lung. Arch Toxicol 64:169–176

    Article  CAS  Google Scholar 

  • Talebi SM (2003) Determination of total and hexavalent chromium concentrations in the atmosphere of the city of Isfahan. Environ Res 92:54–56

    Article  CAS  Google Scholar 

  • Tandon SK, Behari JR, Kachru DN (1979) Distribution of chromium in poisoned rats. Toxicology 13:29–34

    Article  CAS  Google Scholar 

  • Thacker U, Parikh R, Shouche Y, Madamwar D (2006) Hexavalent chromium reduction by Providencia sp. Process Biochem 41:1332–1337

    Article  CAS  Google Scholar 

  • Thakur R, Sharma GD, Dwivedi BS, Khatik SK (2007) Chromium: as a pollutant. J Ind Pollut Control 23:197–203

    Google Scholar 

  • Thor MY, Harnack L, King D, Jasthi B, Pettit J (2011) Evaluation of the comprehensiveness and reliability of the chromium composition of foods in the literature. J Food Comp Anal 24:1147–1152

    Article  CAS  Google Scholar 

  • Topczewska J (2012) Effects of seasons on the concentration of selected trace elements in horse hair. J Cent Eur Agric 13:671–680

    Article  Google Scholar 

  • Tribovillard N, Algeo TJ, Lyons T, Riboulleau A (2006) Trace metals as paleoredox and paleoproductivity proxies: an update. Chem Geol 232:12–32

    Article  CAS  Google Scholar 

  • Tsipoura N, Burger J, Feltes R, Yacabucci J, Mizrahi D, Jeitner C et al (2008) Metal concentrations in three species of passerine birds breeding in the Hackensack Meadowlands of New Jersey. Environ Res 107:218–228

    Article  CAS  Google Scholar 

  • Tsipoura N, Burger J, Newhouse M, Jeitner C, Gochfeld M, Mizrahi D (2011) Lead, mercury, cadmium, chromium, and arsenic levels in eggs, feathers, and tissues of Canada geese of the New Jersey Meadowlands. Environ Res 111:775–784

    Article  CAS  Google Scholar 

  • Upreti RK, Shrivastava R, Chaturvedi UC (2004) Gut microflora and toxic metals. Chromium as a model. Indian J Med Res 119:49–59

    CAS  Google Scholar 

  • USGS (2010) Chromium. In: 2007 Minerals Yearbook. U.S. Department of the Interior, U.S. Geological Survey, pp 17.1–17.28

    Google Scholar 

  • USGS (2015) Chromium. In: Mineral commodity summaries 2015. U.S. Geological Survey, pp 42–43

    Google Scholar 

  • Uyanik F, Eren M, Guclu BK, Sahin N (2005) Effects of dietary chromium supplementation on performance, carcass traits, serum metabolites and tissue chromium levels of Japanese quails. Biol Trace Elem Res 103:187–197

    Article  CAS  Google Scholar 

  • Vajpayee P, Sharma SC, Tripathi RD, Rai UN, Yunus M (1999) Bioaccumulation of chromium and toxicity to photosynthetic pigments, nitrate reductase activity and protein content of Nelumbo nucifera Gaertn. Chemosphere 39:2159–2169

    Article  CAS  Google Scholar 

  • van Gestel CAM, Van Breemen EMD, Baerselman R (1993) Accumulation and elimination od cadmium, chromium and zinc and effects on growth and reproduction in Eisenia andrei (Oligochaeta, Annelida). Sci Total Environ 134:585–597

    Article  Google Scholar 

  • Vasylkiv OY, Kubrak OI, Storey KB, Lushchak VI (2010) Cytotoxicity of chromium ions may be connected with induction of oxidative stress. Chemosphere 80:1044–1049

    Article  CAS  Google Scholar 

  • Vert T (2016) Refractory material selection for steelmaking. The American Ceramic Society and John Wiley & Sons, Hoboken, NJ

    Book  Google Scholar 

  • Vincent JB (1999) Mechanisms of chromium action: low-molecular-weight chromium-binding substance. J Am Coll Nutr 18:6–12

    Article  CAS  Google Scholar 

  • Vincent JB (2015) Is the pharmacological mode of action of chromium(III) as a second messenger? Biol Trace Elem Res 166:7–12

    Article  CAS  Google Scholar 

  • Vincent JB, Stallings D (2007) Chapter 1 – Introduction: a history of chromium studies (1955–1995). The nutritional biochemistry of chromium. Elsevier, Amsterdam, pp 1–40

    Google Scholar 

  • Viti C, Mini A, Ranalli G, Lustrato G, Giovannetti L (2006) Response of microbial communities to different doses of chromate in soil microcosms. Appl Soil Ecol 34:125–139

    Article  Google Scholar 

  • Voigt CL, da Silva CP, Doria HB, Randi MAF, de Oliveira Ribeiro CA, de Campos SX (2015) Bioconcentration and bioaccumulation of metal in freshwater neotropical fish Geophagus brasiliensis. Environ Sci Pollut Res 22:8242–8252

    Article  CAS  Google Scholar 

  • Walker LA, Simpson VR, Rockett L, Wienbeurg CL, Shore RF (2007) Heavy metal contamination in bats Britain. Environ Pollut 148:483–490

    Article  CAS  Google Scholar 

  • Walker LA, Lawlor AJ, Chadwick EA, Potter E, Pereira MG, Shore RF (2010) Inorganic elements in the livers of Eurasian otters, Lutra lutra, from England and Wales in 2007 & 2008: a Predatory Bird Monitoring Scheme (PBMS) report, pp 13, Centre for Ecology and Hydrology

    Google Scholar 

  • Walker LA, Lawlor AJ, Chadwick EA, Potter E, Pereira MG, Shore RF (2011) Inorganic elements in the Livers of Eurasian Otters, Lutra lutra, from England and Wales in 2009 – a Predatory Bird Monitoring Scheme (PBMS) Report. Centre for Ecology & Hydrology, Lancaster, UK (http://nora.nerc.ac.uk/14176/1/PBMS_Metals_ Otters_2009.pdf)

  • Wang MM, Fox EA, Stoecker BJ, Menendez CE, Chan SB (1989) Serum cholesterol of adults supplemented with brewers’s yeast or chromium chloride. Nutr Res 9:989–998

    Article  CAS  Google Scholar 

  • Wang ZQ, Zhang XH, Russell JC, Hulver M, Cefalu WT (2006) Chromium picolinate enhances skeletal muscle cellular insulin signaling in vivo on obese, insulin-resistant JCR: LA-cp rats. J Nutr 136:415–420

    Article  CAS  Google Scholar 

  • Wang MQ, He YD, Lindemann MD, Jiang ZG (2009) Efficacy of Cr (III) supplementation on growth, carcass composition, blood metabolites, and endocrine parameters in finishing pigs. Asian-Aust J Anim Sci 22:1414–1419

    Article  CAS  Google Scholar 

  • Wang ZX, Chen JQ, Chai LY, Yang ZH, Huang SH, Zheng Y (2011) Environmental impact and site-specific human health risks of chromium in the vicinity of a ferro-alloy manufactory, China. J Hazard Mater 190:980–985

    Article  CAS  Google Scholar 

  • Wang M-Q, Li H, He Y-D, Wang C, Tao W-J, Du Y-J (2012a) Efficacy of dietary chromium (III) supplementation on tissue chromium deposition in finishing pigs. Biol Trace Elem Res 148:316–321

    Article  CAS  Google Scholar 

  • Wang X, Mandal AK, Saito H, Pulliam JF, Lee EY, Ke ZJ et al (2012b) Arsenic and chromium in drinking water promote tumorigenesis in a mouse colitis-associated colorectal cancer model and the potential mechanism is ROS-mediated Wnt/β-catenin signaling pathway. Toxicol Appl Pharm 262:11–21

    Article  CAS  Google Scholar 

  • Weegman MD, Weegman MM (2007) Chromium and selenium in invertebrate prey of lesser scaup. J Wildl Manag 71:778–782

    Article  Google Scholar 

  • Weksler-Zangen S, Mizrahi T, Raz I, Mirsky N (2012) Glucose tolerance factor extracted from yeast: oral insulin-mimetic and insulin-potentiating agent: in vivo and in vitro studies. Br J Nutr 108:875–882

    Article  CAS  Google Scholar 

  • WHO (1988) Chromium. Environmental Health Criteria, WHO (World Health Organization), Geneva, Switzerland, 61 pp

    Google Scholar 

  • WHO (2000) World health report 2000: health systems: improving performance. World Health Organization, Geneva

    Google Scholar 

  • WHO/IPCS (2013) World Health Organization/International Programme on Chemical Safety. Inorganic chromium(VI) compounds. Concise International Chemical Assessment Document 78. http://www.who.int/ipcs/publications/cicad/cicad_78.pdf

  • Wiemeyer SN, Schmeling SK, Anderson A (1987) Environmental pollutant and necropsy data for ospreys from the Eastern United States, 1975-1982. J Wildl Dis 23:279–291

    Article  CAS  Google Scholar 

  • Wilde E, Benemann JR (1993) Bioremoval of heavy metals by the use of microalgae. Biotechnol Adv 11:781–812

    Article  CAS  Google Scholar 

  • Wise JP, Wise SS, Little JE (2002) The cytotoxicity and genotoxicity of particulate and soluble hexavalent chromium in human lung cells. Mutat Res 517:221–229

    Article  CAS  Google Scholar 

  • Wise JP, Wise SS, Kraus S, Shaffiey F, Grau M, Chen TL et al (2008) Hexavalent chromium is cytotoxic and genotoxic to the North Atlantic right whale (Eubalaena glacialis) lung and testes fibroblasts. Mutat Res 650:30–38

    Article  CAS  Google Scholar 

  • Wuana RA, Okieimen FE (2011) Heavy metals in contaminated soils: a review of sources, chemistry, risks and best available strategies for remediation. International Scholarly Research Network ISRN Ecology ID 402647, pp 1–20

    Google Scholar 

  • WVDL (2015) www.wvdl.wisc.edu/wp-content/uploads/2013/06/WVDL.Info_. Toxicology_ Normal_ Ranges.pdf (Accessed 28 Apr 2015)

  • Wyszkowski M, Radziemska M (2009) Chromium contamination and the content of nitrogen compounds in soil. Ochr Środ Zasob Natural 40:88–95

    Google Scholar 

  • Yoo Y, Lee S, Yang J, In S, Kim K, Kim S et al (2000) Distribution of heavy metals in normal Korean tissues. Probl Foren Sci 43:283–289

    CAS  Google Scholar 

  • Zaccaroni A, Amorena M, Naso B, Castellani G, Lucisano A, Stracciari GL (2003) Cadmium, chromium and lead contamination of Athene noctua, the little owl, of Bologna and Parma, Italy. Chemosphere 52:1251–1258

    Article  CAS  Google Scholar 

  • Zaccaroni A, Andreani G, Ferrante MC, Carpene E, Isani G, Lucisano A (2008a) Metal concentrations in the liver and kidney of raptor species from the Calabria region, Italy. Acta Vet Beograd 58:315–324

    Article  Google Scholar 

  • Zaccaroni A, Scaravelli D, De Battisti R, Zanella A, Gelli D (2008b) Toxicological survey of free ranging population of roe deer (Capreolus capreolus) and red deer (Cervus elaphus) by teeth examination. Nat Croat Zagreb 17:273–281

    Google Scholar 

  • Zaccaroni A, Corteggio A, Altamura G, Silvi M, Di Vaia R, Formigaro C et al (2014) Elements levels in dogs from “triangle of death” and different areas of Campania region (Italy). Chemosphere 108:62–69

    Article  CAS  Google Scholar 

  • Zayed A, Terry N (2003) Chromium in the environment: factors affecting biological remediation. Plant Soil 249:139–156

    Article  CAS  Google Scholar 

  • Zayed A, Lytle CM, Qian J-H, Terry N (1998) Chromium accumulation, translocation and chemical speciation in vegetable crops. Planta 206:293–299

    Article  CAS  Google Scholar 

  • Zha LY, Xu ZR, Wang MQ, Gu LY (2007) Effects of chromium nanoparticle dosage on growth, body composition, serum hormones and tissue chromium in Sprague-Dawley rats. J Zhejiang Univ Sci B 8(5):323–330

    Article  CAS  Google Scholar 

  • Zhangsheng L, Moore TA, Weaver SD, Finkelman RB (2001) Crocoite: an usual mode of occurrence for lead in cool. Int J Coal Geol 45:289–293

    Article  Google Scholar 

  • Zhitkovich A (2011) Chromium in drinking waters: sources, metabolism and cancer risks. Chem Res Toxicol 24:1617–1629

    Article  CAS  Google Scholar 

  • Zocche JJ, Leffa DD, Damiani AP, Carvalho F, Mendonca RA, dos Santos CEI et al (2010) Heavy metals and DNA damage in blood cells of insectivore bats in coal mining areas of Catarinense coal basin, Brazil. Environ Res 110:684–691

    Article  CAS  Google Scholar 

  • Zojaji F, Hassani AH, Sayadi MH (2014) Bioaccumulation of chromium by Zea mays in wastewater-irrigated soil: an experimental study. Proc Int Acad Ecol Environ Sci 4:62–67

    CAS  Google Scholar 

  • Zou J, Wang M, Jiang W, Liu D (2006) Chromium accumulation and its effects on other mineral elements in Amaranthus viridis L. Acta Biol Cracov Bot 48:7–12

    Google Scholar 

  • Zukal J, Pikula J, Bandouchova H (2015) Bats as bioindicators of heavy metal pollution: history and prospect. Mamm Biol 80:220–227

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tadeusz Kośla .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kośla, T., Lasocka, I., Kołnierzak, M. (2019). Chromium, Cr. In: Kalisińska, E. (eds) Mammals and Birds as Bioindicators of Trace Element Contaminations in Terrestrial Environments. Springer, Cham. https://doi.org/10.1007/978-3-030-00121-6_3

Download citation

Publish with us

Policies and ethics