Skip to main content

Scanning Electron Microscopy

  • Chapter
  • First Online:
Springer Handbook of Microscopy

Part of the book series: Springer Handbooks ((SHB))

Abstract

This chapter provides an overview of the concepts of scanning electron microscopy ( ) from a theoretical as well as practical operational perspective. The theory section begins with the basics of image formation followed by an explanation of the interaction of the electron beam with the sample. A description of the different types of electron guns is also included. The concepts involved with image formation from a rastered (or scanned) electron beam on a surface is explained along with the mechanisms of contrast generation from sample surface topography and sample composition. The different SEM detectors are also explained including a description of the practical application of detectors under various sample conditions. Numerous diagrams and figures in this chapter illustrate imaging geometries and possible SEM system configurations. Included in the chapter is an explanation of the various instrument operation parameters for different samples as well as a discussion of the effects of electron-beam accelerating voltages on sample imaging, contrast, and resolution.

More advanced topics are also included such as the use of beam deceleration and in-lens imaging and detectors. Analytical SEM techniques are also explained with the explanation of the use of energy-dispersive x-ray detectors (EDS) used to measure sample composition as well as provide compositional maps of a sample. Application of SEM to a variety of materials systems under varying conditions are discussed with multiple examples and illustrations given.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 279.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 359.00
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • H. Stintzing: Verfahren und Einrichtung zum automatischen Nachweis, Messung und Zählung von Einzelteilchen beliebiger Art, Form und Grösse, German Patent 485155 (1927)

    Google Scholar 

  • M. Knoll: Aufladepotential und Sekundäremission eletronenbestrahlter Körper, Z. Tech. Phys. 116, 467 (1935)

    Google Scholar 

  • M. von Ardenne: Das Elektronen-Rastermikroskop. Praktische Ausführung, Z. Tech. Phys. 19, 407 (1938)

    Google Scholar 

  • E. Ruska: Die frühe Entwicklung der Elektronenlinsen und der Elektronenmikroskopie (Deutsche Akademie der Naturforscher Leopoldina, Halle 1979)

    Google Scholar 

  • V.K. Zworykin, J. Hillier, R.L. Snyder: A scanning electron microscope, ASTM Bulletin 117, 15 (1942)

    Google Scholar 

  • C.W. Oatley: The Scanning Electron Microscope. Part 1: The Instrument (Cambridge Univ. Press, Cambridge 1972)

    Google Scholar 

  • J. Ohnsorge, R. Holm: Rasterelektronenmikroskopie—Eine Einführung für Mediziner und Biologen (Thieme, Stuttgart 1973)

    Google Scholar 

  • D.B. Holt, M.D. Muir, P.R. Grant, I.M. Boswarva (Eds.): Quantitative Scanning Electron Microscopy (Academic Press, London 1974)

    Google Scholar 

  • O.C. Wells: Scanning Electron Microscopy (McGraw-Hill, New York 1974)

    Google Scholar 

  • M.A. Hayat (Ed.): Principles and Techniques of Scanning Electron Microscopy, Vol. 1–6 (Van Nostrand Reinhold, New York 1974)

    Google Scholar 

  • J. Goldstein, H. Yakowitz: Practical Scanning Electron Microscopy (Plenum, New York 1975)

    Google Scholar 

  • L. Reimer, G. Pfefferkorn: Raster‑Elektronenmikroskopie (Springer, Berlin 1973)

    Google Scholar 

  • L. Reimer, G. Pfefferkorn: Raster‑Elektronenmikroskopie, 2nd edn. (Springer, Berlin 1977)

    Google Scholar 

  • G. Pfefferkorn (Ed.): Beiträge zur elektronenmikroskopischen Direktabbildung und Analyse von Oberflächen (BEDO), Vol. 1 (R.A. Remy, Münster 1968)

    Google Scholar 

  • O. Johari (Ed.): Proceedings of the Annual Scanning Electron Microscopy Symposium (IIT Research Institute, Chicago 1987)

    Google Scholar 

  • L. Reimer: Scanning electron microscopy---Present state and trends, Scanning 1, 3 (1978)

    CAS  Google Scholar 

  • V.H. Heywood: Scanning Electron Microscopy. Systematic and Evolutionary Applications (Academic Press, London 1971)

    Google Scholar 

  • T. Fujita, M.D.J. Tokunaga, H. Inoue: Atlas of Scanning Electron Microscopy in Medicine (Elsevier, Amsterdam 1971)

    Google Scholar 

  • P.R. Thornton: Scanning Electron Microscopy. Application to Materials and Device Science (Chapman Hall, London 1972)

    Google Scholar 

  • P.R. Troughton, L.A. Donaldson: Probing Plant Structure (Chapman Hall, London 1972)

    Google Scholar 

  • B.M. Siegel, D.R. Beaman: Physical Aspects of Electron Microscopy and Microbeam Analysis (Wiley, New York 1975)

    Google Scholar 

  • J.A. Chandler: X-Ray Microanalysis in the Electron Microscope (North-Holland, Amsterdam 1978)

    Google Scholar 

  • J.-P. Revel, G.H. Haggis, T. Barnard (Eds.): The Science of Biological Specimen Preparation for Microscopy and Microanalysis (Scanning Electron Microscopy, Chicago 1983)

    Google Scholar 

  • D.E. Newbury, D.C. Joy, P. Echlin, C.E. Fiori, J.I. Goldstein: Advanced Scanning Electron Microscopy and X-Ray Microanalysis (Plenum, New York 1987)

    Google Scholar 

  • K. Wetzig, D. Schulze (Eds.): In Situ Scanning Electron Microscopy in Materials Research (Akademie, Berlin 1995)

    Google Scholar 

  • S.J.B. Reed: Electron Microprobe Analysis and Scanning Electron Microscopy in Geology (Cambridge Univ. Press, Cambridge 1996)

    Google Scholar 

  • J.J. Goldstein, D.E. Newbury, P. Echlin, D.C. Joy, C. Fiori, E. Lifshin: Scanning Electron Microscopy and X-Ray Microanalysis (Plenum, New York 1984)

    Google Scholar 

  • J.J. Goldstein, D.E. Newbury, D.C. Joy, C.E. Lyman, P. Echlin, E. Lifshin, L.C. Sawyer, J.R. Michael: Scanning Electron Microscopy and X-Ray Microanalysis, 3rd edn. (Kluwer Academic/Plenum, New York 2003)

    Google Scholar 

  • C.E. Lyman, D.E. Newbury, J.I. Goldstein, D.B. Williams, A.D. Romig, J.T. Armstrong, P. Echlin, C.E. Fiori, D.C. Joy, E. Lifshin, K.-R. Peters: Scanning Electron Microscopy, X-Ray Microanalysis and Analytical Electron Microscopy (Plenum, New York 1990)

    Google Scholar 

  • L. Reimer: Image Formation in Low-Voltage Scanning Electron Microscopy (SPIE, Bellingham/Washington 1993)

    Google Scholar 

  • D.C. Joy: Monte Carlo Modeling for Electron Microscopy and Microanalysis (Oxford Univ. Press, New York 1995)

    Google Scholar 

  • L.C. Sawyer, D.T. Grubb: Polymer Microscopy (Chapman Hall, London 1996)

    Google Scholar 

  • I. Müllerová, L. Frank: Scanning low-energy electron microscopy, Adv. Imaging Electron Phys. 128, 310–443 (2003)

    Google Scholar 

  • D.C. Bell, N. Erdman: Low Voltage Electron Microscopy: Principles and Applications (Wiley, New York 2013)

    Google Scholar 

  • G.D. Danilatos: Foundations of environmental scanning electron microscopy, Adv. Electron. Electron Phys. 71, 109–250 (1988)

    CAS  Google Scholar 

  • G.D. Danilatos: Theory of the gaseous detector device in the ESEM, Adv. Electron. Electron Phys. 78, 1–102 (1990)

    Google Scholar 

  • D. Stokes: Principles and Practice of Variable Pressure: Environmental Scanning Electron Microscopy (VP-ESEM) (Wiley, New York 2008)

    Google Scholar 

  • L. Reimer: Scanning Electron Microscopy (Springer, Berlin 1985)

    Google Scholar 

  • W. DeVore, S.D. Berger: High emittance electron gun for projection lithography, J. Vac. Sci. Technol. B 14, 3764 (1996)

    CAS  Google Scholar 

  • W. Glaser: Grundlagen der Elektronenoptik (Springer, Wien 1952)

    Google Scholar 

  • P. Grivet: Electron Optics (Pergamon, Oxford 1972)

    Google Scholar 

  • O. Klemperer: Electron Optics (Cambridge Univ. Press, Cambridge 1971)

    Google Scholar 

  • L. Reimer: Scanning Electron Microscopy, 2nd edn. (Springer, Berlin 1998)

    Google Scholar 

  • V.E. Cosslett: Probe size and probe current in the STEM, Optik 36, 85 (1972)

    Google Scholar 

  • J.E. Barth, P. Kruit: Absorption of additional photons in the multiphoton ionisation continuum of xenon at 1064, 532 and 440 nm, Optik 101, 101 (1996)

    Google Scholar 

  • R. Kolarik, M. Lenc: An expression for the resolving power of a simple optical system, Optik 106, 135 (1997)

    Google Scholar 

  • T.E. Everhart, R.F.M. Thornley: Wide-band detector for micro-microampere low-energy electron currents, J. Sci. Instrum. 37, 246 (1960)

    Google Scholar 

  • A.V. Crewe, M. Isaacson, P. Johnson: Secondary electron detection in a field emission scanning microscope, Rev. Sci. Instrum. 41, 20 (1970)

    Google Scholar 

  • M.T. Postek, W.J. Keery: Low profile high-efficiency microchannel-plate detector system for scanning electron microscopy applications, Rev. Sci. Instrum. 61, 1648 (1990)

    Google Scholar 

  • R. Autrata, R. Hermann, M. Müller: An efficient BSE single crystal detector for SEM, Scanning 14, 127 (1992)

    Google Scholar 

  • R. Autrata, J. Jirák, J. Spinka, O. Hutar: Integrated single crystal detector for simultaneous detection of cathodoluminescence and backscattered electrons in scanning electron microscopy, Scanning Microsc. 6, 69 (1992)

    CAS  Google Scholar 

  • V.N.E. Robinson: BSE imaging at low accelerating voltages, Hitachi Instrum. News 19, 32 (1990)

    Google Scholar 

  • J. Stephen, B.J. Smith, D.C. Marshall, E.M. Wittam: Applications of a semiconductor backscattered electron detector in a scanning electron microscope, J. Phys. E 8, 607 (1975)

    Google Scholar 

  • E.F. Bond, D. Beresford, H.H. Haggis: Improved cathodoluminescence ‘microscopy', J. Microsc. 100, 271 (1974)

    CAS  Google Scholar 

  • A. Rasul, S.M. Davidson: Applications of a high performance SEM-based CL analysis system to compound semiconductor devices, Scanning Electron Microsc. I, 233 (1977)

    Google Scholar 

  • R. Autrata: A modification of the ET secondary electron detector with a single crystal scintillator, Scanning 12, 119 (1990)

    Google Scholar 

  • R. Autrata, J. Hejna: Detectors for low voltage scanning electron microscopy, Scanning 13, 275 (1991)

    Google Scholar 

  • R. Autrata, P. Schauer: Cathodoluminecsence of Polysilanes. In: 13th Eur. Congr. Microsc, ed. by D. Schryvers, J.-P. Timmermans, D. van Dyck, P. van Oostveldt (Belgian Society for Microscopy, Liége 2004) pp. 75–76

    Google Scholar 

  • C.H. Wu, D.B. Wittry: Investigation of minority-carrier diffusion lengths by electron bombardment of Schottky barriers, J. Appl. Phys. 49, 2827 (1974)

    Google Scholar 

  • P.E. Russel, J.F. Mancuso: Microchannel plate detector for low voltage scanning electron microscopes, J. Microsc. 140, 323 (1985)

    Google Scholar 

  • F.J. Judge, J.M. Stubbs, J. Philp: A concave mirror, light pipe photon collecting system for cathodoluminescence studies on biological specimens in the JSM 2 scanning electron microscope, J. Phys. E 7, 173 (1974)

    Google Scholar 

  • A. Boyde, S.A. Reid: New methods for cathodoluminescence in the SEM, Scanning Electron Microsc. 4, 1803 (1983)

    Google Scholar 

  • W.R. McKinney, P.V.C. Hough: A new detector system for cathodoluminescence ‘microscopy', Scanning Electron Microsc. 1, 251 (1977)

    Google Scholar 

  • E.M. Hörl: SEM of biological material using cathodoluminescence, Micron 3, 540 (1972)

    Google Scholar 

  • E.M. Hörl: Rasterelektronenmikroskopie unter Verwendung eines Farbmonitors, Beitr. Elektronenmikr. Direktabb. Anal. Oberfl. 8, 233 (1975)

    Google Scholar 

  • E.I. Rau, R.A. Sennov, D.S.H. Chan, J.C.H. Phang: The main principles of improved spatial resolution cathodoluminescence microscopy and microtomography using elliptical mirror optics. In: Proc. 13th Eur. Congr. Microsc., ed. by J.-P. Timmermans, D. Schryvers, D. van Dyck, P. van Oostveldt (Belgian Society for Microscopy, Liège 2004) pp. 411–412

    Google Scholar 

  • A. Ishikawa, F. Mizuno, Y. Uchikawa, S. Maruse: High resolution and spectroscopic cathodoluminescent images in SEM, Jpn. J. Appl. Phys. 12, 286 (1973)

    CAS  Google Scholar 

  • L. Reimer: Electron signal and detector strategy. In: Electron Beam Interactions with Solids for Microscopy, Microanalysis & Microlithography, ed. by D.F. Kyser, H. Niedrig, D.E. Newbury, R. Shimizu (Scanning Electron Microscopy, Chicago 1984) pp. 299–310

    Google Scholar 

  • S. Kimoto, H. Hashimoto, T. Suganama: Stereoscopic observation in SEM using multiple detectors. In: The Electron Microprobe, ed. by T.D. McKinley, K.F.J. Heinrich, D.B. Wittrey (Wiley, New York 1966) pp. 480–489

    Google Scholar 

  • J. Hejna, L. Reimer: Backscattered electron multidetector systems for improved quantitative topographic contrast, Scanning 9, 162 (1987)

    Google Scholar 

  • J. Lebiedzik: An automatic topographical surface reconstruction in the SEM, Scanning 2, 230 (1979)

    Google Scholar 

  • D. Kaczmarek: The method of increasing COMPO contrast by linearization of backscattering characteristic \(\eta=f(Z)\), Scanning 19, 310 (1997)

    CAS  Google Scholar 

  • D. Kaczmarek, J. Domaradzki: The method for the reconstruction of complex images of specimens using backscattered electrons, Scanning 24, 65 (2002)

    Google Scholar 

  • I. Müllerová, M. Lenc, M. Florián: Collection of backscattered electrons with a single polepiece lens and a multiple detector, Scanning Microsc. 3, 419 (1989)

    Google Scholar 

  • P. Kruit: Magnetic through-the-lens detection in electron microscopy and spectroscopy, Part 1. In: Advances in Optical and Electron Microscopy, Vol. 12, ed. by T. Mulvey, C.J.R. Sheppard (Academic Press, London 1991) pp. 93–137

    Google Scholar 

  • A.E. Lukianov, G.V. Spivak, E.I. Rau, D.D. Gorodsky: The secondary electron SEM-collector with magnetic field. In: Proc. 5th Eur. Congr. Electron Microsc., ed. by V.E. Cosslett (The Institute of Physics, London 1972) pp. 186–187

    Google Scholar 

  • H. Koike, K. Ueno, M. Suzuki: Scanning device combined with conventional electron microscope. In: Proc. EMSA (Claytor's Publishing Division, Baton Rouge 1971) p. 28

    Google Scholar 

  • J. Zach: Design of a high-resolution low-voltage scanning electron microscope, Optik 83, 30 (1989)

    Google Scholar 

  • J. Zach, H. Rose: High-resolution low-voltage electron microprobe with large SE detection efficiency. In: Inst. of Phys. Conf. Ser. No. 93 (IOP, Bristol 1988) pp. 81–82

    Google Scholar 

  • J. Zach, H. Rose: Efficient detection of secondary electrons in low-voltage SEM, Scanning 8, 285 (1988)

    Google Scholar 

  • J. Frosien, E. Plies, K. Anger: Compound magnetic and electrostatic lenses for low-voltage applications, J. Vac. Sci. Technol. B 7, 1874 (1989)

    Google Scholar 

  • S. Menzel, K. Wetzig: In situ production and defect characterization of laser PVD layers from YBaCuO HTSC targets inside a scanning electron microscope, J. Mater. Sci. 3, 5 (1992)

    CAS  Google Scholar 

  • A.J. Craven, J.M. Gibons, A. Howie, D.R. Spalding: Study of single-electron excitations by electron microscopy I. Image contrast from delocalized excitations, Philos. Mag. A 38, 519 (1978)

    CAS  Google Scholar 

  • M.S. Isaacson: Specimen damage in the electron microscopy. In: Principles and Techniques of Electron Microscopy, Vol. 7, ed. by M.A. Hayat (Van-Nostrand Reinhold, New York 1977) pp. 1–78

    Google Scholar 

  • M. Isaacson: Electron beam induced damage of organic solids: Implications for analytical electron microscopy, Ultramicroscopy 4, 193 (1979)

    CAS  Google Scholar 

  • L. Reimer, A. Schmidt: The shrinkage of bulk polymers by radiation damage in an SEM, Scanning 7, 47 (1985)

    CAS  Google Scholar 

  • R.F. Egerton, P. Li, M. Malac: Radiation damage in the TEM and SEM, Micron 35, 399 (2004)

    CAS  Google Scholar 

  • J. Bastacky, C. Wodley, R. Labrie, C. Backhus: Addendum to: A bibliography of low-temperature scanning electron microscopy (LTSEM, Cryo SEM) and scanning electron microscopy of frozen hydrated biological systems, Scanning 10, 37 (1988)

    Google Scholar 

  • C.E. Jeffree, N.D. Read: Ambient- and low-temperature scanning electron microscopy. In: Electron Microscopy of Plant Cells, ed. by J.L. Hall, C. Hawes (Academic Press, London 1991) pp. 313–413

    Google Scholar 

  • P. Walther, J. Hentschel, P. Herter, T. Müller, K. Zierold: Imaging of intramembranous particles in frozen-hyrated cells (Saccharomyces cerevisiae) by high-resolution cryo SEM, Scanning 12, 300 (1990)

    Google Scholar 

  • R.P. Huebener: Scanning electron microscopy at very low temperatures, Adv. Electron. Electron Phys. 70, 1–78 (1988)

    CAS  Google Scholar 

  • L. Lawson: Fatigue stage for quantitative acoustic emission measurements, Scanning 17, 322 (1995)

    Google Scholar 

  • E. Oho, M. Miyamoto: Mechanical scanning of the specimen in the scanning electron microscope, Scanning 26, 250 (2004)

    Google Scholar 

  • C. Gerber, G. Binnig, H. Fuchs, O. Marti, H. Rohrer: Scanning tunneling microscope combined with a scanning electron microscope, Rev. Sci. Instrum. 57, 221 (1986)

    CAS  Google Scholar 

  • A. Stemmer, R. Reichelt, R. Wyss, A. Engel: Biological structures imaged in a hybrid scanning transmission electron microscope and scanning tunneling microscope, Ultramicroscopy 35, 255 (1991)

    CAS  Google Scholar 

  • M. Troyon, H.N. Lei, A. Bourhettar: Integration of an STM in an SEM, Ultramicroscopy 1564, 42–44 (1992)

    Google Scholar 

  • I. Joachimsthaler, R. Heiderhoff, L.J. Balk: A universal scanning-probe-microscope-based hybrid system, Meas. Sci. Technol. 14, 87 (2003)

    CAS  Google Scholar 

  • R. Heiderhoff, O.V. Sergeev, Y.Y. Liu, J.C.H. Phang, L.J. Balk: Comparison between standard and near-field cathodoluminescence, J. Cryst. Growth 210, 303 (2000)

    CAS  Google Scholar 

  • M.T. Postek, A.E. Vladár: Digital imaging for scanning electron microscopy, Scanning 18, 1 (1996)

    CAS  Google Scholar 

  • N.C. Yew: Dynamic focusing technique for tilted samples in SEM. In: Proc. 4th Annu. Scanning Electron Microsc. Symp. (IIT Research Institute, Chicago 1971) pp. 33–40

    Google Scholar 

  • A.W. Judge: Stereographic Photography (Chapman Hall, London 1950)

    Google Scholar 

  • W. Malkusch, M.A. Konerding, B. Klapthor, J. Bruch: A simple and accurate method for 3-D measurements in microcorrosion casts illustrated with tumour vascularization, Anal. Cell Pathol. 9, 69 (1995)

    CAS  Google Scholar 

  • B. Minnich, H. Leeb, E.W.N. Bernroider, A. Lametschwandtner: A 3-dimensional morphometry in scanning electron ‘microscopy': A technique for accurate dimensional and angular measurements of microstructures using stereopaired digitized images and digital image analysis, J. Microsc. 195, 23 (1999)

    CAS  Google Scholar 

  • B. Minnich, W.-D. Krautgartner, A. Lametschwandtner: Quantitative 3-D analysis in SEM: A review, Microsc. Microanal. 9(S3), 118 (2003)

    Google Scholar 

  • L. Reimer, E.-R. Krefting: The effect of scattering models on the results of Monte Carlo calculations. In: Use of Monte Carlo Calculations in Electron Probe Microanalysis and Scanning Electron Microscopy, NBS Special Publication, Vol. 460, ed. by K.F.J. Heinrich, D.E. Newbury, H. Yakowitz (U.S. Dept. of Commerce, Washington 1976) pp. 45–60

    Google Scholar 

  • P. Rez: Elastic scattering of electrons by atoms. In: Electron Beam Interactions with Solids for Microscopy, Microanalysis & Microlithography, ed. by D.F. Kyser, H. Niedrig, D.E. Newbury, R. Shimizu (Scattering Electron Microscopy, Chicago 1984) pp. 43–49

    Google Scholar 

  • L. Reimer, B. Lödding: Theory of secondary electron emission II, Scanning 6, 128 (1984)

    CAS  Google Scholar 

  • Z. Czyżewski, D. O’Neill MacCallum, A. Romig, D.C. Joy: Calculations of Mott scattering cross-sections, J. Appl. Phys. 68, 3066 (1990)

    Google Scholar 

  • A. Jablonski, F. Salvat, C.J. Powell: NIST Electron Elastic-Scattering Cross Section Datbase #64 Version 3.1 (NIST, Gaithersburg 2003)

    Google Scholar 

  • H. Raether: Excitation of Plasmons and Interband Transitions by Electrons, Springer Tracts in Modern Physics, Vol. 88 (Springer, Berlin 1980)

    Google Scholar 

  • C.J. Powell: Inelastic scattering of electrons in solids. In: Electron Beam Interactions with Solids for Microscopy, Microanalysis & Microlithography, ed. by D.F. Kyser, H. Niedrig, D.E. Newbury, R. Shimizu (Scanning Electron Microscopy, Chicago 1984) pp. 19–31

    Google Scholar 

  • M. Isaacson, J.P. Langmore: Determination of the non-localization of the inelastic scattering of electrons by electron microscopy, Optik 41, 92 (1974)

    Google Scholar 

  • E. Zeitler: Utilization of inelastic scatter in the STEM mode, Ann. N.Y. Acad. Sci. 306, 62 (1978)

    CAS  Google Scholar 

  • R. Reichelt, A. Engel: Contrast and resolution of scanning transmission electron microscope imaging modes, Ultramicroscopy 19, 43 (1986)

    CAS  Google Scholar 

  • D.A. Müller, J. Silcox: Delocalization in inelastic electron scattering. In: 13th Int. Congr. Electron Microsc., Vol. 1, ed. by B. Jouffrey, C. Colliex (Les Editions de Physique, Les Ulis 1994) pp. 741–742

    Google Scholar 

  • D.A. Müller, J. Silcox: Delocalization in inelastic scattering, Ultramicroscopy 59, 195 (1995)

    Google Scholar 

  • R.D. Leapman, P. Rez, D.F. Mayers: K, L, and M shell generalized oscillator strengths and ionization cross sections for fast electron collisions, J. Chem. Phys. 72, 1232 (1980)

    CAS  Google Scholar 

  • M. Inokuti, S.T. Manson: Cross sections for inelastic scattering of electrons by atoms—Selected topics related to electron microscopy. In: Electron Beam Interactions with Solids for Microscopy, Microanalysis & Microlithography, ed. by D.F. Kyser, H. Niedrig, D.E. Newbury, R. Shimizu (Scanning Electron Microscopy, Chicago 1984) pp. 1–17

    Google Scholar 

  • R.F. Egerton: Electron-Energy-Loss Spectroscopy in the Electron Microscope (Plenum, New York 1986)

    Google Scholar 

  • C.J. Powell, A. Jablonski: Electron Inelastic-Mean-Free-Path Database Version 1.1, NIST Standard Reference Database 71 (National Institute of Standards and Technology, Gaithersburg 2000)

    Google Scholar 

  • S.A. Goudsmit, J.L. Saunderson: Multiple scattering of electrons II, Phys. Rev. 58, 36 (1940)

    CAS  Google Scholar 

  • D.F. Kyser: Monte Carlo calculations for electron microscopy, microanalysis, and microlithography. In: Electron Beam Interactions with Solids for Microscopy, Microanalysis & Microlithography, ed. by D.F. Kyser, H. Niedrig, D.E. Newbury, R. Shimizu (Scanning Electron Microscopy, Chicago 1984) pp. 119–135

    Google Scholar 

  • L. Reimer, D. Stelter: FORTRAN 77 Monte-Carlo program for minicomputers using Mott cross-sections, Scanning 8, 265 (1986)

    Google Scholar 

  • D.C. Joy: A model for calculating secondary and backscattered electron yields, J. Microsc. 147, 51 (1987)

    CAS  Google Scholar 

  • L. Reimer: Monte-Carlo-Rechnungen zur Elektronendiffusion, Optik 27, 86 (1968)

    CAS  Google Scholar 

  • L. Reimer: MOCASIM – Ein Monte Carlo Programm für Forschung und Lehre, Beitr. Elektronenmikr. Direktabb. Anal. Oberfl. 29, 1–10 (1996)

    Google Scholar 

  • D. Drouin, P. Hovington, R. Gauvin: CASINO: A new Monte Carlo code in C language for the electron beam interactions---Part II: Tabulated values of the Mott cross section, Scanning 19, 20 (1997)

    CAS  Google Scholar 

  • P. Hovington, D. Drouin, R. Gauvin: CASINO: A new Monte Carlo code in C language for electron beam interaction---Part I: Description of the program, Scanning 19, 1 (1997)

    CAS  Google Scholar 

  • P. Hovington, D. Drouin, R. Gauvin, D.C. Joy, N. Evans: CASINO: A new Monte Carlo code in C language for electron beam interactions---Part III: Stopping power at low energies, Scanning 19, 29 (1997)

    CAS  Google Scholar 

  • H. Bethe: Zur Theorie des Durchgangs schneller Korpuskularstrahlen durch Materie, Ann. Phys. 5, 325 (1930)

    CAS  Google Scholar 

  • M.J. Berger, S.M. Seltzer: Tables of energy losses and ranges of electrons and positrons. In: Studies in Penetration of Charged Particles in Matter, ed. by U. Fano (National Academies Press, Washington 1964) pp. 205–268

    Google Scholar 

  • D.C. Joy, S. Luo: An empirical stopping power relationship for low-energy electrons, Scanning 11, 176 (1989)

    Google Scholar 

  • R. Reichelt, A. Engel: Monte Carlo calculations of elastic and inelastic electron scattering in biological and plastic materials, Ultramicroscopy 13, 279 (1984)

    CAS  Google Scholar 

  • V. Krzyzanek, R. Reichelt: MONCA: A new MATLAB package for Monte Carlo simulation of electron scattering in thin specimens in the energy range 10–200 keV, Microsc. Microanal. 9(S3), 110 (2003)

    Google Scholar 

  • R. Kollath: Sekundärelektronen-Emission fester Körper bei Bestrahlung mit Elektronen. In: Electron-Emission Gas Discharges I/Elektronen-Emission Gasentladungen I, Handbuch der Physik, Vol. 4/21 (Springer, Berlin 1956) pp. 232–302

    Google Scholar 

  • A.J. Dekker: Secondary electron emission, Solid State Phys. 6, 251 (1958)

    CAS  Google Scholar 

  • K. Kanaya, S. Ono: Interaction of electron beam with the target in scanning electron microscope. In: Electron Beam Interactions with Solids for Microscopy, Microanalysis & Microlithography, ed. by D.F. Kyser, H. Niedrig, D.E. Newbury, R. Shimizu (Scanning Electron Microscopy, Chicago 1984) pp. 69–98

    Google Scholar 

  • H. Seiler: Einige aktuelle Probleme der Sekundärelektron-Emission, Z. Angew. Phys. 22, 249 (1967)

    CAS  Google Scholar 

  • H. Seiler: Secondary electron emission. In: Electron Beam Interactions with Solids for Microscopy, Microanalysis & Microlithography, ed. by D.F. Kyser, H. Niedrig, D.E. Newbury, R. Shimizu (Scanning Electron Microscopy, Chicago 1984) pp. 33–42

    Google Scholar 

  • J.L.H. Jonker: On the theory of secondary emission of metals, Philips Res. Rep. 12, 249 (1957)

    Google Scholar 

  • W. Oppel, H. Jahrreiss: Messungen der Winkelverteilung von Sekundärelektronen an dünnen freitragenden Al- und Au-Schichten, Z. Phys. 252, 107 (1972)

    CAS  Google Scholar 

  • H. Drescher, L. Reimer, H. Seidel: Rückstreukoeffizient und Sekundärelektronenausbeute von 10--100 keV-Elektronen und Beziehungen zur Raster-Elektronenmikroskopie, Z. Angew. Phys. 29, 331 (1970)

    CAS  Google Scholar 

  • S. Ono, K. Kanaya: The energy dependence of secondary emission based on the range-energy retardation power formula, J. Phys. D 12, 619 (1979)

    CAS  Google Scholar 

  • H.E. Bauer, H. Seiler: Determination of the non-charging electron beam energies of electrically floating metal samples. In: Scanning Electron Microscopy, Vol. 3, ed. by O. Johari (Scanning Electron Microscopy, Chicago 1984) pp. 1081–1088

    Google Scholar 

  • D.C. Joy: A data base on electron-solid interactions, http://extras.springer.com/2003/978-0-306-47292-3/Database/Joy%20Electron%20Database.doc (2001)

  • K.F.J. Heinrich: Optiques de rayons X et microanalyse. In: Fourth International Congress on X-Ray Optics and Microanalysis, ed. by R. Castaing, P. Deschamps, J. Philibert (Hermann, Paris 1966) pp. 159–167

    Google Scholar 

  • D.B. Wittry: Secondary electron emission in the electron probe. In: 4th Int. Congr. X-ray Opt. Microanal., ed. by R. Castaing, P. Deschamps, J. Philibert (Hermann, Paris 1966) pp. 168–180

    Google Scholar 

  • H. Seiler: Die physikalischen Aspekte der Sekundärelektronenemission für die Elektronen-Raster-Mikroskopie, Beitr. Elektronenmikr. Direktabb. Anal. Oberfl. 1, 27 (1968)

    Google Scholar 

  • K. Murata: Monte Carlo simulation of electron scattering in resist film/substrate targets. In: Electron Beam Interactions with Solids for Microscopy, Microanalysis & Microlithography, ed. by D.F. Kyser, H. Niedrig, D.E. Newbury, R. Shimizu (Scanning Electron Microscopy, Chicago 1984) pp. 311–329

    Google Scholar 

  • K. Murata: Spatial distribution of backscattered electrons in the SEM and electron microprobe, J. Appl. Phys. 45, 4110 (1974)

    CAS  Google Scholar 

  • H. Seiler: Determination of the information depth in the SEM, Scanning Electron Microsc. 1, 9 (1976)

    Google Scholar 

  • L. Reimer, C. Tollkamp: Measuring the backscattering coefficient and secondary electron yield inside a scanning electron microscope, Scanning 3, 35 (1980)

    CAS  Google Scholar 

  • W. Reuter: The ionization function and its application to the electron probe analysis of thin films. In: 6th Int. Congr. X-ray Opt. Microanal, ed. by G. Shinoda, K. Kohra, T. Ichinokawa (Tokyo Univ. Press, Tokyo 1972) pp. 121–130

    Google Scholar 

  • H.-J. Hunger, L. Küchler: Measurements of the electron backscattering coefficient for quantitative EPMA in the energy range of 4 to 40 keV, Phys. Status Solidi (a) 56, K45 (1979)

    CAS  Google Scholar 

  • D.C. Joy: Contrast in high-resolution scanning electron microscope images, J. Microsc. 161, 343 (1991)

    Google Scholar 

  • M. Zadrazil, M.M. El-Gomati, A. Walker: Measurements of very low energy secondary and backscattered electron coefficients, J. Comput. Assist. Microsc. 9, 123 (1997)

    Google Scholar 

  • F. Arnal, P. Verdier, P.-D. Vincensini: Coefficient de retrodiffusion dans le cas d' électrons monocinétiques arrivant sur la cible sous une incidence oblique, C. R. Acad. Sci. 268, 1526 (1969)

    Google Scholar 

  • L. Reimer, H.G. Badde, H. Seidel: Orientierungsanisotropie des Rückstreukoeffizienten und der Sekundärelektronenausbeute von 10–100 keV Elektronen, Z. Angew. Phys. 31, 145 (1971)

    CAS  Google Scholar 

  • E. Oho, T. Sasaki, K. Adachi, Y. Muranaka, K. Kanaya: An inexpensive and highly efficient device for observing a STEM image in a SEM. In: 11th Int. Congr. Electron Microsc, ed. by T. Imura, S. Maruse, T. Suzuki (Japanese Society of Electron Microscopy, Kyoto 1986) pp. 421–422

    Google Scholar 

  • R. Reichelt, A. Engel: Quantitative scanning transmission ‘electron microscopy' in biology, J. Microsc. Spectrosc. Electron. 10, 491 (1985)

    CAS  Google Scholar 

  • J. Frank, P. Bussler, R. Langer, W. Hoppe: Einige Erfahrungen mit der rechnerischen Analyse und Synthese von elektronenmikroskopischen Bildern hoher Auflösung, Ber. Bunsenges. Phys. Chem. 74, 1105 (1970)

    CAS  Google Scholar 

  • D.C. Joy: SMART–A program to measure SEM resolution and imaging performance, J. Microsc. 208, 24 (2002)

    CAS  Google Scholar 

  • J. Frank: The role of correlation techniques in computer image processing. In: Computer Processing of Electron Microscope Images, ed. by P.W. Hawkes (Springer, New York 1980) pp. 187–222

    Google Scholar 

  • M.D. Muir, P.R. Grant: Cathodoluminescence. In: Quantitative Scanning Electron Microscopy, ed. by D.B. Holt, M.D. Muir, P.R. Grant, I.M. Boswarva (Academic Press, London 1974) pp. 287–334

    Google Scholar 

  • D.B. Holt, B.G. Yacobi: Cathodoluminescence characterization of semiconductors. In: SEM Microcharacterization of Semiconductors, ed. by D.B. Holt, D.C. Joy (Academic Press, London 1989) pp. 373–423

    Google Scholar 

  • B.G. Yakobi, D.B. Holt (Eds.): Cathodoluminescence Microscopy of Inorganic Solids (Plenum, New York 1990)

    Google Scholar 

  • D.B. Holt, F.M. Saba: The cathodoluminescence mode of the SEM: A powerful microcharacterization technique, Scanning Electron Microsc. 3, 1023 (1985)

    Google Scholar 

  • M. DeMets: Relationship between cathodoluminescence and molecular structure of organic compounds, Microsc. Acta 76, 405 (1975)

    CAS  Google Scholar 

  • M. DeMets, K.J. Howlett, A.O. Yoffe: Cathodoluminescent spectra of organic compounds, J. Microsc. 102, 125 (1974)

    Google Scholar 

  • W. Bröcker, E.-R. Krefting, L. Reimer: Abhängigkeit des Kathodolumineszenzsignals vom Kippwinkel der Probe im Raster-Elektronenmikroskop, Beitr. Elektronenmikr. Direktabb. Anal. Oberfl. 10, 647 (1977)

    Google Scholar 

  • H.A. Kramers: On the theory of x-ray absorption and of the continuous x-ray spectrum, Philos. Mag. 46, 836 (1923)

    CAS  Google Scholar 

  • S.T. Stephenson: The continuous x-ray spectrum. In: Handbuch der Physik, Vol. 30 (Springer, Berlin 1957) pp. 337–370

    Google Scholar 

  • W. Bambynek, B. Crasemann, R.W. Fink, H.U. Freund, H. Mark, C.D. Swift, R.E. Price, P.V. Rao: X-ray fluorescent yields, Auger, and Coster–Kronig transition probabilities, Rev. Mod. Phys. 44, 716 (1972)

    CAS  Google Scholar 

  • J.A. Bearden: X-ray wavelengths, Rev. Mod. Phys. 39, 78 (1967)

    CAS  Google Scholar 

  • J.A. Bearden: Reevaluation of x-ray atomic energy levels, Rev. Mod. Phys. 39, 125 (1967)

    CAS  Google Scholar 

  • W.L. Baun: Changes in x-ray emission spectra observed between pure elements in combination with others to form compounds or alloys, Adv. Electron. Electron Phys. 6, 155 (1969)

    Google Scholar 

  • E.H.S. Burhop: The Auger Effect (Cambridge Univ. Press, Cambridge 1952)

    Google Scholar 

  • T. Åberg, G. Howat: Theory of the Auger effect. In: Handbuch der Physik, Vol. 31, ed. by W. Mehlhorn, S. Flügge (Springer, Berlin 1982) pp. 469–619

    Google Scholar 

  • H.H. Madden: Chemical information from Auger electron spectroscopy, J. Vac. Sci. Technol. 18, 677 (1981)

    CAS  Google Scholar 

  • H.E. Bishop: The role of the background in Auger spectroscopy. In: Electron Beam Interactions with Solids for Microscopy, Microanalysis & Microlithography, ed. by D.F. Kyser, H. Niedrig, D.E. Newbury, R. Shimizu (Scanning Electron Microscopy, Chicago 1984) pp. 259–269

    Google Scholar 

  • P.W. Palmberg: Quantitative analysis of solid surfaces by Auger electron spectroscopy, Anal. Chem. 45, 549A (1973)

    Google Scholar 

  • M.P. Seah, W.A. Dench: Quantitative electron spectroscopy of surfaces: A standard data base for electron inelastic mean free paths in solids, Surf. Interface Anal. 1, 2 (1979)

    CAS  Google Scholar 

  • E. Bauer, W. Telieps: Emission and low energy reflection ‘electron' microscopy. In: Surface and Interface Characterization by Electron Optical Methods, ed. by A. Howie, A. Valdre (Plenum, New York 1988) pp. 195–233

    Google Scholar 

  • H.E. Bishop, J.C. Riviere: Surface segregation in boron doped iron observed by Auger, J. Appl. Phys. 40, 1740 (1969)

    CAS  Google Scholar 

  • J. Kirschner: The role of backscattered electrons in scanning Auger microscopy. In: Scanning Electron Microscopy, Vol. 1, ed. by O. Johari (Scanning Electron Microscopy, Chicago 1976) pp. 215–220

    Google Scholar 

  • M. Jacka: Scanning Auger microscopy: Recent progress in data analysis and instrumentation, J. Electron Spectrosc. Relat. Phenom. 277, 114–116 (2001)

    Google Scholar 

  • D.E. Newbury: The utility of specimen current imaging in the SEM, Scanning Electron Microsc. 1, 111 (1976)

    Google Scholar 

  • D.K. Hindermann, R.H. Davis: SEM techniques for the examination of blind and through holes, Scanning Electron Microsc. 1, 183 (1974)

    Google Scholar 

  • K.-R. Peters: Generation, collection and properties of an SE-I enriched signal suitable for high resolution SEM on bulk specimens. In: Electron Beam Interactions with Solids for Microscopy, Microanalysis & Microlithography, ed. by D.F. Kyser, H. Niedrig, D.E. Newbury, R. Shimizu (Scanning Electron Microscopy, Chicago 1984) pp. 363–372

    Google Scholar 

  • H. Seiler, G. Kuhnle: Zur Anisotropie der Elektronenausbeute in Abhängigkeit von der Energie der auslösenden Primärelektronen von 5 bis 50 keV, Z. Angew. Phys. 29, 254 (1970)

    CAS  Google Scholar 

  • L. Reimer: Methods of detection of radiation damage in electron microscopy, Ultramicroscopy 14, 291 (1984)

    CAS  Google Scholar 

  • B. Volbert, L. Reimer: Advantages of two opposite Everhart–Thornley detectors in SEM, Scanning Electron Microsc. 4, 1 (1980)

    Google Scholar 

  • P. Rappaport: The electron-voltaic effect in p-n junctions induced by beta-particle bombardment, Phys. Rev. 93, 246 (1954)

    CAS  Google Scholar 

  • C.W. Oatley, T.E. Everhart: The examination of p-n junctions with the scanning electron microscope, J. Electron. Control 2, 568 (1957)

    Google Scholar 

  • T.E. Everhart, O.C. Wells, C.W. Oatley: Factors affecting contrast and resolution in the scanning electron microscope, J. Electron. Control 7, 97 (1959)

    CAS  Google Scholar 

  • W.S.M. Werner, H. Lakatha, H.E. Smith, L. LeTarte, V. Ambrose, J. Baker: Auger voltage contrast imaging for the delineation of two-dimensional junctions in cross-sectioned metal-oxide-semiconductor devices, J. Vac. Sci. Technol. B 16, 420 (1998)

    CAS  Google Scholar 

  • J. Edelmann, K. Wetzig: Low-temperature microscopy and analysis. In: In Situ Scanning Electron Microscopy in Materials Research, ed. by K. Wetzig, D. Schulze (Akademie, Berlin 1995) pp. 109–125

    Google Scholar 

  • Y. Uchikawa, S. Ikeda: Application of scanning electron microscopy (SEM) to analysis of surface domain structure of ferroelectrics, Scanning Electron Microsc. 1, 209 (1981)

    Google Scholar 

  • D. Hesse, K.-P. Meyer: Domänenstruktur ferroelektrischer und ferromagnetischer Festkörper. In: Elektronenmikroskopie in der Festkörperphysik, ed. by H. Bethge, J. Heydenreich (DVW, Berlin 1982) pp. 473–507

    Google Scholar 

  • D.V. Roshchupkin, M. Brunel: SEM observation of the voltage contrast image of the ferroelectric domain structure in the LiNbO3 crystal, Scanning Microsc. 7, 543 (1993)

    CAS  Google Scholar 

  • H. Bahadur, R. Parshad: SEM of vibrating quartz crystals—A review, Scanning Electron Microsc. 1, 509 (1980)

    Google Scholar 

  • A.E. Lukianov, G.V. Spivak: Electron mirror microscopy of transient phenomena in semiconductor diodes. In: Electron Microscopy, Vol. 2, ed. by R. Uyeda (Maruzen, Tokyo 1966) p. 611

    Google Scholar 

  • G.S. Plows, W.C. Nixon: Stroboscopic electron microscopy, J. Phys. E 1, 595 (1968)

    Google Scholar 

  • T. Hosokawa, H. Fujioka, K. Ura: Generation and measurement of subpicosecond electron beam pulses, Rev. Sci. Instrum. 49, 624 (1978)

    CAS  Google Scholar 

  • H. Fujioka, K. Ura: Waveform measurements on gigahertz semiconductor devices by scanning electron microscope stroboscopy, Appl. Phys. Lett. 39, 81 (1981)

    Google Scholar 

  • S.M. Davidson: Voltage contrast and stroboscopy. In: SEM Microcharacterization of Semiconductors, Techniques in Physics, Vol. 12, ed. by D.B. Holt, D.C. Joy (Academic Press, New York 1989) pp. 153–240

    Google Scholar 

  • P. Girard: Voltage contrast, J. Phys. IV 01, C6–259 (1991)

    Google Scholar 

  • L. Dubbeldam: Advances in voltage-contrast detectors in scanning electron microscopes. In: Advances in Optical and Electron Microscopy, Vol. 12, ed. by T. Mulvey, C.J.R. Sheppard (Academic Press, London 1991) pp. 139–242

    Google Scholar 

  • J.M. McKenzie, D.A. Bromely: Observation of charged-particle reaction products, Phys. Rev. Lett. 2, 303 (1959)

    CAS  Google Scholar 

  • D.B. Holt: Quantitative scanning electron microscope studies of cathodoluminescence in adamantine semiconductors. In: Quantitative Scanning Electron Microscopy, ed. by D.B. Holt, M.D. Muir, P.R. Grant, I.M. Boswarva (Academic Press, London 1974) pp. 213–286

    Google Scholar 

  • D.B. Holt: The conductive mode. In: SEM Microcharacterization of Semiconductors, ed. by D.B. Holt, D.C. Joy (Academic Press, London 1989) pp. 241–338

    Google Scholar 

  • H.J. Deamy: Charge collection scanning electron microscopy, J. Appl. Phys. 53, R51 (1982)

    Google Scholar 

  • S.P. Shea, L.D. Partain, P.J. Warter: Resolution limits of the EBIC technique in the determination of diffusion lengths in semiconductors, Scanning Electron Microsc. 1, 435 (1978)

    Google Scholar 

  • H. Alexander: What information on extended defects do we obtain from beam-injection methods?, Mater. Sci. Eng. B 24, 1 (1994)

    Google Scholar 

  • E.B. Yakimov: Electron-beam-induced-current study of defects in GaN; experiments and simulation, J. Phys. Condens. Matter 14, 13069 (2002)

    CAS  Google Scholar 

  • A.E. Grün: Lumineszenz-photometrische Messungen der Energieabsorption im Strahlungsfeld von Elektronenquellen. Eindimensionaler Fall in Luft, Z. Naturforsch. A 12, 89 (1957)

    Google Scholar 

  • T.E. Everhart, P.H. Hoff: Determination of kilovolt electron energy dissipation vs. penetration distance in solid materials, J. Appl. Phys. 42, 5837 (1971)

    CAS  Google Scholar 

  • H.E. Bishop: Electron---Solid interactions and energy dissipation. In: Quantitative Scanning Electron Microscopy, ed. by D.B. Holt, M.D. Muir, P.R. Grant, I.M. Boswarva (Academic Press, London 1974) pp. 41–64

    Google Scholar 

  • H.J. Leamy: Charge collection scanning electron microscopy, J. Appl. Phys. 53, R51 (1982)

    CAS  Google Scholar 

  • A. Georges, J.M. Fournier, D. Bois: Time resolved EBIC: A non destructive method technique for an accurate determination of p-n junction depth, Scanning Electron Microsc. 1, 147 (1982)

    Google Scholar 

  • T. Sekiguchi, K. Sumino: Quantitative electron-beam tester for defects in semiconductors (CL/EBIC/SDLTS system), Rev. Sci. Instrum. 66, 4277 (1995)

    CAS  Google Scholar 

  • D.S.H. Chan, J.C.H. Phang, J.M. Chin, S. Kolachina: Single contact beam induced current phenomena—A review, Solid State Phenom. 78–79, 11–18 (2000)

    Google Scholar 

  • H. Drescher, E.-R. Krefting, L. Reimer, H. Seidel: The orientation dependence of the electron backscattering coefficient of gold single crystal films, Z. Naturforsch. A 29, 833 (1974)

    CAS  Google Scholar 

  • J.R. Dorsey: Scanning electron probe measurements of magnetic fields. In: Electron Probe Microanalysis, ed. by A.J. Tousimis, L. Marton (Academic Press, New York 1969) pp. 291–321

    Google Scholar 

  • G.A. Wardly: Magnetic contrast in the scanning electron microscope, J. Appl. Phys. 42, 376 (1971)

    Google Scholar 

  • V. Szmaja: Improvements and actual problems in domain imaging by type-I magnetic contrast in SEM, Czechoslov. J. Phys. 52(S1), A145 (2002)

    CAS  Google Scholar 

  • W. Szmaja: Digitally enhanced type-I magnetic contrast in SEM as a method of domain investigation, J. Magn. Magn. Mater. 219, 281 (2000)

    CAS  Google Scholar 

  • J. Philibert, R. Tixier: Effets de contraste cristallin en microscopie électronique à balayage, Micron 1, 174 (1969)

    Google Scholar 

  • D.J. Fathers, J.P. Jacubovics, D.C. Joy, D.E. Newbury, H. Yakowitz: A new method of observing magnetic domains by scanning electron microscopy. I. Theory of the image contrast, Phys. Status Solidi (a) 20, 535 (1973)

    Google Scholar 

  • T. Yamamoto, H. Nishizawa, K. Tsuno: Magnetic domain contrast in backscattered electron images obtained with a scanning electron microscope, Philos. Mag. 34, 311 (1976)

    CAS  Google Scholar 

  • O.C. Wells: Isolation of type-2 magnetic contrast in the SEM by a lock-in technique, Appl. Phys. Lett. 35, 644 (1979)

    CAS  Google Scholar 

  • L. Reimer: Elektronenmikroskopische Untersuchungs- und Präparationsmethoden, 2nd edn. (Springer, Berlin 1967)

    Google Scholar 

  • M.A. Hayat (Ed.): Principles and Techniques of Biological Scanning Electron Microscopy (Univ. Park Press, Baltimore 1978)

    Google Scholar 

  • J.M. Polak, J.M. Varndell (Eds.): Immunolabelling for Electron Microscopy (Elsevier, Amsterdam 1984)

    Google Scholar 

  • M. Müller (Ed.): The Science of Biological Specimen Preparations for Microscopy and Microanalysis (Scanning Microscopy International, Chicago 1985)

    Google Scholar 

  • R.A. Steinbrecht, K. Zierold (Eds.): Cryotechniques in Biological Electron Microscopy (Springer, Berlin 1987)

    Google Scholar 

  • R.M. Albrecht, R.L. Ornberg (Eds.): The Science of Biological Specimen Preparations for Microscopy and Microanalysis (Scanning Microscopy International, Chicago 1988)

    Google Scholar 

  • L. Edelmann, G.M. Roomans (Eds.): The Science of Biological Specimen Preparations for Microscopy and Microanalysis (Scanning Microscopy International, Chicago 1990)

    Google Scholar 

  • F. Grasenick, A. Aldrian, R. Bauer, H. Bangert, R. Essl, R.H. Haefer, P. Hagemann, K.-H. Hermann, E.M. Hörl, P. Karnthaler, E. Knapek, R. Nobiling, K.-R. Peters, G. Weber: Elektronenmikroskopie. Erweiterte Einsatzmöglichkeiten und spezielle Abbildungs- und Präparationsmethoden (Expert, Ehningen 1991)

    Google Scholar 

  • P. Echlin: Low-Temperature Microscopy and Analysis (Plenum, New York 1992)

    Google Scholar 

  • M. Malecki, G.M. Roomans (Eds.): The Science of Biological Specimen Preparations for Microscopy (Scanning Microscopy International, Chicago 1996)

    Google Scholar 

  • G. Schimmel, W. Vogell: Methodensammlung der Elektronenmikroskopie (Wissenschaftliche Verlagsgesellschaft, Stuttgart 1970)

    Google Scholar 

  • A.W. Robards, A.J. Wilson (Eds.): Procedures in Electron Microscopy (Wiley, Chichester 1993)

    Google Scholar 

  • T.C. Isabell, P.E. Fischione, C. O’Keefe, M.U. Guruz, V.P. Dravid: Plasma cleaning and its applications for electron microscopy, Microsc. Microanal. 5, 126 (1999)

    CAS  Google Scholar 

  • J.H.M. Willison, A.J. Rowe: Replica, Shadowing and Freeze-Etching Techniques (North-Holland, Amsterdam 1980)

    Google Scholar 

  • Y. Shibata, T. Arima, T. Yamamoto: Double-axis rotary replication for deep-etching, J. Microsc. 136, 121 (1984)

    CAS  Google Scholar 

  • R. Hermann, J. Pawley, T. Nagatani, M. Müller: Double-axis rotary shadowing for high resolution scanning electron microscopy, Scanning Microsc. 2, 1215 (1988)

    Google Scholar 

  • R.P. Apkarian, J.C. Curtis: Hormonal regulation of capillary fenestrae in the rat adrenal cortex: Quantitative studies using objective lens staging scanning electron microscopy, Scanning Electron Microsc. 4, 1381 (1986)

    Google Scholar 

  • T. Nagatani, S. Saito: Development of a high resolution SEM and comparative TEM/SEM observation of fine metal particles and thin films, Inst. Phys. Conf. Ser. 98, 519–522 (1989)

    Google Scholar 

  • T. Müller, P. Walther, C. Scheidegger, R. Reichelt, S. Müller, R. Guggenheim: Cryo-preparation and planar magnetron sputtering for low temperature ‘scanning' electron microscopy, Scanning Microsc. 4, 863 (1990)

    Google Scholar 

  • H. Gross, T. Müller, I. Wildhaber, H. Winkler: High resolution metal replication, quantified by image processing of periodic test specimens, Ultramicroscopy 16, 287 (1985)

    Google Scholar 

  • R. Wepf, H. Gross: Pt/Ir/C: a powerful coating material for high resolution SEM. In: 12th Int. Congr. Electron Microsc., ed. by L.D. Peachy, D.B. Williams (San Francisco Press, Seattle 1990) pp. 6–7

    Google Scholar 

  • R. Wepf, M. Amrein, U. Bürkli, H. Gross: Platinum/iridium/carbon: A high-resolution shadowing material for TEM, STM and SEM of biological macromolecular structures, J. Microsc. 163, 51–64 (1991)

    CAS  Google Scholar 

  • K.-R. Peters: Penning sputtering of ultra thin metal films for high resolution electron microscopy, Scanning Electron Microsc. I, 143 (1980)

    Google Scholar 

  • A.M. Glauert (Ed.): Practical Methods in Electron Microscopy (North-Holland, Amsterdam 1973)

    Google Scholar 

  • W. Hauffe: Development of the surface topography on polycrystalline metals by ion bombardment investigated by scanning electron microscopy, Phys. Status Solidi (a) 4, 111 (1971)

    CAS  Google Scholar 

  • W. Hauffe: Ion bombardment experiments. In: In Situ Scanning Electron Microscopy in Materials Research, ed. by K. Wetzig, D. Schulze (Akademie, Berlin 1995) pp. 195–218

    Google Scholar 

  • N. Reid, J.E. Beesely: Sectioning and Cryosectioning for Electron Microscopy, Practical Methods in Electron Microscopy, Vol. 13 (Elsevier, Amsterdam 1991)

    Google Scholar 

  • H. Sitte: Process of ultrathin sectioning. In: The Science of Biological Specimen Preparation for Microscopy and Microanalysis (Scanning Electron Microscopy, Chicago 1984) pp. 97–104

    Google Scholar 

  • H. Sitte: Advanced instrumentation and methodology related to cryoultramicrotomy: a review. In: The Science of Biological Specimen Preparation for Microscopy and Microanalysis, ed. by M. Malecki, G.M. Roomans (Scanning Microscopy International, Chicago 1996) pp. 387–466

    Google Scholar 

  • W. Hauffe: Das Ionenstrahl-Böschungsschnitt-Verfahren, Beitr. Elektronenmikr. Direktabb. Anal. Oberfl. 23, 305–310 (1990)

    Google Scholar 

  • W. Hauffe, S. Pannicke, S. Däbritz, P. Schade: Combined application of ion beam slope cutting and SEM/EDX for investigation of the surface layer system on tungsten microwires after tribological treatment, Surf. Interface Anal. 34, 768 (2002)

    Google Scholar 

  • N. Erdman, R. Campbell, S. Asahina: Precise SEM cross section polishing via argon beam milling, Microsc. Today 14(3), 22 (2006)

    Google Scholar 

  • E.C.G. Kirk, R.A. McMahon, J.R.A. Cleaver, H. Ahmed: Scanning ion microscopy and microsectioning of electron beam recrystallized silicon on insulator devices, J. Vac. Sci. Technol. B 6, 1940 (1988)

    CAS  Google Scholar 

  • K. Madl, A.L. Toth, A. Barna: p/n junction localization in integrated-circuits with scanning electron-microscope, Inst. Phys. Conf. Ser. 93, 65 (1988)

    Google Scholar 

  • T. Ishitani, T. Yaguchi: Cross-sectional sample preparation by focused ion beam: A review of ion-sample interaction, Microsc. Res. Tech. 35, 320 (1996)

    CAS  Google Scholar 

  • M. Shibata: Cross section specimen preparation device using argon ion beam for SEM—Cross section polisher (CP) SM-09010, JEOL News 39(1), 28 (2004)

    Google Scholar 

  • L.A. Giannuzzi, F.A. Stevie: Introduction to Focused Ion Beams: Instrumentation, Theory, Techniques and Practice (Springer, New York 2005)

    Google Scholar 

  • P. Sudraud, P. Ballongue, E. Varoquaux, O. Avenel: Focused ion-beam milling of a submicrometer aperture for a hydrodynamic Josephson-effect experiment, J. Appl. Phys. 62, 2163 (1987)

    Google Scholar 

  • P. Gnauck, P. Hoffrogge, J. Greiser: New crossbeam inspection tool combining ultrahigh resolution FESEM and FIB, Microsc. Anal. 94(3), 11–13 (2003)

    Google Scholar 

  • P. Gnauck, U. Zeile, W. Rau, M. Schuhmann: Real time SEM imaging of FIB milling processes for extended accuracy in cross-sectioning and TEM preparation, Microsc. Microanal. 9(S3), 524 (2003)

    Google Scholar 

  • P.E. McGuinness: DualBeam focused ion beam technology, Scanning 25, 221 (2003)

    Google Scholar 

  • L. Holzer, F. Indutnyi, P.H. Gasser, B. Munch, M. Wegmann: Three-dimensional analysis of porous BaTiO3 ceramics using FIB nanotomography, J. Microsc. 216, 84 (2004)

    CAS  Google Scholar 

  • U. Sennhauser, P. Jacob, P. Gasser: Anwendung der FIB für Materialwissenschaft und Fehleranalyse, Prakt. Metallogr. 41, 199 (2004)

    CAS  Google Scholar 

  • R. Flindt: Biologie in Zahlen, 5th edn. (Spektrum, Berlin 2000)

    Google Scholar 

  • M. Milani, F.P. Pucillo, M. Ballerini, M. Camatini, M. Gualtieri, S. Martino: First evidence of tire debris characterization at the nanoscale by focused ion beam, Mater. Charact. 52, 283 (2004)

    CAS  Google Scholar 

  • N. Feder, R.L. Sidman: Methods and principles of fixation by freeze-substitution, J. Biophys. Biochem. Cytol. 4, 593 (1958)

    CAS  Google Scholar 

  • M.W. Hess: Of plants and other pets: Practical aspects of freeze-substitution and resin embedding, J. Microsc. 212, 44 (2003)

    CAS  Google Scholar 

  • E. Kellenberger, J. Kistler: The physics of specimen preparation. In: Unconventional Electron Microscopy for Molecular Structure Determination, Advances in Structure Research by Diffraction Methods, Vol. 3, ed. by W. Hoppe, R. Mason (Vieweg, Wiesbaden 1979) pp. 49–79

    Google Scholar 

  • E. Kellenberger, M. Häner, M. Wurtz: The wrapping phenomenon in air-dried and negatively stained preparations, Ultramicroscopy 9, 139 (1982)

    CAS  Google Scholar 

  • A.W. Robards, U.B. Sleytr: Low Temperature Methods in Biological Electron Microscopy, Vol. 10 (North-Holland, Amsterdam 1985)

    Google Scholar 

  • M.J. Dykstra: Biological Electron Microscopy (Plenum, New York 1992)

    Google Scholar 

  • E. Kellenberger, R. Johansen, M. Maeder, B. Bohrmann, E. Stauffer, W. Villiger: Artefacts and morphological changes during chemical fixation, J. Microsc. 168, 181 (1992)

    CAS  Google Scholar 

  • N.J. Severs, D.M. Shotton (Eds.): Rapid Freezing, Freeze Fracture and Deep Etching (Wiley, Chichester 1995)

    Google Scholar 

  • P. Walther: Recent progress in freeze-fracturing of high-pressure frozen samples, J. Microsc. 212, 34 (2003)

    CAS  Google Scholar 

  • P. Echlin: The examination of biological material at low temperatures, Scanning Electron Microsc. 1, 225 (1971)

    Google Scholar 

  • R. Hermann, M. Müller: Progress in scanning electron microscopy of frozen-hydrated biological specimens, Scanning Microsc. 7, 343 (1993)

    CAS  Google Scholar 

  • P. Walther, M. Müller: Biological ultrastructure as revealed by high resolution cryo-SEM of block faces after cryo-sectioning, J. Microsc. 196, 279 (1999)

    CAS  Google Scholar 

  • S.P. Shea: Energy and atomic number dependence of electron depth-dose and lateral-dose functions. In: Electron Beam Interactions with Solids for Microscopy, Microanalysis & Microlithography, ed. by D.F. Kyser, H. Niedrig, D.E. Newbury, R. Shimizu (Scanning Electron Microscopy, Chicago 1984) pp. 145–151

    Google Scholar 

  • R.O. Bolt, J.G. Carroll (Eds.): Radiation Effects on Organic Materials (Academic Press, New York 1963)

    Google Scholar 

  • M. Dole (Ed.): The Radiation Chemistry of Macromolecules (Academic Press, New York 1973)

    Google Scholar 

  • W. Baumeister, M. Hahn, J. Seredynski, L.M. Herbertz: Radiation damage of proteins in the solid state: Changes of amino acid composition in catalase, Ultramicroscopy 1, 377 (1976)

    CAS  Google Scholar 

  • R.F. Egerton: Electron-Energy-Loss Spectroscopy in the Electron Microscope, 2nd edn. (Plenum, New York 1989)

    Google Scholar 

  • R.F. Egerton: Dose-rate dependence of electron-induced mass loss from organic specimens, Ultramicroscopy 80, 247 (1999)

    CAS  Google Scholar 

  • R.F. Egerton, P.A. Crozier, P. Rice: Electron energy-loss spectroscopy and chemical change, Ultramicroscopy 23, 305 (1987)

    CAS  Google Scholar 

  • A. Engel: Beam damage, contamination and etching. In: Microsc. Électron. Sci. Matér., Bombannes, ed. by B. Jouffrey, A. Bourret, C. Colliex (CNRS, Toulouse 1983) pp. 185–192

    Google Scholar 

  • K. Siangchaew, M. Libera: The influence of fast secondary electrons on the aromatic structure of polystyrene, Philos. Mag. A 80, 1001 (2000)

    CAS  Google Scholar 

  • J. Strane, L.D. Marks, D.E. Luzzi, M.I. Buckett, J.P. Zhang, B.W. Wessels: Encapsulation, diffusion and DIET in the electron microscope, Ultramicroscopy 25, 253 (1988)

    CAS  Google Scholar 

  • S.M. Salih, V.E. Cosslett: Reduction in electron irradiation damage to organic compounds by conducting coatings, Philos. Mag.: J. Theor. Exp. Appl. Phys. 30(1), 225–228 (1974)

    CAS  Google Scholar 

  • J.T. Fourie: A theory of surface origination contamination and a method for its elimination, Scanning Electron Microsc. 2, 87 (1979)

    Google Scholar 

  • J.S. Wall: Contamination in the STEM at ultra high vacuum, Scanning Electron Microsc. 1, 99 (1980)

    Google Scholar 

  • M.T. Postek: Immunolabelling for electron microscopy, Scanning 18, 269 (1996)

    CAS  Google Scholar 

  • M. Isaacson, D. Kopf, M. Ohtsuki, M. Utlaut: Contamination as a psychological problem, Ultramicroscopy 4, 97 (1979)

    Google Scholar 

  • L.-M. Peng, Q. Chen, X.L. Liang, S. Gao, J.Y. Wang, S. Kleindiek, S.W. Tai: Performing probe experiments in the SEM, Micron 35, 495 (2004)

    Google Scholar 

  • A. Boyde: Improved depth of field in the ‘scanning' electron microscope derived from through-focus image stacks, Scanning 26, 265 (2004)

    Google Scholar 

  • G. Pfefferkorn, M. Pfautsch: Präparation biologischer Objekte für die Raster‑Elektronenmikroskopie, Beitr. Elektronenmikr. Direktabb. Anal. Oberfl. 4, 137–157 (1971)

    Google Scholar 

  • A. Rukosujew, R. Reichelt, A.M. Fabricius, G. Drees, T.T.D. Tjan, M. Rothen-Burger, A. Hoffmeier, H.H. Scheld, C. Schmid: Skeletonization versus pedicle preparation of the radial artery with and without the ultrasonic scalpel, Ann. Thorac. Surg. 77, 120 (2004)

    Google Scholar 

  • H. Ishikawa, H. Dobashi, T. Kodama, T. Furuhashi, Y. Uchikawa: Investigation of micro mechanical vibration of piezoelectric actuators. Using a stroboscopic SEM, J. Electron Microsc. 42, 35 (1993)

    Google Scholar 

  • S. Aoyagi: JEOL’s challenge to nanotechnology, JEOL News 37, 70 (2002)

    Google Scholar 

  • J.L. Hernandez-Lopez, R.E. Bauer, W.S. Chang, G. Glasser, D. Grebel-Koehler, M. Klapper, M. Kreiter, J. Leclaire, J.P. Majoral, S. Mittler, K. Mullen, K. Vasilev, T. Weil, J. Wu, T. Zhu, W. Knoll: Functional polymers as nanoscopic building blocks, Mater. Sci. Eng. C 23, 267 (2003)

    Google Scholar 

  • B. Khamsehpour, S.T. Davies: Micromachining of semi-conductor materials by focused ion beams, Vacuum 45, 1169 (2004)

    Google Scholar 

  • K.D. Micheva, S.J. Smith: Array tomography: A new tool for imaging the molecular architecture and ultrastructure of neural circuits, Neuron 55, 25 (2007)

    CAS  Google Scholar 

  • W. Denk, H. Horstmann: Serial block-face scanning electron microscopy to reconstruct three-dimensional tissue nanostructure, PLoS Biol. 2, e329 (2004)

    Google Scholar 

  • D.W. Tuggle, L.W. Swanson: Emission characteristics of the ZrO/W thermal field electron source, J. Vac. Sci. Technol. B 3, 220 (1985)

    CAS  Google Scholar 

  • T. Mulvey: Electron lenses, Scanning Electron Microsc. 1, 43 (1974)

    Google Scholar 

  • Hitachi: The S-5200 Ultra-High Resolution Field Emission SEM: Features and Some Applications, Technical Data Sheet No. 98, HTD-E050-01 2001.11 (Hitachi, Tokyo 2001)

    Google Scholar 

  • K.-R. Peters: Conditions required for high quality high magnification images in secondary electron, Scanning Electron Microsc. 4, 1359 (1982)

    Google Scholar 

  • D.C. Joy: Monte Carlo studies of high-resolution secondary imaging. In: Microbeam Analysis, ed. by A.D. Romig Jr., J.I. Goldstein (San Francisco Press, San Francisco 1984) pp. 81–86

    Google Scholar 

  • R. Hermann, H. Schwarz, M. Müller: High precision immunoscanning electron microscopy using Fab fragments coupled to ultra-small colloidal gold, J. Struct. Biol. 107, 38 (1991)

    CAS  Google Scholar 

  • W. Baumeister, F. Karrenberg, R. Rachel, A. Engel, B. ten Heggeler, W.O. Saxton: The major cell envelope protein of Micrococcus radiodurans (R1): Structural and chemical characterization, Eur. J. Biochem. 125, 535 (1982)

    CAS  Google Scholar 

  • R. Reichelt: Rasterelektronenmikroskopie und Röntgenmikroanalyse. In: Mikroskopie in Forschung und Praxis, ed. by H. Robenek (GIT, Darmstadt 1995) pp. 185–217

    Google Scholar 

  • G. Griffith: Fine Structure Immunocytochemistry (Springer, Berlin 1993)

    Google Scholar 

  • M.A. Hayat (Ed.): Colloidal Gold. Principles, Methods, and Applications, Vol. 1 (Academic Press, London 1989)

    Google Scholar 

  • M.A. Hayat (Ed.): Microscopy, Immunohistochemistry, and Antigen Retrieval Methods: For Light and Electron Microscopy (Kluwer Academic/Plenum, New York 2002)

    Google Scholar 

  • A. Verkleij, J. Leunissen: Immunogold Labelling in Cell Biology (CRC, Boca Raton 1989)

    Google Scholar 

  • E. de Harven, R. Leung, H. Christensen: A novel approach for scanning electron microscopy of colloidal gold-labeled cell surfaces, J. Cell Biol. 99, 53 (1984)

    Google Scholar 

  • H. Gamliel, A. Polliack: The use of scanning immuno-electron microscopy to detect surface membrane immunoglobulins and antigens on normal and leukemic human leukocytes: Current status, Scanning Electron Microsc. 2, 929 (1983)

    Google Scholar 

  • D. Hicks, R.S. Molday: Analysis of cell labelling for scanning and transmission electron microscopy. In: The Science of Biological Specimen Preparation for Microscopy and Microanalysis, ed. by J.-P. Revel, T. Barnard, C.H. Haggis (Scanning Electron Microscopy, Chicago 1984) pp. 203–220

    Google Scholar 

  • R.S. Molday, P. Maher: A review of cell surface markers and labelling techniques for scanning electron microscopy, Histochem. J. 12, 273 (1980)

    CAS  Google Scholar 

  • P. Walther, M. Müller: Detection of small (5--15 nm) gold-labelled surface antigens by back-scattered electrons. In: 43rd Annu. Meet. Electron Microsc. Soc. Am, ed. by G.W. Bailey (San Francisco Press, San Francisco 1985) pp. 538–541

    Google Scholar 

  • P. Walther, M. Müller: Detection of small (5--15 nm) gold-labelled surface antigens by back-scattered electrons. In: Science of Biological Specimen Preparation, ed. by M. Müller, R.P. Becker, A. Boyde, J.J. Wolosewick (Scanning Electron Microscopy, Chicago 1986) pp. 195–201

    Google Scholar 

  • T. Ushiki, R. Yui, T. Fujita: Immunohistochemical localization of serotonin in the third ventricular wall of the lamprey, using backscattered electron imaging, J. Electron Microsc. 35, 157 (1986)

    CAS  Google Scholar 

  • R.M. Albrecht, S.R. Simmons, J.R. Prudent, C.M. Erickson: High resolution SEM of colloidal gold labels. In: Proc. 46th Annu. Meet. Electron Microsc. Soc. Am, ed. by G.W. Bailey (San Francisco Press, San Francisco 1988) pp. 214–217

    Google Scholar 

  • P. Hirsch, M. Kässens, L. Reimer, R. Senkel, M. Spranck: Contrast of colloidal gold particles and thin films on a silicon substrate observed by backscattered electrons in a low-voltage scanning electron microscope, Ultramicroscopy 50, 263 (1993)

    CAS  Google Scholar 

  • S.R. Simmons, J.B. Pawley, R.M. Albrecht: Optimizing parameters for correlative immunogold localization by video-enhanced light microscopy, high-voltage transmission electron microscopy, and field emission scanning electron microscopy, J. Histochem. Cytochem. 38, 1781 (1990)

    CAS  Google Scholar 

  • W. Baschong, N.G. Wrigley: Colloidal gold conjugated to Fab fragments or to immunoglobulin G as high resolution labels for immunoelectron microscopy, J. Electron Microsc. Tech. 14, 313 (1990)

    CAS  Google Scholar 

  • M. Müller, R. Hermann: Towards high resolution SEM of biological objects, Hitachi Instrum. News 19, 50 (1990)

    Google Scholar 

  • R.P. Apkarian, D.C. Joy: Analysis of metal films suitable for high-resolution SE-I microscopy. In: Microbeam Analysis, ed. by D.E. Newbury (San Francisco Press, San Francisco 1988) pp. 459–462

    Google Scholar 

  • S.L. Erlandsen, R.D. Nelson, S.R. Hasslen, G.M. Dunney, S.B. Olmsted, C. Frethem, C.L. Wells: High resolution. FESEM: Application of backscatter electron (BSE) imaging for biological samples, Hitachi Instrum. News 27, 10 (1995)

    Google Scholar 

  • M. Grote, V. Mahler, S. Spitzauer, T. Fuchs, R. Valenta, R. Reichelt: In situ localization of latex allergens in 3 different brands of latex gloves by means of immunogold field emission scanning and transmission electron microscopy, J. Allergy Clin. Immunol. 105, 561 (2000)

    CAS  Google Scholar 

  • M. Müller, R. Hermann: High resolution SEM‑immunocytochemistry. In: 10th Eur. Congr. Electron Microsc., Vol. 3, ed. by L. Megías-Megías, M.I. Rodríguez-García, A. Ríos, J.M. Arias (Secretariado de Publicaciones de la Universidad de Granada, Granada 1992) pp. 741–742

    Google Scholar 

  • H. Ris, M. Malecki: High-resolution field emission scanning electron microscope imaging of internal cell structures after Epon extraction from sections: A new approach to correlative ultrastructural and immunocytochemical studies, J. Struct. Biol. 111, 148 (1993)

    CAS  Google Scholar 

  • J. Yamaguchi, M. Shibano, T. Saito: Immuno-scanning electron microscopic study of cytoskeletons and actin-binding proteins on phagocytosis of zymosans in mouse macrophages by using double marking method. In: 13th Int. Congr. Electron Microsc, Vol. 3A, ed. by B. Jouffrey, C. Colliex (Les Editions de Physique, Les Ulis 1994) pp. 43–44

    Google Scholar 

  • P. Walther, E. Wehrli, R. Hermann, M. Müller: Double-layer coating for high-resolution low-temperature scanning electron ‘microscopy', J. Microsc. 179, 229 (1995)

    CAS  Google Scholar 

  • M. Suga, S. Asahina, Y. Sakuda, H. Kazumori, H. Nishiyama, T. Nokuo, V. Alfredsson, T. Kjellman, S.M. Stevens, H.S. Cho, M. Cho, L. Han, S. Che, M.W. Anderson, F. Schüth, H. Deng, O.M. Yaghi, Z. Liu, H.Y. Jeong, A. Stein, K. Sakamoto, R. Ryoo, O. Terasaki: Recent ‘progress' in scanning electron microscopy for the characterization of fine structural details of nano materials, Prog. Solid State Chem. 42, 1 (2014)

    CAS  Google Scholar 

  • B. Fruhstorfer, V. Mohles, R. Reichelt, E. Nembach: Quantitative characterisation of second phase particles by atomic force microscopy (AFM) and scanning electron microscopy (SEM), Philos. Mag. A 82, 2575 (2002)

    CAS  Google Scholar 

  • E. Nembach: Particle Strengthening of Metals and Alloys (Wiley, New York 1996)

    Google Scholar 

  • E.J. Anglin, M.P. Schwartz, V.P. Ng, L.A. Perelman, M.J. Sailor: Engineering the chemistry and nanostructure of porous silicon Fabry-Pérot films for loading and release of a steroid, Langmuir 20, 11264 (2004)

    CAS  Google Scholar 

  • A.C. Galca, E.S. Kooij, H. Wormeester, C. Salm, V. Leca, J.H. Rector, B. Poelsema: Structural and optical characterization of porous anodic aluminum oxide, J. Appl. Phys. 94, 4296 (2003)

    CAS  Google Scholar 

  • H. Pan, H. Gao, S.H. Lim, Y.P. Feng, J. Lin: Highly ordered carbon nanotubes based on porous aluminum oxide, J. Nanosci. Nanotechnol. 4, 1014 (2004)

    CAS  Google Scholar 

  • Y. Yamazaki: Application of MEMS technology to micro fuel cells, Electrochim. Acta 50, 663 (2004)

    CAS  Google Scholar 

  • Y.C. Zhao, M. Chen, Y.N. Zhang, T. Xu, W.M. Liu: A facile approach to formation of through-hole porous anodic aluminum oxide film, Mater. Lett. 59, 40 (2005)

    CAS  Google Scholar 

  • Z.X. Zhao, R.Q. Cui, F.Y. Meng, Z.B. Zhou, H.C. Yu, T.T. Sun: Nanocrystalline silicon thin films deposited by high-frequency sputtering at low temperature, Solar Energy Mater. Solar Cells 86, 135–144 (2005)

    CAS  Google Scholar 

  • A. Engel: Molecular weight determination by scanning transmission electron microscopy, Ultramicroscopy 3, 273 (1978)

    CAS  Google Scholar 

  • J.S. Wall: Mass measurement in electron microscope, Scanning Electron Microsc. 2, 291 (1979)

    Google Scholar 

  • R. Reichelt, A. Engel, U. Aebi: Adaptation of an annular dark field detector capable of single-electron counting to a high resolution field emission scanning electron microscopy. In: Proc. 9th Eur. Congr. Electron Microsc., ed. by H.G. Dickinson, P.J. Goodhew (IOP, York 1988) pp. 33–34

    Google Scholar 

  • D.C. Bell, M. Mankin, R.W. Day, N. Erdman: Successful application of low voltage electron microscopy to practical materials problems, Ultramicroscopy 145, 56–65 (2014)

    CAS  Google Scholar 

  • S.A. Müller, A. Engel: Structure and mass analysis by scanning transmission electron microscopy, Micron 32, 21 (2001)

    Google Scholar 

  • M. Nagase, K. Kurihara: Imaging of Si nano-patterns embedded in SiO2 using scanning electron microscopy, Microelectron. Eng. 53, 57 (2000)

    Google Scholar 

  • M. Nagase, H. Namatsu: A method for assembling nano-electromechanical devices on microcantilevers using focused ion beam technology, Jpn. J. Appl. Phys. 43, 4624 (2004)

    CAS  Google Scholar 

  • D.C. Joy: Control of charging in low-voltage SEM, Scanning 11, 1 (1989)

    Google Scholar 

  • R. Schmid, K.H. Gaukler, H. Seiler: Measurement of elastically reflected electrons (E\(<2.5\) keV) for imaging of surfaces in a simple ultra high vacuum ‘scanning electron microscope', Scanning Electron Microsc. 2, 501 (1983)

    Google Scholar 

  • I. Müllerová, L. Frank, O. Hutar: Visualization of the energy band contrast in SEM through low-energy electron reflectance, Scanning 23, 115 (2001)

    Google Scholar 

  • D.C. Joy: Low voltage scanning electron microscopy. In: Electron Microscopy Microanalysis, Institute of Physics Conference Series, Vol. 90, ed. by J.N. Chapman, A.J. Craven (Institute of Physics, Bristol 1987) pp. 175–180

    Google Scholar 

  • R. Böngeler, U. Golla, M. Kässens, L. Reimer, B. Schindler, R. Senkel, M. Spranck: Electron-specimen interactions in LVSEM, Scanning 15, 1 (1993)

    Google Scholar 

  • E.H. Darlington, V.E. Cosslett: Backscattering of 0.5–10 keV electrons from solid targets, J. Phys. D 5, 1969 (1972)

    CAS  Google Scholar 

  • B. Lödding, L. Reimer: Monte Carlo Rechnungen im Energiebereich 1--20 keV, Beitr. Elektronenmikr. Direktabb. Anal. Oberfl. 14, 315 (1981)

    Google Scholar 

  • S. Uno, K. Honda, N. Nakamura, M. Matsuya, J. Zach: Probe shape extraction and automatic aberration correction in scanning electron microscopes. In: 8th Asia-Pac. Conf. Electron Microsc. (Yoshida, Kanazawa 2004) pp. 46–47

    Google Scholar 

  • H. Kazumori, K. Honda, M. Matsuya, M. Date, C. Nielsen: Field emission SEM with a spherical and chromatic aberration corrector, Microsc. Microanal. 10(S02), 1370–1371 (2004)

    Google Scholar 

  • R.J. Young, G.N. van Veen, A. Henstra, L. Tuma: Extreme high-resolution (XHR) SEM using S beam monochromator. In: Low Voltage Electron Microscopy: Principles and Applications, ed. by D.C. Bell, N. Erdman (Wiley, Chichester 2013) pp. 57–71

    Google Scholar 

  • B. Lencová, M. Lenc: Computation of properties of electrostatic lenses, Optik 97, 121 (1994)

    Google Scholar 

  • B. Lencová: Electrostatic lenses. In: Handbook of Charged Particle Optics, ed. by J. Orloff (CRC, New York 1997) pp. 177–221

    Google Scholar 

  • R.S. Paden, W.C. Nixon: Retarding field scanning electron microscopy, J. Phys. E 2, 1073 (1968)

    Google Scholar 

  • E. Munro, J. Orloff, R. Rutherford, J. Wallmark: High-resolution, low-energy beams by means of mirror optics, J. Vac. Sci. Technol. B 6, 1971 (1988)

    Google Scholar 

  • I. Müllerová, M. Lenc: The scanning very low-energy electron microscope, Mikrochim. Acta 12, 173 (1992)

    Google Scholar 

  • P. Adamec, A. Delong, B. Lencova: Miniature magnetic electron lenses with permanent magnets, J. Microsc. 179, 129 (1995)

    Google Scholar 

  • A. Khursheed, J.C. Phang, J.T.L. Thong: A portable scanning electron microscope column design based on the use of permanent magnets, Scanning 20, 87 (1998)

    Google Scholar 

  • A. Khursheed: Recent developments in scanning electron microscope design, Rev. Sci. Instrum. 71, 1712 (2000)

    CAS  Google Scholar 

  • T.H.P. Chang, D.P. Kern, L.P. Muray: Microminiaturization of electron optical systems, J. Vac. Sci. Technol. B 8, 1698 (1990)

    Google Scholar 

  • W. Liu, T. Ambe, R.F. Pease: Micro objective lens with compact secondary electron detector for miniature low voltage electron beam systems, J. Vac. Sci. Technol. B 14, 3738 (1996)

    CAS  Google Scholar 

  • E.W. Wollman, C.D. Frisbie, M.S. Wrighton: Scanning electron microscopy for imaging photopatterned, self-assembled monolayers on gold, Langmuir 9, 1517 (1993)

    CAS  Google Scholar 

  • A.L. Bleloch, M.R. Castell, A. Howie, C.A. Walsh: Atomic and electronic Z-contrast effects in high-resolution imaging, Ultramicroscopy 54, 107 (1994)

    CAS  Google Scholar 

  • D.D. Perovic, M.R. Castell, A. Howie, C. Lavoie, T. Tiedje, J.S.W. Cole: Doping layer imaging in the field emission scanning electron microscope. In: 13th Int. Congr. Electron Microsc., ed. by B. Jouffrey, C. Colliex (Les Editions de Physique, Les Ulis 1994) pp. 91–92

    Google Scholar 

  • T.R. Matzelle, N. Kruse, R. Reichelt: Characterization of the cutting edge of glass knives for ultramicrotomy by scanning force ‘microscopy' using cantilevers with a defined tip geometry, J. Microsc. 199, 239 (2000)

    Google Scholar 

  • T.R. Matzelle, H. Gnaegi, A. Ricker, R. Reichelt: Characterization of the cutting edge of glass and diamond knives for ultramicrotomy by scanning force ‘microscopy' using cantilevers with a defined tip geometry, J. Microsc. 209, 113 (2003)

    CAS  Google Scholar 

  • R. Reichelt: Unpublished results (1997)

    Google Scholar 

  • A. von Nahmen, M. Schenk, M. Sieber, M. Amrein: The structure of a model pulmonary surfactant as revealed by scanning force microscopy, Biophys. J. 72, 463 (1997)

    Google Scholar 

  • A.G. Bittermann, S. Jacobi, L.F. Chi, H. Fuchs, R. Reichelt: Contrast studies on organic monolayers of different molecular packing in FESEM and their correlation with SFM data, Langmuir 17, 1872 (2001)

    CAS  Google Scholar 

  • V.K. Berry: Characterization of polymer blends by low voltage scanning electron microscopy, Scanning 10, 19 (1988)

    CAS  Google Scholar 

  • J.H. Butler, D.C. Joy, G.F. Bradley, S.J. Krause: Low-voltage scanning electron microscopy of polymers, Polymer 36, 1781 (1995)

    CAS  Google Scholar 

  • G.M. Brown, J.H. Butler: New method for the characterization of domain morphology of polymer blends using ruthenium tetroxide staining and low voltage scanning electron microscopy (LVSEM), Polymer 38, 3937 (1997)

    Google Scholar 

  • V.N.E. Robinson: The elimination of charging artefacts in the scanning electron microscope, J. Phys. E 8, 638 (1975)

    Google Scholar 

  • G.D. Danilatos: An atmospheric scanning electron microscope (ASEM), Scanning 3, 215 (1980)

    Google Scholar 

  • G.D. Danilatos: The examination of fresh or living plant material in an environmental scanning electron ‘microscope', J. Microsc. 121, 235 (1981)

    Google Scholar 

  • E. Lax (Ed.): D’Ans-Lax Taschenbuch für Chemiker und Physiker (Springer, Berlin 1967)

    Google Scholar 

  • G.D. Danilatos: Review and outline of environmental SEM at present, J. Microsc. 162, 391 (1991)

    Google Scholar 

  • S.A. Wight, C.J. Zeissler: Direct measurement of electron beam scattering in the environmental scanning electron microscope using phosphor imaging plates, Scanning 22, 167 (2000)

    CAS  Google Scholar 

  • G.D. Danilatos: Design and construction of an atmospheric or environmental SEM (Part 3), Scanning 7, 26 (1985)

    Google Scholar 

  • G.D. Danilatos: Cathodoluminescence and gaseous scintillation in the environmental SEM, Scanning 8, 279 (1986)

    CAS  Google Scholar 

  • B.L. Thiel, I.C. Bache, A.L. Fletcher, P. Meredith, A.M. Donald: An improved model for gaseous amplification in the environmental SEM, J. Microsc. 187, 143 (1997)

    CAS  Google Scholar 

  • J. Cazaux: About the mechanisms of charging in EPMA, SEM, and ESEM with their time evolution, Microsc. Microanal. 10, 670 (2004)

    CAS  Google Scholar 

  • Y. Ji, H.S. Guo, T.X. Zhong, H. Zhang, X.L. Quan, Y.Q. Zhang, X.D. Xu: Charge and charging compensation on oxides and hydroxides in oxygen environmental SEM, Ultramicroscopy 103, 191 (2005)

    CAS  Google Scholar 

  • X. Tang, D.C. Joy: Quantitative measurements of charging in a gaseous environment, Scanning 25, 194 (2003)

    CAS  Google Scholar 

  • B.L. Thiel, M. Toth, J.P. Craven: Charging processes in low vacuum scanning electron microscopy, Microsc. Microanal. 10, 711 (2004)

    CAS  Google Scholar 

  • K. Robertson, R. Gauvin, J. Finch: Charge contrast imaging of gibbsite using the variable pressure SEM, Microsc. Microanal. 10, 721 (2004)

    CAS  Google Scholar 

  • M. Toth, M.R. Phillips: The role of induced contrast in images obtained using the environmental scanning electron microscope, Scanning 22, 370 (2000)

    CAS  Google Scholar 

  • M. Schenk, M. Füting, R. Reichelt: Direct visualization of the dynamic behavior of a water meniscus by scanning electron microscopy, J. Appl. Phys. 84, 4880 (1998)

    CAS  Google Scholar 

  • S. Thiberge, A. Nechushtan, D. Sprinzak, O. Gileadi, V. Behar, O. Zik, Y. Chowers, S. Michaeli, J. Schlessinger, E. Moses: Scanning electron microscopy of cells and tissues under fully hydrated conditions, Proc. Natl. Acad. Sci. U.S.A. 101, 3346 (2004)

    CAS  Google Scholar 

  • A. Cismak, M. Schwanecke, M. Füting, A. Heilmann: Environmental scanning electron microscopy of living mammalian cell cultures, Microsc. Microanal. 9(S3), 480 (2003)

    Google Scholar 

  • R.E. de la Parra: A method to detect variations in the wetting properties of microporous polymer membranes, Microsc. Res. Tech. 25, 362 (1993)

    Google Scholar 

  • N.A. Stelmashenko, J.P. Craven, A.M. Donald, E.M. Terentjev, B.L. Thiel: Topographic contrast of partially wetting water droplets in environmental scanning electron microscopy, J. Microsc. 204, 172 (2001)

    CAS  Google Scholar 

  • A. Liukkonen: Contact angle of water on paper components: Sessile drops versus environmental scanning electron microscope measurements, Scanning 19, 411 (1997)

    CAS  Google Scholar 

  • M.P. Rossi, H.H. Ye, Y. Gogotsi, S. Babu, P. Ndungu, J.C. Bradley: Environmental scanning electron microscopy study of water in carbon nanopipes, Nano Lett. 4, 989 (2004)

    CAS  Google Scholar 

  • B. Bennett, J.O. Buckman, B.F. Bowler, S.R. Larter: Wettability alteration in petroleum systems: The role of polar non-hydrocarbons, Petroleum Geosci. 10, 271 (2004)

    CAS  Google Scholar 

  • E. Kowalewski, T. Boassen, O. Torsaeter: Wettability alterations due to aging in crude oil; wettability and cryo-ESEM analyses, J. Petrol Sci. Eng. 39, 377 (2003)

    CAS  Google Scholar 

  • M. Robin: Interfacial phenomena: Reservoir wettability in oil recovery, Oil Gas Sci. Technol. 56, 55 (2001)

    Google Scholar 

  • Y. Cao, H.L. Li: Interfacial activity of a novel family of polymeric surfactants, Eur. Polym. J. 38, 1457 (2002)

    CAS  Google Scholar 

  • S. Kitching, A.M. Donald: Beam damage in the ESEM: an FTIR study of polypropylene. In: 11th Europ. Conf. Electron Microsc., Dublin, Vol. 1 (1996) pp. 138–139

    Google Scholar 

  • C.P. Royall, B.L. Thiel, A.M. Donald: Radiation damage of water in environmental scanning electron ‘microscopy', J. Microsc. 204, 185 (2001)

    CAS  Google Scholar 

  • K. Kanaya, S.O. Kayama: Penetration and energy-loss theory of electrons in solid targets, J. Appl. Phys. D 5, 43 (1972)

    CAS  Google Scholar 

  • K.F.J. Heinrich: Microbeam Analysis (San Francisco Press, San Francisco 1982)

    Google Scholar 

  • K.F.J. Heinrich, D.E. Newbury (Eds.): Electron Probe Quantification (Plenum, New York 1991)

    Google Scholar 

  • D.E. Newbury, D.S. Bright: ‘‘Derived spectra'' software tools for detecting spatial and spectral features in spectrum images, Scanning 27, 15 (2005)

    CAS  Google Scholar 

  • V.E. Cosslett, P. Duncumb: Micro-analysis by a flying-spot x-ray method, Nature 177, 1172 (1956)

    Google Scholar 

  • J.J. Friel, R. Terborg, S. Langner, T. Salge, M. Rohde, J. Berlin: X-Ray and Image Analysis in Electron Microscopy, 3rd edn. (Pro Business, Berlin 2017)

    Google Scholar 

  • J. Goldstein, D.E. Newbury, D.C. Joy, C.E. Lyman, P. Echlin, E. Lifshin, L. Sawyer, J.R. Michael: Scanning Electron Microscopy and X-Ray Microanalysis, 3rd edn. (Springer, New York 2003)

    Google Scholar 

  • L. Strüder, P. Lechner, P. Leutenegger: Silicon drift detector—The key to new experiments, Naturwissenschaften 85, 539 (1998)

    Google Scholar 

  • L. Strüder, N. Meidinger, D. Stotter, J. Kemmer, P. Lechner, P. Leutenegger, H. Soltau, F. Eggert, M. Rohde, T. Schulein: High-resolution x-ray spectroscopy close to room temperature, Microsc. Microanal. 4, 622 (1998)

    Google Scholar 

  • P. Lechner, C. Fiorini, R. Hartmann, J. Kemmer, N. Krause, P. Leutenegger, A. Longoni, H. Soltau, D. Stotter, R. Stotter, L. Strüder, U. Weber: Silicon drift detectors for high count rate x-ray spectroscopy at room temperature, Nucl. Instrum. Methods Phys. Res. A 458, 281 (2001)

    CAS  Google Scholar 

  • P. Poelt, M. Schmied, I. Obernberger, T. Brunner, J. Dahl: Automated analysis of submicron particles by computer-controlled scanning electron microscopy, Scanning 24, 92 (2002)

    CAS  Google Scholar 

  • Y. Hu, Y. Pan: Method for the calculation of the chemical composition of a thin film by Monte Carlo simulation and electron probe microanalysis, X-Ray Spectrom. 30, 110 (2001)

    CAS  Google Scholar 

  • D.G. Rickerby, N. Wächter, R. Reichelt: Quantitative EDX analysis of SiO2/Al2O3/TiO2 multilayer films, Mikrochim. Acta Suppl. 15, 149 (1998)

    CAS  Google Scholar 

  • G.C. Smith, D. Park, O. Cochonneau: Maximum entropy reconstruction of compositional depth profiles from electron probe microanalysis data, J. Microsc. 178, 48 (1995)

    CAS  Google Scholar 

  • P. Poelt: Low voltage EDXS and elements of the first transition series, Mikrochim. Acta 132, 129 (2000)

    CAS  Google Scholar 

  • R. Wurster: EDX measurements on nanoparticles in a high resolution scanning electron microscope, J. Trace Microprobe Tech. 15, 467 (1997)

    CAS  Google Scholar 

  • D.C. Joy, D.E. Newbury, D.L. Davidson: Electron channeling patterns in scanning electron microscope, J. Appl. Phys. 53, R81 (1982)

    CAS  Google Scholar 

  • C.G. van Essen, E.M. Schulson, R.H. Donaghay: The generation and identification of SEM channeling patterns from 10 \(\upmu\)m selected areas, J. Mater. Sci. 6, 213 (1971)

    Google Scholar 

  • J.A. Venables, C.J. Harland: Electron back-scattering patterns—A new technique for obtaining crystallographic information in the scanning electron microscope, Philos. Mag. 27, 74 (1973)

    Google Scholar 

  • A.J. Wilkinson, P.B. Hirsch: Electron diffraction based techniques in scanning electron microscopy of bulk materials, Micron 28, 279 (1997)

    Google Scholar 

  • N.C. Krieger-Lassen, D. Juul-Jensen, K. Conradsen: Image processing procedures for analysis of electron back scattering patterns, Scanning Microsc. 6, 115 (1992)

    Google Scholar 

  • B.L. Adams, S.I. Wright, K. Kunze: Orientation imaging: The emergence of a new microscopy, Metall. Trans. A 24, 819 (1993)

    Google Scholar 

  • S. Zaefferer: The electron backscatter diffraction technique—A powerful tool to study microstructures by SEM, JEOL News 39, 10 (2004)

    Google Scholar 

  • S. Zaefferer, J. Ohlert, W. Bleck: A study of microstructure, transformation mechanisms and correlation between microstructure and mechanical properties of a low alloyed TRIP steel, Acta Mater. 52, 2765 (2004)

    CAS  Google Scholar 

  • A.J. Wilkinson: Advances in SEM-based diffraction studies of defects and strains in semiconductors, J. Electron Microsc. 49, 299 (2000)

    CAS  Google Scholar 

  • D. Katrakova, F. Mücklich: Specimen preparation for electron backscatter diffraction (EBSD)-Part II: Ceramics, Prakt. Metallogr. 39, 644 (2002)

    CAS  Google Scholar 

  • M.R. Koblischka, A. Koblischka-Veneva: Characterization of bulk superconductors through EBSD methods, Physica C 392, 545 (2003)

    Google Scholar 

  • A. Mauler, G. Godard, K. Kunze: Crystallographic fabrics of omphacite, rutile and quartz in vendee eclogites (Armorican Massif, France): Consequences for deformation mechanisms and regimes, Tectonophysics 342, 81 (2001)

    CAS  Google Scholar 

  • D.J. Prior, A.P. Boyle, F. Brenker, M.C. Cheadle, A. Day, G. Lopez, L. Peruzzo, G.J. Potts, S. Reddy, R. Spiess, N.E. Timms, P. Trimby, J. Wheeler, L. Zeterstrom: The application of electron backscatter diffraction and orientation contrast imaging in the SEM to textural problems in rocks, Am. Mineral. 84, 1741 (1999)

    CAS  Google Scholar 

  • P.W. Trimby: Orientation mapping of nanostructured materials using transmission Kikuchi diffraction in the scanning electron microscope, Ultramicroscopy 120, 16 (2012)

    CAS  Google Scholar 

Download references

Acknowledgements

In the contribution in Science of Microscopy, on which this chapter is based, the late Professor Reichelt thanked Dipl.-Ing. Harald Nüsse (artwork), Dr. Vladislav Kryzanek (Monte Carlo simulations of scattering in thin and bulk specimens), Mrs. Ulrike Keller (scanning electron microscope expertise) and Mrs. Gudrun Kiefermann (photography), all of the Institut für Medizinische Physik und Biophysik of the University of Münster, for very welcome help. The chapter was dedicated to his wife Doris and his daughter Hanna. D.C.B. and N.E., who have undertaken the revision of the earlier text, would like to thank Mr. Masateru Shibata (JEOL USA) for his kind help with some of the illustrations in this chapter. D.C.B. and N.E. would like to dedicate it to Campbell, Angus, and Gideon.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David C. Bell .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Erdman, N., Bell, D.C., Reichelt, R. (2019). Scanning Electron Microscopy. In: Hawkes, P.W., Spence, J.C.H. (eds) Springer Handbook of Microscopy. Springer Handbooks. Springer, Cham. https://doi.org/10.1007/978-3-030-00069-1_5

Download citation

Publish with us

Policies and ethics