Skip to main content

Fusing First-Order Knowledge Compilation and the Lifted Junction Tree Algorithm

  • Conference paper
  • First Online:
  • 1206 Accesses

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 11117))

Abstract

Standard approaches for inference in probabilistic formalisms with first-order constructs include lifted variable elimination (LVE) for single queries as well as first-order knowledge compilation (FOKC) based on weighted model counting. To handle multiple queries efficiently, the lifted junction tree algorithm (LJT) uses a first-order cluster representation of a model and LVE as a subroutine in its computations. For certain inputs, the implementation of LVE and, as a result, LJT ground parts of a model where FOKC runs without groundings. The purpose of this paper is to prepare LJT as a backbone for lifted query answering and to use any exact inference algorithm as subroutine. Fusing LJT and FOKC, by setting FOKC as a subroutine, allows us to compute answers faster than FOKC alone and LJT with LVE for certain inputs.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Ahmadi, B., Kersting, K., Mladenov, M., Natarajan, S.: Exploiting symmetries for scaling loopy belief propagation and relational training. Mach. Learn. 92(1), 91–132 (2013)

    Article  MathSciNet  Google Scholar 

  2. Apsel, U., Brafman, R.I.: Extended lifted inference with joint formulas. In: Proceedings of the 27th Conference on Uncertainty in Artificial Intelligence, UAI 2011 (2011)

    Google Scholar 

  3. Bellodi, E., Lamma, E., Riguzzi, F., Costa, V.S., Zese, R.: Lifted variable elimination for probabilistic logic programming. Theory Pract. Logic Program. 14(4–5), 681–695 (2014)

    Article  Google Scholar 

  4. Braun, T., Möller, R.: Lifted junction tree algorithm. In: Friedrich, G., Helmert, M., Wotawa, F. (eds.) KI 2016. LNCS (LNAI), vol. 9904, pp. 30–42. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46073-4_3

    Chapter  Google Scholar 

  5. Braun, T., Möller, R.: Lifted most probable explanation. In: Chapman, P., Endres, D., Pernelle, N. (eds.) ICCS 2018. LNCS (LNAI), vol. 10872, pp. 39–54. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-91379-7_4

    Chapter  Google Scholar 

  6. van den Broeck, G.: Lifted inference and learning in statistical relational models. Ph.D. thesis, KU Leuven (2013)

    Google Scholar 

  7. van den Broeck, G., Davis, J.: Conditioning in first-order knowledge compilation and lifted probabilistic inference. In: Proceedings of the 26th AAAI Conference on Artificial Intelligence, pp. 1961–1967 (2012)

    Google Scholar 

  8. van den Broeck, G., Niepert, M.: Lifted probabilistic inference for asymmetric graphical models. In: Proceedings of the 29th Conference on Artificial Intelligence, AAAI 2015, pp. 3599–3605 (2015)

    Google Scholar 

  9. van den Broeck, G., Taghipour, N., Meert, W., Davis, J., Raedt, L.D.: Lifted probabilistic inference by first-order knowledge compilation. In: Proceedings of the 22nd International Joint Conference on Artificial Intelligence, IJCAI 2011 (2011)

    Google Scholar 

  10. Chavira, M., Darwiche, A.: Compiling Bayesian networks using variable elimination. In: Proceedings of the 20th International Joint Conference on Artificial Intelligence, IJCAI 2007, pp. 2443–2449 (2007)

    Google Scholar 

  11. Chavira, M., Darwiche, A.: On probabilistic inference by weighted model counting. Artif. Intell. 172(6–7), 772–799 (2008)

    Article  MathSciNet  Google Scholar 

  12. Choi, J., Amir, E., Hill, D.J.: Lifted inference for relational continuous models. In: Proceedings of the 26th Conference on Uncertainty in Artificial Intelligence, UAI 2010, pp. 13–18 (2010)

    Google Scholar 

  13. Darwiche, A., Marquis, P.: A knowledge compilation map. J. Artif. Intell. Res. 17(1), 229–264 (2002)

    Article  MathSciNet  Google Scholar 

  14. Das, M., Wu, Y., Khot, T., Kersting, K., Natarajan, S.: Scaling lifted probabilistic inference and learning via graph databases. In: Proceedings of the SIAM International Conference on Data Mining, pp. 738–746 (2016)

    Google Scholar 

  15. Gogate, V., Domingos, P.: Exploiting logical structure in lifted probabilistic inference. In: Working Note of the Workshop on Statistical Relational Artificial Intelligence at the 24th Conference on Artificial Intelligence, pp. 19–25 (2010)

    Google Scholar 

  16. Gogate, V., Domingos, P.: Probabilistic theorem proving. In: Proceedings of the 27th Conference on Uncertainty in Artificial Intelligence, UAI 2011, pp. 256–265 (2011)

    Google Scholar 

  17. Kazemi, S.M., Poole, D.: Why is compiling lifted inference into a low-level language so effective? In: Statistical Relational AI Workshop, IJCAI 2016 (2016)

    Google Scholar 

  18. Lauritzen, S.L., Spiegelhalter, D.J.: Local computations with probabilities on graphical structures and their application to expert systems. J. R. Stat. Soc. Ser. B: Methodol. 50, 157–224 (1988)

    MathSciNet  MATH  Google Scholar 

  19. Milch, B., Zettelmoyer, L.S., Kersting, K., Haimes, M., Kaelbling, L.P.: Lifted probabilistic inference with counting formulas. In: Proceedings of the 23rd Conference on Artificial Intelligence, AAAI 2008, pp. 1062–1068 (2008)

    Google Scholar 

  20. Poole, D.: First-order probabilistic inference. In: Proceedings of the 18th International Joint Conference on Artificial Intelligence, IJCAI 2003 (2003)

    Google Scholar 

  21. Poole, D., Zhang, N.L.: Exploiting contextual independence in probabilistic inference. J. Artif. Intell. 18, 263–313 (2003)

    Article  MathSciNet  Google Scholar 

  22. de Salvo Braz, R.: Lifted first-order probabilistic inference. Ph.D. thesis, University of Illinois at Urbana Champaign (2007)

    Google Scholar 

  23. Shenoy, P.P., Shafer, G.R.: Axioms for probability and belief-function propagation. Uncertain. Artif. Intell. 4(9), 169–198 (1990)

    Article  MathSciNet  Google Scholar 

  24. Singla, P., Domingos, P.: Lifted first-order belief propagation. In: Proceedings of the 23rd Conference on Artificial Intelligence, AAAI 2008, pp. 1094–1099 (2008)

    Google Scholar 

  25. Taghipour, N., Davis, J.: Generalized counting for lifted variable elimination. In: Proceedings of the 2nd International Workshop on Statistical Relational AI, pp. 1–8 (2012)

    Google Scholar 

  26. Taghipour, N., Fierens, D., Davis, J., Blockeel, H.: Lifted variable elimination: decoupling the operators from the constraint language. J. Artif. Intell. Res. 47(1), 393–439 (2013)

    Article  MathSciNet  Google Scholar 

  27. Vlasselaer, J., Meert, W., van den Broeck, G., Raedt, L.D.: Exploiting local and repeated structure in dynamic Baysian networks. Artif. Intell. 232, 43–53 (2016)

    Article  Google Scholar 

  28. Zhang, N.L., Poole, D.: A simple approach to Bayesian network computations. In: Proceedings of the 10th Canadian Conference on Artificial Intelligence, pp. 171–178 (1994)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tanya Braun .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Braun, T., Möller, R. (2018). Fusing First-Order Knowledge Compilation and the Lifted Junction Tree Algorithm. In: Trollmann, F., Turhan, AY. (eds) KI 2018: Advances in Artificial Intelligence. KI 2018. Lecture Notes in Computer Science(), vol 11117. Springer, Cham. https://doi.org/10.1007/978-3-030-00111-7_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-00111-7_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-00110-0

  • Online ISBN: 978-3-030-00111-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics