Skip to main content

Photoemission Electron Microscopy

  • Chapter
  • First Online:
Springer Handbook of Microscopy

Abstract

Photoemission electron microscopy (PEEM) is a cathode lens electron microscopy technique. This specialized electron microscopy technique excels in studying the morphology, electronic and chemical properties and the magnetic structure of surfaces and thin film materials with nanometer-scale spatial resolution. In this chapter, we describe X-PEEM instrumentation and a typical X-PEEM optical system, discuss aberrations that limit the optical performance of X-PEEM microscopes, describe contrast mechanisms, and present several examples that cover some of the common use cases for X-PEEM, in particular the magnetic and time-resolved microscopy of nanostructures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 279.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 359.00
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • E. Bauer: Low energy electron microscopy, Rep. Prog. Phys. 57, 895–938 (1994)

    CAS  Google Scholar 

  • A. Einstein: Über einen die Erzeugung und Verwandlung des Lichtes betreffenden heuristischen Gesichtspunkt, Ann. Phys. 17, 132 (1905)

    CAS  Google Scholar 

  • E. Brüche: Electron microscope image with photo-electrons, Z. Phys. 86, 448–450 (1933)

    Google Scholar 

  • E. Brüche, H. Johannson: Kinematographische Elektronenmikroskopie von Oxydkathoden, Ann. Phys. 407, 145–166 (1932)

    Google Scholar 

  • M. Knoll, F.G. Houtermans, W. Schulze: Untersuchung der Emissionsverteilung an Glühkathoden mit dem magnetischen Elektronenmikroskop, Z. Phys. 78, 340–362 (1932)

    CAS  Google Scholar 

  • D.B. Langmuir: Theoretical limitations of cathode-ray tubes, Proc. Inst. Radio Eng. 25, 977–991 (1937)

    Google Scholar 

  • A. Recknagel: Theorie des elektrischen Elektronenmikroskops für Selbststrahler, Z. Phys. 117, 689–708 (1941)

    CAS  Google Scholar 

  • W. Engel: Emission microscopy with different kinds of electron emission. In: Proc. 6th Int. Congr. Electron Microsc., Kyoto, Japan (Maruzen, Tokyo 1966)

    Google Scholar 

  • L. Wegmann: Photoemission electron-microscope: its technique and applications, J. Microsc. 96(1), 1–23 (1972)

    Google Scholar 

  • O.H. Griffith, G.E. Rempfer: Photoelectron imaging: Photoelectron microscopy and related techniques, Adv. Opt. Electron Microsc. 10, 269–337 (1987)

    Google Scholar 

  • O.H. Griffith, W. Engel: Historical-perspective and current trends in emission microscopy, mirror electron-microscopy and low-energy electron-microscopy—An introduction to the Proceedings of the 2nd International-Symposium and Workshop on Emission Microscopy and Related Techniques, Ultramicroscopy 36, 1–28 (1991)

    CAS  Google Scholar 

  • E. Bauer: Surface electron-microscopy—The first 30 years, Surf. Sci. 299, 102–115 (1994)

    Google Scholar 

  • G.F. Rempfer, W.P. Skoczylas, O.H. Griffith: Design and performance of a high-resolution photoelectron microscope, Ultramicroscopy 36, 196–221 (1991)

    CAS  Google Scholar 

  • G.F. Rempfer: Unipotential electrostatic lenses—paraxial properties and aberrations of focal length and focal point, J. Appl. Phys. 57, 2385–2401 (1985)

    Google Scholar 

  • G.F. Rempfer, O.H. Griffith: The resolution of photoelectron microscopes with UV, X-ray, and synchrotron excitation sources, Ultramicroscopy 27, 273–300 (1989)

    CAS  Google Scholar 

  • W. Telieps, E. Bauer: An analytical reflection and emission UHV surface electron-microscope, Ultramicroscopy 17, 57–65 (1985)

    CAS  Google Scholar 

  • T. Schmidt, S. Heun, J. Slezak, J. Diaz, K.C. Prince, G. Lilienkamp, E. Bauer: SPELEEM: combining LEEM and spectroscopic imaging, Surf. Rev. Lett. 5, 1287–1296 (1998)

    CAS  Google Scholar 

  • B.P. Tonner, G.R. Harp: Photoelectron microscopy with synchrotron radiation, Rev. Sci. Instrum. 59, 853–858 (1988)

    CAS  Google Scholar 

  • J. Stöhr, Y. Wu, B.D. Hermsmeier, M.G. Samant, G.R. Harp, S. Koranda, D. Dunham, B.P. Tonner: Element-specific magnetic microscopy with circularly polarized X-rays, Science 259, 658–661 (1993)

    Google Scholar 

  • S. Anders, H.A. Padmore, R.M. Duarte, T. Renner, T. Stammler, A. Scholl, M.R. Scheinfein, J. Stöhr, L. Seve, B. Sinkovic: Photoemission electron microscope for the study of magnetic materials, Rev. Sci. Instrum. 70, 3973–3981 (1999)

    CAS  Google Scholar 

  • L.J. Heyderman, F. Nolting, C. Quitmann: X-ray photoemission electron microscopy investigation of magnetic thin film antidot arrays, Appl. Phys. Lett. 83, 1797–1799 (2003)

    CAS  Google Scholar 

  • W. Kuch, J. Gilles, F. Offi, S.S. Kang, S. Imada, S. Suga, J. Kirschner: Imaging microspectroscopy of Ni/Fe/Co/Cu(001) using a photoemission microscope, J. Electron Spectrosc. Relat. Phenom. 109, 249–265 (2000)

    CAS  Google Scholar 

  • C.M. Schneider, G. Schönhense: Investigating surface magnetism by means of photoexcitation electron emission microscopy, Rep. Prog. Phys. 65, R1785–R1839 (2002)

    CAS  Google Scholar 

  • D.H. Wei, Y.J. Hsu, R. Klauser, I.H. Hong, G.C. Yin, T.J. Chuang: Photoelectron microscopy projects at SRRC, Surf. Rev. Lett. 10, 617–624 (2003)

    Google Scholar 

  • F. Kronast, J. Schlichting, F. Radu, S.K. Mishra, T. Noll, H.A. Durr: Spin-resolved photoemission microscopy and magnetic imaging in applied magnetic fields, Surf. Interface Anal. 42, 1532–1536 (2010)

    CAS  Google Scholar 

  • T. Schmidt, U. Groh, R. Fink, E. Umbach: XPEEM with energy-filtering: Advantages and first results from the smart project, Surf. Rev. Lett. 9, 223–232 (2002)

    CAS  Google Scholar 

  • A. Doran, M. Church, T. Miller, G. Morrison, A.T. Young, A. Scholl: Cryogenic PEEM at the advanced light source, J. Electron Spectrosc. Relat. Phenom. 185, 340–346 (2012)

    CAS  Google Scholar 

  • A. Locatelli, L. Aballe, T.O. Mentes, M. Kiskinova, E. Bauer: Photoemission electron microscopy with chemical sensitivity: SPELEEM methods and applications, Surf. Interface Anal. 38, 1554–1557 (2006)

    CAS  Google Scholar 

  • X.M. Cheng, D.J. Keavney: Studies of nanomagnetism using synchrotron-based x-ray photoemission electron microscopy (X-PEEM), Rep. Prog. Phys. 75, 026501 (2012)

    CAS  Google Scholar 

  • L. Aballe, M. Foerster, E. Pellegrin, J. Nicolas, S. Ferrer: The ALBA spectroscopic LEEM-PEEM experimental station: layout and performance, J. Synchrotron Radiat. 22, 745–752 (2015)

    CAS  Google Scholar 

  • F.Z. Guo, T. Wakita, H. Shimizu, T. Matsushita, T. Yasue, T. Koshikawa, E. Bauer, K. Kobayashi: Introduction of photoemission electron microscopes at SPring-8 for nanotechnology support, J. Phys. Condens. Matter 17, S1363–S1370 (2005)

    CAS  Google Scholar 

  • R. Belkhou, S. Stanescu, S. Swaraj, A. Besson, M. Ledoux, M. Hajlaoui, D. Dalle: HERMES: A soft X-ray beamline dedicated to X-ray microscopy, J. Synchrotron Radiat. 22, 968–979 (2015)

    Google Scholar 

  • G. Salazar-Alvarez, J.J. Kavich, J. Sort, A. Mugarza, S. Stepanow, A. Potenza, H. Marchetto, S.S. Dhesi, V. Baltz, B. Dieny, A. Weber, L.J. Heyderman, J. Nogues, P. Gambardella: Direct evidence of imprinted vortex states in the antiferromagnet of exchange biased microdisks, Appl. Phys. Lett. 95, 012510-3 (2009)

    Google Scholar 

  • M. Haider, H. Rose, S. Uhlemann, B. Kabius, K. Urban: Towards 0.1 nm resolution with the first spherically corrected transmission electron microscope, J. Electron Microsc. 47, 395–405 (1998)

    CAS  Google Scholar 

  • G.F. Rempfer, D.M. Desloge, W.P. Skoczylas, O.H. Griffith: Simultaneous correction of spherical and chromatic aberrations with an electron mirror: An electron optical achromat, Microsc. Microanal. 3, 14–27 (1997)

    CAS  Google Scholar 

  • R. Fink, M.R. Weiss, E. Umbach, D. Preikszas, H. Rose, R. Spehr, P. Hartel, W. Engel, R. Degenhardt, R. Wichtendahl, H. Kuhlenbeck, W. Erlebach, K. Ihmann, R. Schlogl, H.J. Freund, A.M. Bradshaw, G. Lilienkamp, T. Schmidt, E. Bauer, G. Benner: SMART: A planned ultrahigh-resolution spectromicroscope for BESSY II, J. Electron Spectrosc. Relat. Phenom. 84, 231–250 (1997)

    CAS  Google Scholar 

  • P. Hartel, D. Preikszas, R. Spehr, H. Müller, H. Rose: Mirror corrector for low-voltage electron microscopes. In: Advances in Imaging and Electron Physics, Vol. 120, ed. by P. Hawkes (Elsevier, Amsterdam 2003) pp. 41–133

    Google Scholar 

  • R.M. Tromp, J.B. Hannon, A.W. Ellis, W. Wan, A. Berghaus, O. Schaff: A new aberration-corrected, energy-filtered LEEM/PEEM instrument. I. Principles and design, Ultramicroscopy 110, 852–861 (2010)

    CAS  Google Scholar 

  • R. Konenkamp, R.C. Word, G.F. Rempfer, T. Dixon, L. Almaraz, T. Jones: 5.4 nm spatial resolution in biological photoemission electron microscopy, Ultramicroscopy 110, 899–902 (2010)

    CAS  Google Scholar 

  • J. Feng, E. Forest, A.A. MacDowell, M. Marcus, H. Padmore, S. Raoux, D. Robin, A. Scholl, R. Schlueter, P. Schmid, J. Stohr, W. Wan, D.H. Wei, Y. Wu: An x-ray photoemission electron microscope using an electron mirror aberration corrector for the study of complex materials, J. Phys. Condens. Matter 17, S1339–S1350 (2005)

    CAS  Google Scholar 

  • D.T. Attwood: Soft x-rays and extreme ultraviolet radiation: principles and applications (Cambridge Univ. Press, Cambridge 2000)

    Google Scholar 

  • B.P. Tonner, D. Dunham: Sub-micron spatial resolution of a micro-XAFS electrostatic microscope with bending magnet radiation: performance assessments and prospects for aberration correction, Nucl. Instrum. Methods Phys. Res. A 347, 436–440 (1994)

    Google Scholar 

  • R. Nakajima, J. Stohr, Y.U. Idzerda: Electron-yield saturation effects in L-edge X-ray magnetic circular dichroism spectra of Fe, Co, and Ni, Phys. Rev. B 59, 6421–6429 (1999)

    CAS  Google Scholar 

  • H. Ohara, Y. Yamamoto, K. Kajikawa, H. Ishii, K. Seki, Y. Ouchi: Effective escape depth of photoelectrons for hydrocarbon films in total electron yield measurement at the C K-edge, J. Synchrotron Radiat. 6, 803–804 (1999)

    CAS  Google Scholar 

  • M. Zharnikov, S. Frey, K. Heister, M. Grunze: An extension of the mean free path approach to X-ray absorption spectroscopy, J. Electron Spectrosc. Relat. Phenom. 124, 15–24 (2002)

    CAS  Google Scholar 

  • J. Lüning, F. Nolting, A. Scholl, H. Ohldag, J.W. Seo, J. Fompeyrine, J.P. Locquet, J. Stöhr: Determination of the antiferromagnetic spin axis in epitaxial LaFeO3 films by x-ray magnetic linear dichroism spectroscopy, Phys. Rev. B 67, 214433 (2003)

    Google Scholar 

  • M. Marcus: The effect of sample tilt on an emission microscope, Surf. Sci. 480, 203–207 (2001)

    CAS  Google Scholar 

  • S.A. Nepijko, N.N. Sedov, G. Schönhense, M. Escher, X. Bao, W. Huang: Resolution deterioration in emission electron microscopy due to object roughness, Ann. Phys. 9, 441–451 (2000)

    Google Scholar 

  • J. Stöhr: NEXAFS Spectroscopy, Vol. 25 (Springer, Berlin 1992)

    Google Scholar 

  • S.G. Urquhart, A.P. Hitchcock, A.P. Smith, H.W. Ade, W. Lidy, E.G. Rightor, G.E. Mitchell: NEXAFS spectromicroscopy of polymers: overview and quantitative analysis of polyurethane polymers, J. Electron Spectrosc. Relat. Phenom. 100, 119–135 (1999)

    CAS  Google Scholar 

  • J. Chmelik, L. Veneklasen, G. Marx: Comparing cathode lens configurations for low energy electron microscopy, Optik 83, 155–160 (1989)

    Google Scholar 

  • E. Harting, F. Read: Electrostatic Lenses (Elsevier, Amsterdam 1976)

    Google Scholar 

  • P. Hawkes: Image Processing and Computer-Aided Design in Electron Optics (Academic Press, New York 1973)

    Google Scholar 

  • J. Orloff: Handbook of Charged Particle Optics (CRC, Boca Raton 1997)

    Google Scholar 

  • J. Zlamal, B. Lencova: Development of the program EOD for design in electron and ion microscopy, Nucl. Instrum. Methods Phys. Res. A 645, 278–282 (2011)

    CAS  Google Scholar 

  • D.A. Dahl: SIMION for the personal computer in reflection, Int. J. Mass Spectrom. 200, 3–25 (2000)

    CAS  Google Scholar 

  • C.J. Davisson, C.J. Calbick: Electron lenses, Phys. Rev. 42, 0580 (1932)

    CAS  Google Scholar 

  • R.N. Watts, S. Liang, Z.H. Levine, T.B. Lucatorto, F. Polack, M.R. Scheinfein: A transmission X-ray microscope based on secondary-electron imaging, Rev. Sci. Instrum. 68, 3464–3476 (1997)

    CAS  Google Scholar 

  • B. Lencova: Electrostatic lenses. In: Handbook of Charged Particle Optics, 2nd edn., ed. by J. Orloff (CRC, Boca Raton 2008) pp. 161–208

    Google Scholar 

  • E. Bauer: The possibilities for analytical methods in photoemission and low-energy microscopy, Ultramicroscopy 36, 52–62 (1991)

    CAS  Google Scholar 

  • G. Schneider: Cryo X-ray microscopy with high spatial resolution in amplitude and phase contrast, Ultramicroscopy 75, 85–104 (1998)

    CAS  Google Scholar 

  • C. Jacobsen, J. Kirz, S. Williams: Resolution in soft X-ray microscopes, Ultramicroscopy 47, 55–79 (1992)

    Google Scholar 

  • J. Feng, H. Padmore, D.H. Wei, S. Anders, Y. Wu, A. Scholl, D. Robin: Modeling the acceleration field and objective lens for an aberration corrected photoemission electron microscope, Rev. Sci. Instrum. 73, 1514–1517 (2002)

    CAS  Google Scholar 

  • H. Rose: Correction of aberrations, a promising means for improving the spatial and energy resolution of energy-filtering electron microscopes, Ultramicroscopy 56, 11–25 (1994)

    CAS  Google Scholar 

  • O. Scherzer: Over some errors of electrons lenses, Z. Phys. 101, 593–603 (1936)

    Google Scholar 

  • P.W. Hawkes, E. Kasper: Principles of Electron Optics, Vol. 2 (Academic Press, New York 1996)

    Google Scholar 

  • J. Zach, M. Haider: Correction of spherical and chromatic aberration in a low voltage SEM, Optik 98, 112–118 (1995)

    Google Scholar 

  • M. Haider, H. Rose, S. Uhlemann, E. Schwan, B. Kabius, K. Urban: A spherical-aberration-corrected 200 kV transmission electron microscope, Ultramicroscopy 75, 53–60 (1998)

    CAS  Google Scholar 

  • M. Haider, S. Uhlemann, E. Schwan, H. Rose, B. Kabius, K. Urban: Electron microscopy image enhanced, Nature 392, 768–769 (1998)

    CAS  Google Scholar 

  • N. Dellby, O.L. Krivanek, P.D. Nellist, P.E. Batson, A.R. Lupini: Progress in aberration-corrected scanning transmission electron microscopy, J. Electron Microsc. 50, 177–185 (2001)

    CAS  Google Scholar 

  • P.E. Batson, N. Dellby, O.L. Krivanek: Sub-ångstrom resolution using aberration corrected electron optics, Nature 418, 617–620 (2002)

    CAS  Google Scholar 

  • G. De Stasio, L. Perfetti, B. Gilbert, O. Fauchoux, M. Capozi, P. Perfetti, G. Margaritondo, B.P. Tonner: MEPHISTO spectromicroscope reaches 20 nm lateral resolution, Rev. Sci. Instrum. 70, 1740–1742 (1999)

    Google Scholar 

  • E. Bauer: Chemical, Structural, and Electronic Analysis of Heterogeneous Surfaces on Nanometer Scale (Kluwer, Dortrecht 1997)

    Google Scholar 

  • G. Schönhense, H. Spiecker: Correction of chromatic and spherical aberration in electron microscopy utilizing the time structure of pulsed excitation sources, J. Vac. Sci. Technol. B 20, 2526–2534 (2002)

    Google Scholar 

  • E. Bauer: Photoelectron spectromicroscopy: present and future, J. Electron Spectrosc. Relat. Phenom. 114–116, 975–987 (2001)

    Google Scholar 

  • V.K. Zworykin, V. Kosma: Electron Optics and the Electron Microscope (Wiley, New York 1945)

    Google Scholar 

  • E.G. Ramberg: Aberration correction with electron mirrors, J. Appl. Phys. 20, 183–186 (1949)

    Google Scholar 

  • V.M. Kel'man, L.M. Sekunova, E.M. Yakushev: Theory of axisymmetric electron mirrors I. Trajectory equations, Sov. Phys. Tech. Phys. 17, 2279 (1973)

    Google Scholar 

  • V.M. Kel'man, L.M. Sekunova, E.M. Yakushev: Theory of axisymmetric electron mirrors. I. Trajectory equations, Sov. Phys. Tech. Phys. 18, 1142 (1974)

    Google Scholar 

  • A.L. Dodin, M.B. Nesvizhskii: Accuracy of expansions in deriving the geometric aberration coefficients of cathode systems, Sov. Phys. Tech. Phys. 26, 539–541 (1981)

    Google Scholar 

  • G.F. Rempfer: A theoretical study of the hyperbolic electron mirror as a correcting element for spherical and chromatic aberration in electron optics, J. Appl. Phys. 67, 6027–6040 (1990)

    CAS  Google Scholar 

  • G.F. Rempfer, M.S. Mauck: Correction of chromatic aberration with an electron mirror, Optik 92, 3–8 (1992)

    Google Scholar 

  • G.F. Rempfer, D.M. Desloge, W.P. Skoczylas, O. Hayes Griffith: Simultaneous correction of spherical and chromatic aberrations with an electron mirror: An electron optical achromat, Microsc. Microanal. 3, 14–27 (1997)

    CAS  Google Scholar 

  • Z. Shao, X.D. Wu: Properties of a four-electrode adjustable electron mirror as an aberration corrector, Rev. Sci. Instrum. 61, 1230–1235 (1990)

    Google Scholar 

  • Z. Shao, X.D. Wu: A study on hyperbolic mirrors as correctors, Optik 84, 51–54 (1990)

    Google Scholar 

  • H. Rose, D. Preikszas: Time-dependent perturbation formalism for calculating the aberrations of systems with large ray gradients, Nucl. Instrum. Methods Phys. Res. A 363, 301–315 (1995)

    CAS  Google Scholar 

  • D. Preikszas, H. Rose: Correction properties of electron mirrors, J. Electron Microsc. 46, 1–9 (1997)

    Google Scholar 

  • H. Rose, D. Preikszas: Outline of a versatile corrected LEEM, Optik 92, 31–44 (1992)

    Google Scholar 

  • W. Wan, J. Feng, H.A. Padmore, D.S. Robin: Simulation of a mirror corrector for PEEM3, Nucl. Instrum. Methods Phys. Res. A 519, 222 (2004)

    CAS  Google Scholar 

  • W. Wan, J. Feng, H.A. Padmore: A new separator design for aberration corrected photoemission electron microscopes, Nucl. Instrum. Methods Phys. Res. A 564, 537–543 (2006)

    CAS  Google Scholar 

  • J. Feng, A.A. MacDowell, R. Duarte, A. Doran, E. Forest, N. Kelez, M. Marcus, D. Munson, H. Padmore, K. Petermann, S. Raoux, D. Robin, A. Scholl, R. Schlueter, P. Schmid, J. Stohr, W. Wan, D.H. Wei, Y. Wu: An aberration corrected photoemission electron microscope at the advanced light source, AIP Conf. Proc. 705, 1070–1073 (2004)

    Google Scholar 

  • F. Nolting, A. Scholl, J. Stöhr, J.W. Seo, J. Fompeyrine, H. Siegwart, J.P. Locquet, S. Anders, J. Lüning, E.E. Fullerton, M.F. Toney, M.R. Scheinfein, H.A. Padmore: Direct observation of the alignment of ferromagnetic spins by antiferromagnetic spins, Nature 405, 767–769 (2000)

    CAS  Google Scholar 

  • J.B. Kortright, D.D. Awschalom, J. Stöhr, S.D. Bader, Y.U. Idzerda, S.S.P. Parkin, I.K. Schuller, H.C. Siegmann: Research frontiers in magnetic materials at soft X-ray synchrotron radiation facilities, J. Magn. Magn. Mater. 207, 7–44 (1999)

    CAS  Google Scholar 

  • G. Schütz, W. Wagner, W. Wilhelm, P. Kienle, R. Zeller, R. Frahm, G. Materlik: Absorption of circularly polarized X rays in iron, Phys. Rev. Lett. 58, 737–740 (1987)

    Google Scholar 

  • J. Stöhr, A. Scholl, T.J. Regan, S. Anders, J. Lüning, M.R. Scheinfein, H.A. Padmore, R.L. White: Images of the antiferromagnetic structure of a NiO(100) surface by means of X-ray magnetic linear dichroism spectromicroscopy, Phys. Rev. Lett. 83, 1862–1865 (1999)

    Google Scholar 

  • A. Scholl, J. Stöhr, J. Lüning, J.W. Seo, J. Fompeyrine, H. Siegwart, J.P. Locquet, F. Nolting, S. Anders, E.E. Fullerton, M.R. Scheinfein, H.A. Padmore: Observation of antiferromagnetic domains in epitaxial thin films, Science 287, 1014–1016 (2000)

    CAS  Google Scholar 

  • J. Vogel, W. Kuch, M. Bonfim, J. Camarero, Y. Pennec, F. Offi, K. Fukumoto, J. Kirschner, A. Fontaine, S. Pizzini: Time-resolved magnetic domain imaging by x-ray photoemission electron microscopy, Appl. Phys. Lett. 82, 2299–2301 (2003)

    CAS  Google Scholar 

  • S.B. Choe, Y. Acremann, A. Scholl, A. Bauer, A. Doran, J. Stohr, H.A. Padmore: Vortex core-driven magnetization dynamics, Science 304, 420–422 (2004)

    CAS  Google Scholar 

  • B.T. Thole, C. Paolo, F. Sette, G. van der Laan: X-ray circular dichroism as a probe of orbital magnetization, Phys. Rev. Lett. 68, 1943–1946 (1992)

    CAS  Google Scholar 

  • Y. Wu, J. Stohr, B.D. Hermsmeier, M.G. Samant, D. Weller: Enhanced orbital magnetic moment on Co atoms in Co/Pd multilayers: A magnetic circular X-ray dichroism study, Phys. Rev. Lett. 69, 2307–1310 (1992)

    CAS  Google Scholar 

  • P. Carra, B.T. Thole, M. Altarelli, W. Xindong: X-ray circular dichroism and local magnetic fields, Phys. Rev. Lett. 70, 694–697 (1993)

    CAS  Google Scholar 

  • P. Kuiper, B.G. Searle, P. Rudolf, L.H. Tjeng, C.T. Chen: X-ray magnetic dichroism of antiferromagnet Fe2O3: the orientation of magnetic moments observed by Fe 2p X-ray absorption spectroscopy, Phys. Rev. Lett. 70, 1549–1552 (1993)

    CAS  Google Scholar 

  • D. Alders, L.H. Tjeng, F.C. Voogt, T. Hibma, G.A. Sawatzky, C.T. Chen, J. Vogel, M. Sacchi, S. Iacobucci: Temperature and thickness dependence of magnetic moments in NiO epitaxial films, Phys. Rev. B 57, 11623–11631 (1998)

    CAS  Google Scholar 

  • E. Arenholz, G. van der Laan, R.V. Chopdekar, Y. Suzuki: Angle-dependent Ni2+x-ray magnetic linear dichroism: interfacial coupling revisited, Phys. Rev. Lett. 98, 197201-4 (2007)

    Google Scholar 

  • H. Ohldag, T.J. Regan, J. Stöhr, A. Scholl, F. Nolting, J. Luning, C. Stamm, S. Anders, R.L. White: Spectroscopic identification and direct imaging of interfacial magnetic spins, Phys. Rev. Lett. 87, 247201 (2001)

    CAS  Google Scholar 

  • H. Ohldag, A. Scholl, F. Nolting, E. Arenholz, S. Maat, A.T. Young, M. Carey, J. Stöhr: Correlation between exchange bias and pinned interfacial spins, Phys. Rev. Lett. 91, 017203 (2003)

    CAS  Google Scholar 

  • E. Folven, A. Scholl, A. Young, S. Retterer, J. Boschker, T. Tybell, Y. Takamura, J. Grepstad: Crossover from spin-flop coupling to collinear spin alignment in antiferromagnetic/ferromagnetic nanostructures, Nano Lett. 12, 2386–2390 (2012)

    CAS  Google Scholar 

  • E. Folven, J. Linder, O. Gomonay, A. Scholl, A. Doran, A. Young, S. Retterer, V. Malik, T. Tybell, Y. Takamura, J. Grepstad: Controlling the switching field in nanomagnets by means of domain-engineered antiferromagnets, Phys. Rev. B 92, 057204-5 (2013)

    Google Scholar 

  • M.S. Lee, T.A. Wynn, E. Folven, R.V. Chopdekar, A. Scholl, A.T. Young, S.T. Retterer, J.K. Grepstad, Y. Takamura: Tailoring spin textures in complex oxide micromagnets, ACS Nano 10, 8545–8551 (2016)

    CAS  Google Scholar 

  • A. Farhan, P. Derlet, A. Kleibert, A. Balan, R. Chopdekar, M. Wyss, J. Perron, A. Scholl, F. Nolting, L. Heyderman: Direct observation of thermal relaxation in artificial spin ice, Phys. Rev. Lett. 111, 197201-4 (2007)

    Google Scholar 

  • I. Gilbert, Y.Y. Lao, I. Carrasquillo, L. O'Brien, J.D. Watts, M. Manno, C. Leighton, A. Scholl, C. Nisoli, P. Schiffer: Emergent reduced dimensionality by vertex frustration in artificial spin ice, Nature Phys. 12, 162–165 (2016)

    CAS  Google Scholar 

  • F. Kronast, N. Friedenberger, K. Ollefs, S. Gliga, L. Tati-Bismaths, R. Thies, A. Ney, R. Weber, C. Hassel, F.M. Romer, A.V. Trunova, C. Wirtz, R. Hertel, H.A. Durr, M. Farle: Element-specific magnetic hysteresis of individual 18 nm Fe nanocubes, Nano Lett. 11, 1710–1715 (2011)

    CAS  Google Scholar 

  • B. Leung, A. Hitchcock, R. Cornelius, J. Brash, A. Scholl, A. Doran: X-ray spectromicroscopy study of protein adsorption to a polystyrene-polylactide blend, Biomacromolecules 10, 1838–1845 (2009)

    CAS  Google Scholar 

  • I.N. Koprinarov, A.P. Hitchcock, C.T. McCrory, R.F. Childs: Quantitative mapping of structured polymeric systems using singular value decomposition analysis of soft X-ray images, J. Phys. Chem. B 106, 5358–5364 (2002)

    CAS  Google Scholar 

  • R.A. Metzler, M. Abrecht, R.M. Olabisi, D. Ariosa, C.J. Johnson, B.H. Frazer, S.N. Coppersmith, P.U.P.A. Gilbert: Architecture of columnar nacre, implications for its formation mechanism, Phys. Rev. Lett. 98, 268102-4 (2007)

    Google Scholar 

  • P.U.P.A. Gilbert, R.A. Metzler, D. Zhou, A. Scholl, A. Doran, A. Young, M. Kunz, N. Tamura, S.N. Coppersmith: Gradual ordering in red abalone nacre, J. Am. Chem. Soc. 130, 17519–17527 (2008)

    CAS  Google Scholar 

  • R.T. DeVol, R.A. Metzler, L. Kabalah-Amitai, B. Pokroy, Y. Politi, A. Gal, L. Addadi, S. Weiner, A. Fernandez-Martinez, R. Demichelis, J.D. Gale, J. Ihli, F.C. Meldrum, A.Z. Blonsky, C.E. Killian, C.B. Salling, A.T. Young, M.A. Marcus, A. Scholl, A. Doran, C. Jenkins, H.A. Bechtel, P.U.P.A. Gilbert: Oxygen spectroscopy and polarization-dependent imaging contrast (PIC)-mapping of calcium carbonate minerals and biominerals, J. Phys. Chem. B 118, 8449–8457 (2014)

    CAS  Google Scholar 

  • G. De Stasio, B.H. Frazer, B. Gilbert, K.L. Richter, J.W. Valley: Compensation of charging in X-PEEM: A successful test on mineral inclusions in 4.4 Ga old zircon, Ultramicroscopy 98, 57–62 (2003)

    Google Scholar 

  • A. Locatelli, C. Wang, C. Africh, N. Stojic, T.O. Mentes, G. Comelli, N. Binggeli: Temperature-driven reversible rippling and bonding of a graphene super lattice, ACS Nano 7, 6955–6963 (2013)

    CAS  Google Scholar 

  • M. Escher, N. Weber, M. Merkel, C. Ziethen, P. Bernhard, G. Schonhense, S. Schmidt, F. Forster, F. Reinert, B. Kromker, D. Funnemann: Nanoelectron spectroscopy for chemical analysis: A novel energy filter for imaging x-ray photoemission spectroscopy, J. Phys. Condens. Matter 17, S1329–S1338 (2005)

    CAS  Google Scholar 

  • R.M. Tromp, Y. Fujikawa, J.B. Hannon, A.W. Ellis, A. Berghaus, O. Schaff: A simple energy filter for low energy electron microscopy/photoelectron emission microscopy instruments, J. Phys. Condens. Matter 21, 314007 (2009)

    CAS  Google Scholar 

  • H. Stoll, A. Puzic, B. van Waeyenberge, P. Fischer, J. Raabe, M. Buess, T. Haug, R. Hollinger, C. Back, D. Weiss, G. Denbeaux: High-resolution imaging of fast magnetization dynamics in magnetic nanostructures, Appl. Phys. Lett. 84, 3328–3330 (2004)

    CAS  Google Scholar 

  • C.M. Schneider, A. Kuksov, A. Krasyuk, A. Oelsner, D. Neeb, S.A. Nepijko, G. Schonhense, I. Monch, R. Kaltofen, J. Morais, C. de Nadai, N.B. Brookes: Incoherent magnetization rotation observed in subnanosecond time-resolving x-ray photoemission electron microscopy, Appl. Phys. Lett. 85, 2562–2564 (2004)

    CAS  Google Scholar 

  • C. Quitmann, J. Raabe, C. Buehler, M. Buess, S. Johnson, F. Nolting, V. Schlott, A. Streun: Measuring magnetic excitations in microstructures using X-ray microscopy, Nucl. Instrum. Methods Phys. Res. A 588, 494–501 (2008)

    CAS  Google Scholar 

  • S.B. Choe, Y. Acremann, A. Bauer, A. Scholl, A. Doran, J. Stohr, H.A. Padmore: P-sec time-resolved microscopy of magnetic structures using X-PEEM, AIP Conf. Proc. 705, 1391–1394 (2004)

    Google Scholar 

  • T. Shinjo, T. Okuno, R. Hassdorf, K. Shigeto, T. Ono: Magnetic vortex core observation in circular dots of permalloy, Science 289, 930–932 (2000)

    CAS  Google Scholar 

Download references

Acknowledgements

We would like to thank our collaborators E. Folven, Y. Takamura, J. Grepstad, A. Farhan, B. Leung, A.P. Hitchcock, and P.U.P.A. Gilbert, whose ALS work is discussed in this chapter. The chapter was copyedited by C.E. Scholl. This research used resources of the Advanced Light Source, which is a DOE Office of Science User Facility under contract no. DE-AC02-05CH11231.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun Feng .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Feng, J., Scholl, A. (2019). Photoemission Electron Microscopy. In: Hawkes, P.W., Spence, J.C.H. (eds) Springer Handbook of Microscopy. Springer Handbooks. Springer, Cham. https://doi.org/10.1007/978-3-030-00069-1_10

Download citation

Publish with us

Policies and ethics