Skip to main content

Microcomputed Tomography

  • Chapter
  • First Online:
Book cover Springer Handbook of Microscopy

Abstract

Since Röntgen discovered x-rays at the end of the nineteenth century and established their usefulness for medical diagnostics imaging, many technological advances have allowed for x-rays to be employed in even more powerful ways. This includes utilizing x-rays for tomographic imaging and quantification.

This chapter describes the principles of microcomputed tomography ( ) and its use in obtaining internal structural and compositional data about materials/objects of interest. The authors introduce this material with a brief history of the development of laboratory and synchrotron microCT for engineering, biology, and biomedical applications.

As will be evident, microCT imaging requires many components to operate together with precision, and the standard microCT subsystems will be described. This chapter will also explain the principles behind x-ray attenuation in materials as well as common methods by which microCT image processing software may handle complex detected data to reconstruct grayscale slice images. The quality of the resulting images relies on a few key factors, including spatial resolution, noise, and contrast, and these concepts will be explained. Additionally, microCT image reconstruction and processing may produce various types of artifacts, and the most common of these artifacts will be discussed.

In a typical microCT imaging workflow, the reconstructed two-dimensional () slice images can subsequently be processed to generate segmentations and three-dimensional () renderings of the material(s) of interest. Because image segmentation and quantification of the material's geometry and composition could be performed via many possible procedures, these processes will be generally discussed within this chapter.

Finally, microCT forms the basis for various novel techniques that are rapidly gaining momentum for use in biology, engineering, and biomedical research applications to provide accurate, non-destructive high-resolution images and quantitative data. Some of these techniques, such as phase contrast CT, dual-energy CT, fluorescence CT, and x-ray scattering tomography, will be introduced and briefly discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 279.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 359.00
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • G.N. Hounsfield: A method of and apparatus for examination of a body by radiation such as X or gamma radiation, United Kingdom Patent 1283915 (1968–1972)

    Google Scholar 

  • S. Webb: From the Watching of Shadows: The Origins of Radiological Tomography (IOP, Bristol 1990)

    Google Scholar 

  • D.K. Bowen, J.C. Elliott, S.R. Stock, S.D. Dover: X-ray microtomography with synchrotron radiation, SPIE 691, 94–98 (1986)

    CAS  Google Scholar 

  • J.C. Elliott, S.D. Dover: X-ray microtomography, J. Microsc. 126(2), 211–213 (1982)

    CAS  Google Scholar 

  • J.C. Elliott, S.D. Dover: Three-dimensional distribution of mineral in bone at a resolution of 15 micron determined by x-ray microtomography, Metab. Bone Dis. Relat. Res. 5(5), 219–221 (1984)

    CAS  Google Scholar 

  • L.A. Feldkamp, S.A. Goldstein, A.M. Parfitt, G. Jesion, M. Kleerekoper: The direct examination of three-dimensional bone architecture in vitro by computed tomography, J. Bone Miner. Res. 4(1), 3–11 (1989)

    CAS  Google Scholar 

  • B.P. Flannery, H.W. Deckman, W.G. Roberge, K.L. D'Amico: Three-dimensional x-ray microtomography, Science 237(4821), 1439–1444 (1987)

    CAS  Google Scholar 

  • J.H. Kinney, Q.C. Johnson, U. Bonse, M.C. Nichols, R.A. Saroyan, R. Nusshardt, R. Pahl, J.M. Brase: Three-dimensional x-ray computed tomography in materials science, MRS Bulletin XIII, 13–17 (1988)

    Google Scholar 

  • J.L. Kuhn, S.A. Goldstein, M.J. Ciarelli, L.S. Matthews: The limitations of canine trabecular bone as a model for human—A biomechanical study, J. Biomech. 22(2), 95–107 (1989)

    CAS  Google Scholar 

  • M.W. Layton, S.A. Goldstein, R.W. Goulet, L.A. Feldkamp, D.J. Kubinski, G.G. Bole: Examination of subchondral bone architecture in experimental osteo-arthritis by microscopic computed axial-tomography, Arthritis Rheum. 31(11), 1400–1405 (1988)

    CAS  Google Scholar 

  • P. Spanne, M.L. Rivers: Computerized microtomography using synchrotron radiation from the NSLS, Nucl. Instrum. Methods Phys. Res. B 24/25, 1063–1067 (1987)

    Google Scholar 

  • J. Hormes, J. Warner: Industrial use of synchrotron radiation: Love at second sight. In: Industrial Accelerators and Their Applications, ed. by R.W. Hamm, M.E. Hamm (World Scientific Publishing, Hackensack 2012)

    Google Scholar 

  • The European Synchrotron: European Synchrotron Radiation Facility, http://www.esrf.eu/home.html (2016)

  • A.L. Robinson: History of synchrotron radiation. In: X-ray Data Booklet, 3rd edn., ed. by A.C. Thompson (Lawrence Berkeley National Laboratory: Center for X-ray Optics Advanced Light Source, Berkeley 2009)

    Google Scholar 

  • O. Brunke, K. Brockdorf, S. Drews, B. Müller, T. Donath, J. Herzen, F. Beckmann: Comparison between X-ray tube based and synchrotron radiation based \(\upmu\)CT, Proceedings SPIE (2008), https://doi.org/10.1117/12.794789

    Article  Google Scholar 

  • D.C. Copley, J.W. Eberhard, G.A. Mohr: Computed-tomography. 1. Introduction and industrial applications, JOM 46(1), 14–26 (1994)

    Google Scholar 

  • M.J. Dennis: Industrial computed tomography. In: Nondestructive Evaluation and Quality Control, 2nd edn., ASM Handbook, Vol. 17, ed. by ASM Handbook Committee (ASM International, Materials Park 1989)

    Google Scholar 

  • A.C. Kak, M. Slaney: Principles of Computerized Tomographic Imaging (IEEE, New York 1988)

    Google Scholar 

  • E.L. Ritman: Micro-computed tomography-current status and developments, Annu. Rev. Biomed. Eng. 6, 185–208 (2004)

    CAS  Google Scholar 

  • R.H. Bossi, G.E. Georgeson: The application of x-ray computed-tomography to materials development, JOM 43(9), 8–15 (1991)

    CAS  Google Scholar 

  • T.M. Breunig: Nondestructive Evaluation of Damage in SiC/Al Metal/Matrix Composite Using X-ray Tomographic Microscopy (Georgia Institute of Technology, Atlanta 1992)

    Google Scholar 

  • T.M. Breunig, J.C. Elliott, S.R. Stock, P. Anderson, G.R. Davis, A. Guvenilir: Quantitative characterization of damage in a composite material using x-ray tomographic microscopy. In: X-ray Microscopy III, Vol. 67, ed. by A.G. Michette, G.R. Morrison, C.J. Buckley (Springer, Berlin 1992) pp. 465–468

    Google Scholar 

  • T.M. Breunig, S.R. Stock, A. Guvenilir, J.C. Elliott, P. Anderson, G.R. Davis: Damage in aligned fibre SiC/Al quantified using a laboratory x-ray tomographic microscope, Composites 24, 209–213 (1993)

    CAS  Google Scholar 

  • M.D. Butts: Nondestructive Examination of Nicalon Fiber Composite Preforms Using X-ray Tomographic Microscopy (Georgia Institute of Technology, Atlanta 1993)

    Google Scholar 

  • M.D. Butts, S.R. Stock, J.H. Kinney, T.L. Starr, M.C. Nichols, C.A. Lundgren, T.M. Breunig, A. Guvenilir: X-ray tomographic microscopy of Nicalon preforms and chemical vapor infiltrated Nicalon silicon-carbide composites, MRS Proceedings 250, 215–219 (1992)

    CAS  Google Scholar 

  • Y. Cao, T.D. Wu, H. Wu, Y. Lang, D.Z. Li, S.F. Ni, H.B. Lu, J.Z. Hu: Synchrotron radiation micro-CT as a novel tool to evaluate the effect of agomir-210 in a rat spinal cord injury model, Brain Res. 1655, 55–65 (2017)

    CAS  Google Scholar 

  • C.A. Carlsson, G. Matscheko, P. Spanne: Prospects for microcomputerized-tomography using synchrotron radiation, Biol. Trace Elem. Res. 13(1), 209–217 (1987)

    CAS  Google Scholar 

  • L.R.L. Dollar: Evaluation of Nondestructive X-ray Techniques for Electronic Packaging Materials (Georgia Institute of Technology, Atlanta 1992)

    Google Scholar 

  • J.C. Elliott, P. Anderson, G.R. Davis, F.S.L. Wong, S.D. Dover: Computed-tomography. 2. The practical use of a single-source and detector, JOM 46(3), 11–19 (1994)

    Google Scholar 

  • G.E. Georgeson, R.H. Bossi: Computed-tomography of advanced materials and processes. In: Nondestr. Eval. Mater. Prop. Adv. Mater.; Proc. Symp. TMS Annu. Meet., New Orleans (1991) pp. 99–108

    Google Scholar 

  • A. Guvenilir: Investigation into Asperity Induced Closure in an Al-Li Alloy Using X-ray Tomography (Georgia Institute of Technology, Atlanta 1995)

    Google Scholar 

  • S.B. Lee: Nondestructive Examination of Chemical Vapor Infiltration of 0°/90° SiC/Nicalon Composites (Georgia Institute of Technology, Atlanta 1993)

    Google Scholar 

  • C.L. Lin, A.R. Videla, Q. Yu, J.D. Miller: Characterization and analysis of porous, brittle solid structures by x-ray micro computed tomography, JOM 62(12), 86–89 (2010)

    Google Scholar 

  • R. Morano: Effect of R-Ratio on Crack Closure in Al-Li 2090 T8E41, Investigated Non-Destructively with X-Ray Micro-Tomography (Georgia Institute of Technology, Atlanta 1998)

    Google Scholar 

  • S.R. Stock: X-ray microtomography of materials, Int. Mater. Rev. 44(4), 141–164 (1999)

    CAS  Google Scholar 

  • S.R. Stock, A. Guvenilir, T.M. Breunig, J.H. Kinney, M.C. Nichols: Computed-tomography. 3. Volumetric, high-resolution x-ray-analysis of fatigue-crack closure, JOM 47(1), 19–23 (1995)

    CAS  Google Scholar 

  • T. Winkler, X.Y. Dai, G. Mielke, S. Vogt, H. Buechner, J.T. Schantz, Y. Harder, H.G. Machens, M.M. Morlock, A.F. Schilling: Three-dimensional quantification of calcium salt-composite resorption (CSC) in vitro by micro-computed tomography (micro-CT), JOM 66(4), 559–565 (2014)

    CAS  Google Scholar 

  • A.S. Lin, T.H. Barrows, S.H. Cartmell, R.E. Guldberg: Microarchitectural and mechanical characterization of oriented porous polymer scaffolds, Biomaterials 24(3), 481–489 (2003)

    CAS  Google Scholar 

  • S.J. Hollister, R.A. Levy, T.M. Chu, J.W. Halloran, S.E. Feinberg: An image-based approach for designing and manufacturing craniofacial scaffolds, Int. J. Oral Maxillofac. Surg. 29(1), 67–71 (2000)

    CAS  Google Scholar 

  • A. Hasan, K.A. Alshibli: Experimental assessment of 3D particle-to-particle interaction within sheared sand using synchrotron microtomography, Geotechnique 60(5), 369–379 (2010)

    Google Scholar 

  • D.L. Safranski, J.M. Boothby, C.N. Kelly, K. Beatty, N. Lakhera, C.P. Frick, A. Lin, R.E. Guldberg, J.C. Griffis: Thermo-mechanical behavior and structure of melt blown shape-memory polyurethane nonwovens, J. Mech. Behav. Biomed. Mater. 62, 545–555 (2016)

    CAS  Google Scholar 

  • P. Verma, M.L. Shofner, A. Lin, K.B. Wagner, A.C. Griffin: Induction of auxetic response in needle-punched nonwovens: Effects of temperature, pressure, and time, Phys. Status Solidi (b) 253(7), 1270–1278 (2016)

    CAS  Google Scholar 

  • S. Bayat, L. Apostol, E. Boller, T. Brochard, F. Peyrin: In vivo imaging of bone micro-architecture in mice with 3D synchrotron radiation micro-tomography, Nucl. Instrum. Methods Phys. Res. A 548, 247–252 (2005)

    CAS  Google Scholar 

  • S. Cartmell, K. Huynh, A. Lin, S. Nagaraja, R. Guldberg: Quantitative microcomputed tomography analysis of mineralization within three-dimensional scaffolds in vitro, J. Biomed. Mater. Res. A 69(1), 97–104 (2004)

    Google Scholar 

  • G.T. Charras: Digital Image-Based Finite Element Modeling (DIBFEM): Validation and Application to Biological Structures (Georgia Institute of Technology, Atlanta 1998)

    Google Scholar 

  • D.W. Dempster, R. Lindsay: Pathogenesis of osteoporosis, Lancet 341(8848), 797–801 (1993)

    CAS  Google Scholar 

  • M. Ding, A. Odgaard, I. Hvid: Accuracy of cancellous bone volume fraction measured by micro-CT scanning, J. Biomech. 32(3), 323–326 (1999)

    CAS  Google Scholar 

  • M. Ding, A. Odgaard, F. Linde, I. Hvid: Age-related variations in the microstructure of human tibial cancellous bone, J. Orthop. Res. 20(3), 615–621 (2002)

    Google Scholar 

  • K. Engelke, C.C. Gluer, H.K. Genant: Structural and fractal analyses of the trabecular network using micro-computed tomography images, J. Bone Miner. Res. 8, S354 (1993)

    Google Scholar 

  • K. Engelke, W. Graeff, L. Meiss, M. Hahn, G. Delling: High spatial-resolution imaging of bone-mineral using computed microtomography—Comparison with microradiography and undecalcified histologic sections, Invest. Radiol. 28(4), 341–349 (1993)

    CAS  Google Scholar 

  • R.W. Goulet, S.A. Goldstein, M.J. Ciarelli, J.L. Kuhn, M.B. Brown, L.A. Feldkamp: The relationship between the structural and orthogonal compressive properties of trabecular bone, J. Biomech. 27(4), 375–389 (1994)

    CAS  Google Scholar 

  • R.E. Guldberg, N.J. Caldwell, X.E. Guo, R.W. Goulet, S.J. Hollister, S.A. Goldstein: Mechanical stimulation of tissue repair in the hydraulic bone chamber, J. Bone Miner. Res. 12(8), 1295–1302 (1997)

    CAS  Google Scholar 

  • R.E. Guldberg, S.J. Hollister, G.T. Charras: The accuracy of digital image-based finite element models, J. Biomech. Eng. 120(2), 289–295 (1998)

    CAS  Google Scholar 

  • R.E. Guldberg, A.S. Lin, R. Coleman, G. Robertson, C. Duvall: Microcomputed tomography imaging of skeletal development and growth, Birth Defects Res. C Embryo Today 72(3), 250–259 (2004)

    CAS  Google Scholar 

  • T. Hildebrand, A. Laib, R. Müller, J. Dequeker, P. Rüegsegger: Direct three-dimensional morphometric analysis of human cancellous bone: Microstructural data from spine, femur, iliac crest, and calcaneus, J. Bone Miner. Res. 14(7), 1167–1174 (1999)

    CAS  Google Scholar 

  • B. Koller, A. Laib: Calibration of micro-CT data for quantifying bone mineral and biomaterial density and microarchitecture. In: Advanced Bioimaging Technologies in Assessment of the Quality of Bone and Scaffold Materials, ed. by L. Qin, H.K. Genant, J.F. Griffith, K.S. Leung (Springer, Berlin 2007)

    Google Scholar 

  • J.L. Kuhn, S.A. Goldstein, L.A. Feldkamp, R.W. Goulet, G. Jesion: Evaluation of a microcomputed tomography system to study trabecular bone structure, J. Orthop. Res. 8(6), 833–842 (1990)

    CAS  Google Scholar 

  • A. Laib, O. Barou, L. Vico, M.H. Lafage-Proust, C. Alexandre, P. Rugsegger: 3D micro-computed tomography of trabecular and cortical bone architecture with application to a rat model of immobilisation osteoporosis, Med. Biol. Eng. Comput. 38(3), 326–332 (2000)

    CAS  Google Scholar 

  • W.A. Merz, R.K. Schenk: Quantitative structural analysis of human cancellous bone, Acta Anat. 75(1), 54–66 (1970)

    CAS  Google Scholar 

  • R. Müller, H. Van Campenhout, B. Van Damme, G. Van Der Perre, J. Dequeker, T. Hildebrand, P. Rüegsegger: Morphometric analysis of human bone biopsies: A quantitative structural comparison of histological sections and micro-computed tomography, Bone 23(1), 59–66 (1998)

    Google Scholar 

  • K.K. Nishiyama, G.M. Campbell, R.J. Klinck, S.K. Boyd: Reproducibility of bone micro-architecture measurements in rodents by in vivo micro-computed tomography is maximized with three-dimensional image registration, Bone 46(1), 155–161 (2010)

    Google Scholar 

  • A. Odgaard: Three-dimensional methods for quantification of cancellous bone architecture, Bone 20(4), 315–328 (1997)

    CAS  Google Scholar 

  • A. Odgaard, H.J. Gundersen: Quantification of connectivity in cancellous bone, with special emphasis on 3-D reconstructions, Bone 14(2), 173–182 (1993)

    CAS  Google Scholar 

  • I.V. Pratt, G. Belev, N. Zhu, L.D. Chapman, D.M. Cooper: In vivo imaging of rat cortical bone porosity by synchrotron phase contrast micro computed tomography, Phys. Med. Biol. 60(1), 211–232 (2015)

    CAS  Google Scholar 

  • P. Rüegsegger, B. Koller, R. Müller: A microtomographic system for the nondestructive evaluation of bone architecture, Calcif. Tissue Int. 58(1), 24–29 (1996)

    Google Scholar 

  • P.L. Salmon, A.Y. Sasov: Application of nano-CT and high-resolution micro-CT to study bone quality and ultrastructure, scaffold biomaterials and vascular networks. In: Advanced Bioimaging Technologies in Assessment of the Quality of Bone and Scaffold Materials, ed. by L. Qin, H.K. Genant, J.F. Griffith, K.S. Leung (Springer, Berlin 2007)

    Google Scholar 

  • B. van Rietbergen, H. Weinans, R. Huiskes, A. Odgaard: A new method to determine trabecular bone elastic properties and loading using micromechanical finite-element models, J. Biomech. 28(1), 69–81 (1995)

    Google Scholar 

  • R.M. Coleman, J.E. Phillips, A. Lin, Z. Schwartz, B.D. Boyan, R.E. Guldberg: Characterization of a small animal growth plate injury model using microcomputed tomography, Bone 46(6), 1555–1563 (2010)

    Google Scholar 

  • C.L. Duvall, W.R. Taylor, D. Weiss, R.E. Guldberg: Quantitative microcomputed tomography analysis of collateral vessel development after ischemic injury, Am. J. Physiol. Heart Circ. Physiol. 287(1), H302–H310 (2004)

    CAS  Google Scholar 

  • R.E. Guldberg, R.T. Ballock, B.D. Boyan, C.L. Duvall, A.S. Lin, S. Nagaraja, M. Oest, J. Phillips, B.D. Porter, G. Robertson, W.R. Taylor: Analyzing bone, blood vessels, and biomaterials with microcomputed tomography, IEEE Eng. Med. Biol. Mag. 22(5), 77–83 (2003)

    CAS  Google Scholar 

  • A.W. Palmer, R.E. Guldberg, M.E. Levenston: Analysis of cartilage matrix fixed charge density and three-dimensional morphology via contrast-enhanced microcomputed tomography, Proc. Natl. Acad. Sci. USA 103(51), 19255–19260 (2006)

    CAS  Google Scholar 

  • G.L. Kindlmann, D.M. Weinstein, G.M. Jones, C.R. Johnson, M.R. Capecchi, C. Keller: Practical vessel imaging by computed tomography in live transgenic mouse models for human tumors, Mol. Imaging 4(4), 417–424 (2005)

    Google Scholar 

  • A. Lin, A.W. Palmer, C. Duvall, G. Robertson, M. Oest, B. Rai, M.E. Levenston, R. Guldberg: Contrast enhanced micro-CT imaging of soft tissues. In: Advanced Bioimaging Technologies in Assessment of the Quality of Bone and Scaffold Materials, ed. by L. Qin, H.K. Genant, J.F. Griffith, K.S. Leung (Springer, Berlin 2007)

    Google Scholar 

  • S.R. Stock, G. Wang, B. Müller: Developments in x-ray tomography x, Proceedings SPIE (2016), https://doi.org/10.1117/12.2256419

    Article  Google Scholar 

  • ASTM International: ASTM 1441-11: Standard Guide for Computed Tomography (CT) Imaging (ASTM International, Subcommittee E07.01 on Radiology (X and Gamma) Method, West Conshohocken 2011)

    Google Scholar 

  • Wikipedia: SOLEIL, https://en.wikipedia.org/wiki/SOLEIL (2016)

  • S.R. Stock: MicroComputed Tomography: Methodology and Applications (Taylor Francis, Boca Raton 2008)

    Google Scholar 

  • SOLEIL Synchtrotron: Synchrotron SOLEIL, http://www.synchrotron-soleil.fr (2016)

  • S.R. Stock: MicroCT systems and their components. In: Microcomputed Tomography: Methodology and Applications (Taylor Francis, Boca Raton 2008)

    Google Scholar 

  • Wikipedia: Charge-coupled device, https://en.wikipedia.org/wiki/Charge-coupled_device (2016)

  • S.M. Sze, K.K. Ng: Physics of Semiconductor Devices, 3rd edn. (Wiley, Hoboken 2006)

    Google Scholar 

  • B.D. Cullity, S.R. Stock: Elements of X-ray Diffraction, 3rd edn. (Prentice-Hall, Upper Saddle River 2001)

    Google Scholar 

  • J.F. Barrett, N. Keat: Artifacts in CT: Recognition and avoidance, RadioGraphics 24, 1679–1691 (2004)

    Google Scholar 

  • F.E. Boas, D. Fleischmann: CT artifacts: Causes and reduction techniques, Imaging Med. 4(2), 229–240 (2012)

    Google Scholar 

  • S.R. Stock: MicroCT in practice. In: MicroComputed Tomography: Methodology and Applications (Taylor Francis, Boca Raton 2008)

    Google Scholar 

  • A.J. Burghardt, G.J. Kazakia, S. Majumdar: A local adaptive threshold strategy for high resolution peripheral quantitative computed tomography of trabecular bone, Ann. Biomed. Eng. 35(10), 1678–1686 (2007)

    Google Scholar 

  • T.F. Chan, L.A. Vese: Active contours without edges, IEEE Trans. Image Process. 10(2), 266–277 (2001)

    CAS  Google Scholar 

  • J.H. Waarsing, J.S. Day, H. Weinans: An improved segmentation method for in vivo microCT imaging, J. Bone Miner. Res. 19(10), 1640–1650 (2004)

    Google Scholar 

  • N. Otsu: Threshold selection method from gray-level histograms, IEEE Trans. Syst. Man Cybern. 9(1), 62–66 (1979)

    Google Scholar 

  • P. Iassonov, T. Gebrenegus, M. Tuller: Segmentation of X-ray computed tomography images of porous materials: A crucial step for characterization and quantitative analysis of pore structures, Water Resour. Res. (2009), https://doi.org/10.1029/2009WR008087

    Article  Google Scholar 

  • T. Hara, E. Tanck, J. Homminga, R. Huiskes: The influence of microcomputed tomography threshold variations on the assessment of structural and mechanical trabecular bone properties, Bone 31(1), 107–109 (2002)

    CAS  Google Scholar 

  • I.H. Parkinson, A. Badiei, N.L. Fazzalari: Variation in segmentation of bone from micro-CT imaging: Implications for quantitative morphometric analysis, Australas. Phys. Eng. Sci. Med. 31(2), 160–164 (2008)

    CAS  Google Scholar 

  • S. Tassani, V. Korfiatis, G.K. Matsopoulos: Influence of segmentation on micro-CT images of trabecular bone, J. Microsc. 256(2), 75–81 (2014)

    CAS  Google Scholar 

  • M. Doube: The ellipsoid factor for quantification of rods, plates, and intermediate forms in 3D geometries, Front. Endocrinol. 6, 15 (2015)

    Google Scholar 

  • P.L. Salmon, C. Ohlsson, S.J. Shefelbine, M. Doube: Structure model index does not measure rods and plates in trabecular bone, Front. Endocrinol. 6, 162 (2015)

    Google Scholar 

  • A. Larrue, A. Rattner, Z.A. Peter, C. Olivier, N. Laroche, L. Vico, F. Peyrin: Synchrotron radiation micro-CT at the micrometer scale for the analysis of the three-dimensional morphology of microcracks in human trabecular bone, PLoS One 6(7), e21297 (2011)

    CAS  Google Scholar 

  • S. Frolich, H. Leemreize, A. Jakus, X. Xiao, R. Shah, H. Birkedal, J.D. Almer, S.R. Stock: Diffraction tomography and Rietveld refinement of a hydroxyapatite bone phantom, J. Appl. Crystallogr. 49, 103–109 (2016)

    Google Scholar 

  • J.H. Kinney, N.E. Lane, D.L. Haupt: In vivo, three-dimensional microscopy of trabecular bone, J. Bone Miner. Res. 10(2), 264–270 (1995)

    CAS  Google Scholar 

  • N.E. Lane, J.M. Thompson, G.J. Strewler, J.H. Kinney: Intermittent treatment with human parathyroid hormone (hPTH[1-34]) increased trabecular bone volume but not connectivity in osteopenic rats, J. Bone Miner. Res. 10(10), 1470–1477 (1995)

    CAS  Google Scholar 

  • F. Peyrin, M. Salome, P. Cloetens, A.M. Laval-Jeantet, E. Ritman, P. Rüegsegger: Micro-CT examinations of trabecular bone samples at different resolutions: 14, 7 and 2 micron level, Technol. Health Care 6(5/6), 391–401 (1998)

    CAS  Google Scholar 

  • C. Badea, L.W. Hedlund, G.A. Johnson: Micro-CT with respiratory and cardiac gating, Med. Phys. 31(12), 3324–3329 (2004)

    CAS  Google Scholar 

  • M.L. Bouxsein, S.K. Boyd, B.A. Christiansen, R.E. Guldberg, K.J. Jepsen, R. Müller: Guidelines for assessment of bone microstructure in rodents using micro-computed tomography, J. Bone Miner. Res. 25(7), 1468–1486 (2010)

    Google Scholar 

  • H. Li, H. Zhang, Z. Tang, G. Hu: Micro-computed tomography for small animal imaging: Technological details, Prog. Nat. Sci. 18, 513–521 (2008)

    CAS  Google Scholar 

  • D.W. Holdsworth, M.M. Thornton: Micro-CT in small animal and specimen imaging, Trends Biotechnol. 20(8), S34–S39 (2002)

    Google Scholar 

  • S.J. Schambach, S. Bag, L. Schilling, C. Groden, M.A. Brockmann: Application of micro-CT in small animal imaging, Methods 50(1), 2–13 (2010)

    CAS  Google Scholar 

  • K. Umetani, J.T. Pearson, D.O. Schwenke, M. Shirai: Development of synchrotron radiation x-ray intravital microscopy for in vivo imaging of rat heart vascular function. In: 2011 Ann. Int. Conf. IEEE Eng. Med. Biol. Soc (2011) pp. 7791–7794

    Google Scholar 

  • K.B. Ghaghada, C.T. Badea, L. Karumbaiah, N. Fettig, R.V. Bellamkonda, G.A. Johnson, A. Annapragada: Evaluation of tumor microenvironment in an animal model using a nanoparticle contrast agent in computed tomography imaging, Acad. Radiol. 18(1), 20–30 (2011)

    Google Scholar 

  • T. Nakagawa, K. Gonda, T. Kamei, L. Cong, Y. Hamada, N. Kitamura, H. Tada, T. Ishida, T. Aimiya, N. Furusawa, Y. Nakano, N. Ohuchi: X-ray computed tomography imaging of a tumor with high sensitivity using gold nanoparticles conjugated to a cancer-specific antibody via polyethylene glycol chains on their surface, Sci. Technol. Adv. Mater. 17(1), 387–397 (2016)

    CAS  Google Scholar 

  • S. Stock: X-ray Computed Tomography. Characterization of Materials, 2nd edn. (Wiley, New York 2012)

    Google Scholar 

  • D. Paganin, S.C. Mayo, T.E. Gureyev, P.R. Miller, S.W. Wilkins: Simultaneous phase and amplitude extraction from a single defocused image of a homogeneous object, J. Microsc. 206, 33–40 (2002)

    CAS  Google Scholar 

  • C.P. Richter, W. Liddy, A. Vo, H. Young, S. Stock, X.H. Xiao, D. Whitlon: Evaluation of neural cochlear structures after noise trauma using X-ray tomography, Proceedings SPIE (2014), https://doi.org/10.1117/12.2062385

    Article  Google Scholar 

  • P.V. Granton, S.I. Pollmann, N.L. Ford, M. Drangova, D.W. Holdsworth: Implementation of dual- and triple-energy cone-beam micro-CT for postreconstruction material decomposition, Med. Phys. 35(11), 5030–5042 (2008)

    CAS  Google Scholar 

  • C.L. Lee, H. Min, N. Befera, D. Clark, Y. Qi, S. Das, G.A. Johnson, C.T. Badea, D.G. Kirsch: Assessing cardiac injury in mice with dual energy-microCT, 4D-microCT, and microSPECT imaging after partial heart irradiation, Int. J. Radiat. Oncol. Biol. Phys. 88(3), 686–693 (2014)

    Google Scholar 

  • N. Manohar, F.J. Reynoso, P. Diagaradjane, S. Krishnan, S.H. Cho: Quantitative imaging of gold nanoparticle distribution in a tumor-bearing mouse using benchtop x-ray fluorescence computed tomography, Sci. Rep. 6, 22079 (2016)

    CAS  Google Scholar 

  • X. Chen, H. Zhu, X. Huang, P. Wang, F. Zhang, W. Li, G. Chen, B. Chen: Novel iodinated gold nanoclusters for precise diagnosis of thyroid cancer, Nanoscale 9(6), 2219–2231 (2017)

    CAS  Google Scholar 

  • M.E. Birkbak, H. Leemreize, S. Frolich, S.R. Stock, H. Birkedal: Diffraction scattering computed tomography: a window into the structures of complex nanomaterials, Nanoscale 7(44), 18402–18410 (2015)

    CAS  Google Scholar 

  • S.R. Stock, J.D. Almer: Diffraction microcomputed tomography of an Al-matrix SiC-monofilament composite, J. Appl. Crystallogr. 45, 1077–1083 (2012)

    CAS  Google Scholar 

  • T.M. Breunig, S. Stock, S.D. Antolovich, J.H. Kinney, W.N. Massey, M.C. Nichols: A framework relating macroscopic measures and physical processes of crack closure of Al-Li Alloy 2090. In: Proc. Fract. Mech. Twenty-Second Symp. (1992)

    Google Scholar 

  • A. Guvenilir, T.M. Breunig, J.H. Kinney, S.R. Stock: Direct observation of crack opening as a function of applied load in the interior of a notched tensile sample of Al-Li 2090, Acta Mater. 45(5), 1977–1987 (1997)

    CAS  Google Scholar 

  • J.H. Kinney, T.M. Breunig, T.L. Starr, D. Haupt, M.C. Nichols, S.R. Stock, M.D. Butts, R.A. Saroyan: X-ray tomographic study of chemical vapor infiltration processing of ceramic composites, Science 260(5109), 789–792 (1993)

    CAS  Google Scholar 

  • S.B. Lee, S.R. Stock, M.D. Butts, T.L. Starr, T.M. Breunig, J.H. Kinney: Pore geometry in woven fiber structures: 0 degrees/90 degrees plain-weave cloth layup preform, J. Mater. Res. 13(5), 1209–1217 (1998)

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert E. Guldberg .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Lin, A.S., Stock, S.R., Guldberg, R.E. (2019). Microcomputed Tomography. In: Hawkes, P.W., Spence, J.C.H. (eds) Springer Handbook of Microscopy. Springer Handbooks. Springer, Cham. https://doi.org/10.1007/978-3-030-00069-1_24

Download citation

Publish with us

Policies and ethics